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Wstep

Wprowadzenie do problematyki pracy

W XXI. wieku, zwtaszcza w ostatnich latach, mozna zaobserwowa¢ znaczacy
wzrost popularno$ci i zastosowan metod sztucznej inteligencji w szeroko pojetej
analizie danych. Wiele modeli, powstatych jako majace ogdlne zastosowanie
w réznych dziedzinach sztucznej inteligencji, daje sie wykorzystywacé takze jako
narzedzia wspierajgce przy modelowaniu i prognozowaniu zmian cen aktywow
finansowych. Nie sa to jednak narzedzia, ktére pozwolityby niedoswiadczonym
uzytkownikom przewidzie¢ notowania gietdowe czy kursy walut. Natomiast majg one
na celu stuzyé¢ jako pomoc dla analitykéw danych i inwestorow w podejmowaniu
decyzji inwestycyjnych. Dotyczy to takze ekonometrii finansowej, gdzie wiodgcym
obszarem zainteresowan badaczy jest modelowanie i prognozowanie szeregow
czasowych cen i stop zwrotu réznorakich instrumentéw finansowych.

Gléwnymi obszarami wykorzystania sztucznej inteligencji w badaniach rynkéw
finansowych, i zarazem jednymi z wiodgcych zagadnien ekonometrii finansowej sa:
prognozowanie szeregow czasowych, zarzadzanie ryzykiem oraz optymalizacja portfela
inwestycyjnego. W tej pracy uwaga zostanie skoncentrowana przede wszystkim na
prognozowaniu stop zwrotu, zmiennosci oraz szacowaniu ryzyka. Pomimo licznych
prac naukowych na ten temat, problem prognozowania wcigz pozostaje otwarty
i aktualny. Analiza i optymalizacja istniejacych modeli moze przyczynié¢ sie zarowno
do poprawy jakosci istniejacych juz narzedzi handlu aktywami, jak i budowy nowych.
Dodatkowe korzysci moze przyniesé¢ takze stworzenie modeli hybrydowych, opartych
na sieciach neuronowych w potaczeniu z modelami ekonometrii finansowej oraz
metodami prognozowania probabilistycznego.

Na gruncie metod sztucznej inteligencji jednym 2z najbardziej dynamicznie
rozwijajacych sie w ciagu ostatnich lat obszaréw jest uczenie glebokie (ang. deep
learning). Stanowi ono pewne rozwiniecie klasycznych juz metod uczenia
maszynowego, a w szczegélnosci sieci neuronowych. O uczeniu glebokim mozna

mowi¢ tez jako o pewnej "nowej epoce” w rozwoju prac nad metodami sztucznej



inteligencji, w ktorej, dzieki dostepnosci coraz szybszego sprzetu komputerowego
i wzrostowi mocy obliczeniowej, nastapito znaczne przyspieszenie postepu badan nad
nowymi rozwigzaniami i narzedziami w obszarze sieci neuronowych i uczenia
maszynowego. Rozwoj ten, z kolei, spowodowal znaczny wzrost popularnosci tych
metod zaréwno wsrod badaczy, jak i wérdd koncowych uzytkownikéw tych rozwigzan.

Badania dotyczace wykorzystania sieci uczenia glebokiego w prognozowaniu
instrumentéow finansowych zaczety pojawia¢ sie dopiero w ciggu ostatnich kilku lat
i wcigz pozostawiaja wiele miejsca na poszukiwanie nowych rozwigzan. Niewiele jest
tez badan taczacych metody oparte na sieciach gtebokich z metodami
ekonometrycznymi. W nurcie tym miesci sie takze niniejsza rozprawa.

W  pracy szczegbdlny nacisk potozony zostanie na synergie metod uczenia
gtebokiego oraz metod ekonometrycznych, ktora mozliwa jest do dosiegniecia poprzez
rozwigzania hybrydowe, zastosowane przede wszystkim do prognozowania zmiennosci
i ryzyka, a takze w kontekscie prognozowania probabilistycznego. Proponowane
w kolejnych rozdziatach rozwigzania wykorzystuja aspekty obu podejs¢, taczac
modele uczenia glebokiego z modelami ekonometrycznymi w celu uzyskania
efektywniejszych narzedzi. Zdaniem autora, takie podejscie przyczyni sie korzystniej
do rozwoju badan, niz jedynie préba wskazania lepszych metod, ktorych

jednoznaczne okreslenie czesto jest niemozliwe.

Cele i hipotezy badawcze

Gléwnym celem pracy jest opracowanie modeli predykcyjnych, opartych na
metodach uczenia gtebokiego, oraz wskazanie mozliwosci i potencjalnych kierunkéw
ich wykorzystania, a takze przeprowadzenie analizy ich efektywno$ci, rozumianej jako
trafno$é predykeji w prognozowaniu szeregéw czasowych (logarytmicznych) stép
zwrotu aktywoéw finansowych oraz ich zmiennoéci.

7 kolei do celow czastkowych dysertacji zaliczy¢ mozna:

1. Zbadanie efektywnosci modeli predykcyjnych opartych na uczeniu glebokim

W prognozowaniu punktowym stop zwrotu oraz zmiennoSci.

2. Sprawdzenie jakosci prognoz punktowych stép zwrotu w kontekscie strategii

inwestycyjnych.

3. Poréwnanie wynikow strategii inwestycyjnych w zaleznosci od poziomu

rozwiniecia rynkéw finansowych wybranych krajow.



4. Propozycja nowych rozwigzan w postaci modeli hybrydowych, taczacych
metody uczenia glebokiego oraz narzedzia ekonometryczne, w celu

prognozowania zmiennosci instrumentéw finansowych.

5. Wykorzystanie prognoz zmiennosci uzyskanych przez badane modele do

szacowania ryzyka kapitatowego.

6. Propozycja nowych rozwigzan umozliwiajacych wykorzystanie gtebokich sieci

neuronowych w prognozowaniu probabilistycznym.

7. Porownanie modeli opartych na sztucznej inteligencji z metodami
ekonometrycznymi opartymi na modelach klasy ARMA-GARCH pod wzgledem
trafnosci predykceji punktowej i probabilistyczne;j.

8. Stworzenie autorskich kodéw umozliwiajacych przeprowadzenie badan
z wykorzystaniem sieci uczenia glebokiego w zakresie powyzszych celow

badawczych.

Gléwna hipoteza badawcza zaklada, ze modele predykcyjne oparte na metodach
uczenia gtebokiego mozna efektywnie wykorzystywaé¢ do prognozowania finansowych
szeregbw czasowych w postaci logarytmicznych stop zwrotu, oraz ich zmiennosci.

Natomiast hipotezy szczegdtowe sformutowane zostaty nastepujaco:

1. Modele oparte na uczeniu glebokim generuja lepsze efekty predykeji
w poréwnaniu z modelami wykorzystujacymi klasyczne metody sztucznej

inteligencji w kontekscie punktowych prognoz stép zwrotu.

2. Prognozy punktowe stop zwrotu uzyskiwane przez modele oparte na uczeniu

gtebokim mozna wykorzysta¢ do budowy skutecznych strategii inwestycyjnych.

3. Prognozy stéop zwrotu uzyskane na podstawie danych z rynkéw wschodzacych
daja lepsze wyniki w kontekscie strategii inwestycyjnych od prognoz z rynkéw

rozwinietych.

4. Potaczenie metod ekonometrycznych z metodami uczenia gtebokiego w ramach

modeli hybrydowych przyczynia sie do poprawy efektywnosci prognoz zmiennoéci.

5. Prognozy zmienno$ci uzyskane w ramach modeli hybrydowych przyczyniaja sie

do poprawy prognoz ryzyka kapitalowego.

6. Sieci neuronowe uczenia glebokiego mozna wykorzysta¢ jako narzedzie

prognozowania rozktadéw prawdopodobienstw.



7. Prognozy probabilistyczne uzyskane za pomoca sieci uczenia glebokiego

przynosza lepsze rezultaty w poréwnaniu z modelami klasy GARCH.

Metodyka badan

Punktem wyjscia w zakresie metodycznym niniejszej rozprawy jest przeglad
literatury dotyczacej badan naukowych, przeprowadzonych w ostatnich latach,
analizujacych strukture oraz skuteczno$é modeli opartych na klasycznych metodach
sztucznej inteligencji oraz metodach ekonometrycznych. Przedstawia on opis
obecnego stanu wiedzy, ze wskazaniem probleméw, ktore do tej pory nie zostaty
zbadane lub pozostaja w sferze zagadnien otwartych. W przegladzie skupiono si¢ na
najnowszych publikacjach dotyczacych badan naukowych w zakresie wykorzystania
sieci  uczenia  glebokiego, modeli klasy @GARCH oraz prognozowania
probabilistycznego w analizie finansowych szeregéw czasowych (konkretnie stép
zwrotu 1 ich zmiennosci). W dalszych podrozdziatach prezentowana uprzednio
literatura zostala poszerzona takze o badania bardziej specyficzne dla danego tematu,
wymagajace czesto wezesniejszego wprowadzenia teoretycznego.

W zakresie metod ekonometrycznych praca skupia sie na modelowaniu
jednowymiarowych szeregow czasowych (stép zwrotu oraz ich zmiennosci)
z wykorzystaniem modeli klasy GARCH (ARMA-GARCH), szacowanych za pomoca
metody najwiekszej wiarygodnosci (MNW). Gléwnymi specyfikacjami klasy GARCH
rozwazanymi w tym opracowaniu beda podklasy EGARCH, GJR-GARCH
i APARCH. Wskazane sg takze alternatywne modele zmiennosci: modele SV oraz
modele hybrydowe (M)SV-(M)GARCH.

Gléwnym narzedziem wykorzystywanym w tej pracy s sieci neuronowe uczenia
gtebokiego. Do budowy modeli w tym zakresie stosowane sg dwa typy sieci gtebokich:
sieci rekurencyjne LSTM (ang. Long Short Term Memory) oraz sieci konwolucyjne
(ang. Convolutional Neural Networks - CNN). W celu zapewnienia prawidlowego
dziatania sieci i optymalizacji ich hiperparametrow zastosowany jest takze szeroki
zakres narzedzi pomocniczych, szerzej opisanych w rozdziale 3. Jako dodatkowy
poziom pordéwnania metod uczenia glebokiego z klasycznymi sieciami neuronowymi
wykorzystane sa wielowarstwowe sieci perceptronowe (ang. Multi-Layer Perceptron -
MLP).

Metody ekonometryczne potaczone sa z metodami uczenia gtebokiego w modele
hybrydowe, stanowigce autorskie rozwigzanie majace na celu poprawe wynikow
uzyskiwanych przez indywidualne modele sktadowe przynalezace w caltosci badZz do

grupy narzedzi ekonometrii finansowej, badz sztucznej inteligencji.



Przedstawione powyzej metody wykorzystane sa przede wszystkim do
prognozowania finansowych szeregéw czasowych. Przedmiotem prognoz punktowych
sg logarytmiczne stopy zwrotu wybranych instrumentéow finansowych - i przede
wszystkim - ich zmienno$¢. Obok prognoz punktowych, badane narzedzia
wykorzystane sa takze do uzyskania prognoz probabilistycznych, ze wzgledu na wzrost
znaczenia takiego podejscia w ostatnim czasie. W szczegolnosci, do prognozowania
probabilistycznego dostosowane beda modele bazujace na sieciach uczenia gtebokiego.

Do oceny trafnosci predykcji stosowane jest podejécie wieloaspektowe. Prognozy
punktowe ocenione sg przy pomocy typowych miernikéw btedu, takich jak blad
sredniokwadratowy. Jako zmienno$¢ ”zaobserwowana’ rozumiana jest zmiennosc
oszacowana przy pomocy estymatorow opartych na zakresie cen. Dodatkowym
poziomem oceny prognoz punktowych stop zwrotu sg strategie inwestycyjne, opisane
przy pomocy krzywych kapitalowych oraz dodatkowych miernikéw. W koncu, do
oceny trafnosci probabilistycznych stosowane sa kryteria specyficzne dla tej
problematyki, w szczegblnosci LPS (ang. Log Predictive Score), CRPS (ang.
Continous Ranked Probability Score) oraz PIT (ang. Probability Integral Transform).

Uzyskane prognozy ocienione sg takze w kontekscie ryzyka kapitatowego. Do tego
celu wykorzystane sa prognozy wartosci zagrozonej (ang. Value at Risk - VaR) oraz
oczekiwanego niedoboru (ang. Expected Shortfall - ES). Ocena prognoz VaR i ES
przeprowadzona zostanie zarowno w kontekscie punktowych prognoz zmiennosci jak
i modeli prognoz probabilistycznych.

Do oceny trafno$ci prognoz modeli wykorzystywane sa symulacje komputerowe,
z ktorych pomocg badana jest efektywnosci wybranych modeli predykcyjnych opartych
na uczeniu gltebokim i metodach ekonometrycznych, z wykorzystaniem algorytmow
testowania wstecznego.

Do implementacji modeli i tworzenia algorytmow wykorzystywane sg narzedzia
programistyczne i biblioteki dostepne w srodowiskach Python oraz R, wspomagajace
uczenie gtebokie i metody ekonometryczne. Jako podstawowe biblioteki do
przetwarzania i wizualizacji danych uzywane sa pakiety Pandas (McKinney [2010]),
Numpy (Harris i in. [2020]) oraz Matplotlib (Hunter [2007]). Sposréd narzedzi
wspomagajacych klasyczne uczenie maszynowe oraz w ramach uczenia gtebokiego
wykorzystane zostana biblioteki TensorFlow (Abadi i in. [2016]) oraz Keras (Chollet i
in. [2015]). Do budowy modeli klasy ARMA-GARCH, oraz do testowania
prognozowanych poziomoéw  wartosci zagrozonej i oczekiwanego niedoboru
wykorzystany bedzie pakiet rugarch (Ghalanos [2020]).

Badania prowadzone sa z wykorzystaniem danych w postaci logarytmicznych stop
zwrotu. Dane obejmujg szesé indekséw gietdowych: S&P 500, DAX, NIKKEI 225,



WIG, KOSPI oraz BOVESPA, reprezentujacych kraje na réznych poziomach rozwoju
gospodarczego (rynki rozwiniete oraz wschodzace) i z réznych rejonéw geograficznych.

Wyniki empiryczne poddane sg analizie poréwnawczej, polegajacej na zestawieniu
najlepszych specyfikacji modelowych, a takze wskazaniu zalet 1 ograniczen
wynikajacych ze stosowania metod opartych na uczeniu gtebokim. W odniesieniu do
prognoz punktowych stép zwrotu i zbudowanych na ich podstawie strategii
inwestycyjnych porownane zostana klasyczne sieci neuronowe MLP, oraz sieci uczenia
gtebokiego LSTM i CNN. W kontekscie punktowych prognoz zmiennosci i szacowania
ryzyka kapitalowego pordéwnane zostang poszczegdlne specyfikacje modeli klasy
GARCH z wybranymi rozktadami warunkowymi, oraz modele hybrydowe, laczace
modele GARCH 2z sieciami uczenia glebokiego. Ocenie w kontekscie szacowania

ryzyka kapitatlowego poddane zostang rowniez modele prognoz probabilistycznych.

Streszczenie zawarto$ci poszczegoélnych rozdzialow

W pierwszym rozdziale, w ramach wprowadzenia, oméwiono podstawowe kwestie
zwigzane z rynkami finansowymi oraz ich prognozowaniem. Przedstawiono definicje
oraz strukture podziatu rynkéw finansowych oraz wskazano podstawowe narzedzia
stuzace do ich prognozowania. W tej czesci pracy przedstawiono takze najwazniejsze
publikacje naukowe, z zakresu ekonometrii finansowej oraz sieci neuronowych,
dotyczace prognozowania instrumentow finansowych.

W rozdziale drugim szczegdétowo przedstawiono narzedzia ekonometryczne
stosowane do modelowania i prognozowania instrumentéw finansowych. Oméwiono
empiryczne witasnos$ci finansowych szeregéw czasowych, oraz najwazniejsze modele
stuzace do analizy i prognozowania stop zwrotu oraz zmiennosci, ze szczegdlnym
naciskiem potozonym na modele klasy ARMA-GARCH. Przedstawiono podstawy
konstrukcji tych modeli, metody estymacji, oraz ich mozliwosci predykcyjne, zaréwno
w kontekscie prognoz punktowych jak i probabilistycznych. Wskazano takze sposoby
oceny trafnosci predykecji oraz mozliwosci ich wykorzystania przy budowie strategii
inwestycyjnych oraz w szacowaniu ryzyka kapitatowego.

Trzeci rozdziat dotyczy koncepcji zwigzanych z sieciami neuronowymi uczenia
gtebokiego oraz ich wykorzystania jako modeli predykcyjnych. Przedstawiono w nim
wybrane architektury sieci neuronowych, w szczeg6lnosci sieci uczenia gtebokiego,
kwestie zwigzane z uczeniem sieci, dotyczace stosowanych w tym procesie algorytmow
oraz odpowiedniego przygotowania danych, a takze problematyke dotyczaca
dostrajania hiperparametréw sieci. Omoéwiono takze wybrane publikacje naukowe

dotyczace wykorzystania sieci uczenia glebokiego w prognozowaniu finansowych



szeregow czasowych.

W rozdziale czwartym  zaprezentowano autorskie propozycje modeli
wykorzystujace elementy sieci uczenia glebokiego oraz metod ekonometrycznych. W
pierwszej kolejnosci wskazano dotychczasowe propozycje modeli hybrydowych,
wykorzystujace wspomniane metody, proponowane w literaturze przedmiotu. Biorac
pod uwage =zalety i niedociagniecia tych rozwigzan, zaproponowano autorska
architekture hybrydowego modelu punktowych prognoz zmiennosci,
ARMA-GARCH-LSTM. Przedstawiono takze propozycje wykorzystania sieci
neuronowych uczenia glebokiego w prognozowaniu probabilistycznym, poprzez
prognozowanie parametréw rozktadéw prawdopodobienstwa finansowych szeregdéw
czasowych.

Rozdzial piaty dotyczy empirycznej ewaluacji omawianych specyfikacji
modelowych. W ramach tego rozdzialu omoéwiono statystyczne charakterystyki
badanych zbioréw danych, narzedzia programistyczne stosowane do wdrozenia
analizowanych narzedzi, a takze kwestie zwigzane z doborem i optymalizacja
hiperparametréw modeli sieciowych. Zaprezentowano tu wyniki empiryczne uzyskane
przez modele wykorzystujace sieci neuronowe w kontekscie prognoz punktowych stop
zwrotu oraz zbudowanych z ich wykorzystaniem strategii inwestycyjnych. W dalszej
kolejnosci omowiono wyniki uzyskane z wykorzystaniem modeli punktowych prognoz
zmienno$ci: poszczegdlnych specyfikacji ekonometrycznych modeli ARMA-GARCH
oraz modeli hybrydowych ARMA-GARCH-LSTM. Wyniki oceniono wykorzystujac
klasyczne mierniki prognoz punktowych oraz w kontekscie szacowania ryzyka
kapitalowego. W kolejnej czedci zaprezentowano wyniki uzyskane przez modele
prognoz probabilistycznych, ktore oceniono pod katem specyficznych miar i kryteriow
oceny prognoz probabilistycznych, oraz, podobnie jak w przypadku modeli
punktowych prognoz zmiennosci, w odniesieniu do ryzyka kapitalowego.

W rozdziale szostym przeprowadzono analize poréwnawcza wynikow uzyskanych
przez wybrane najlepsze specyfikacje modelowe. Poréwnano tutaj modele punktowych
prognoz stép zwrotu, modele hybrydowe punktowych prognoz zmiennosci oraz
sieciowe modele prognozowania probabilistycznego. Omodwiono takze sposoby
realizacji zatozonych w pracy celow badawczych oraz poszczegélne hipotezy
badawcze. Przedstawiono tu takze zalety i wady wynikajace z zastosowania metod

uczenia gtebokiego oraz propozycje dalszych prac badawczych w tym zakresie.






Rozdziat 1

Podstawowe podejscia do predykcji

finansowych szeregéw czasowych
w badaniach naukowych

i wdrozeniach praktycznych

W pierwszej kolejnosci przedstawione zostang podstawowe pojecia i definicje
zwigzane z rynkami finansowymi, a takze rd6zne podejscia stosowane w ich
prognozowaniu. Zaprezentowany zostanie takze przeglad podstawowej literatury
z zakresu ekonometrii finansowej i sieci neuronowych. Informacje zawarte w tym
rozdziale maja na celu zaznajomienie czytelnika z przedmiotem niniejszej rozprawy,
oraz zwrocenie uwagi na popularnos¢ problematyki zwigzanej z prognozowaniem

instrumentow finansowych,

1.1 Rynki finansowe i ich prognozowanie

1.1.1 Rynki i aktywa finansowe

Glownym przedmiotem badan w niniejszej pracy, a zarazem zroédlem danych
empirycznych sa wybrane instrumenty finansowe. Jako instrument finansowych
rozumie¢ mozna kontrakt regulujacy zobowigzania finansowe pomiedzy stronami,
powodujace powstanie aktywéw finansowych u jednej ze stron i zobowiazania
finansowego lub instrumentu kapitalowego u drugiej (za Kudta [2011], oraz art. 3 ust.
1 pkt 23 ustawy o rachunkowosci (Dz.U. z 2021 r. poz. 217)). Transakcje kupna
i sprzedazy réznych form kapitalu pienieznego, w oparciu o roézne instrumenty

finansowe, zawierane sa na rynkach finansowych. Te z kolei podzieli¢ mozna na



nastepujace segmenty (zob. Kudta [2011]):

— rynek pieniezny, na ktérym zawierane sa transakcje krotkoterminowe (do jednego

roku) o niskim poziomie ryzyka i duzej ptynnosei,

— rynek kapitatowy, na ktérym zwierane sg transakcje srednio- i dtugoterminowe,
dotyczace réznych instrumentéw finansowych emitowanych i nabywanych przez

podmioty, takich jak akcje i obligacje,

— rynek walutowy, dotyczacy obrotu walutami obcymi, na ktérym stosunek ceny

miedzy walutami odzwierciedla kurs walutowy,

— rynek depozytowo-kredytowy, dotyczacy transakcji miedzy bankami a ich

klientami, charakteryzujacy sie duzym ryzykiem i mata ptynnoscia,

— rynek terminowy (instrumentéw pochodnych), na ktérym zawierane sa
kontrakty terminowe, czyli umowy na operacje finansowe z terminem wykonania

w przysztodci.

W obrebie przedstawionych powyzej segmentéw rynku finansowego, wyroznia sie
dalsze podziaty i struktury. Przyktadowo, rynek kapitatowy, ktory jest w tej pracy
glownym przedmiotem zainteresowania, dodatkowo podzieli¢é mozna (za Kachniewski
i in. [2008]) na rynek pierwotny i wtérny (z uwzglednieniem przeptywow
finansowych), rynek gieldowy i pozagieldowy (w zaleznosci od stopnia zorganizowania
rynku), oraz na rynek regulowany i nieregulowany (w zaleznosci od stopnia regulacji).
Na rynku pierwotnym dokonywane sa transakcje emitowanych papierow
warto$ciowych (np. akcji spoétek gietdowych) bezposrednio miedzy spotkami
a inwestorami, zanim trafia na rynek wtérny (Gielde Papieréw Wartosciowych
w Warszawie - GPW), na ktérym transakcje zawierane sa miedzy inwestorami. GPW
nalezy wg podanego podzialu do rynkoéow gietdowych i regulowanych. Przyktadami
rynkéw nieregulowanych sa alternatywne systemy obrotu (ASO), z posréd ktérych
wymieni¢ mozna dziatajace obecnie w Polsce rynek NewConnect oraz Catalyst! (zob.
Kachniewski i in. [2008] oraz Kozdra [2015]).

Jak wspominano wczesniej, przedmiotem transakcji na rynkach finansowych sa
roznego rodzaju instrumenty finansowe. Ich zakres jest bardzo szeroki, dlatego
ponizej ograniczymy si¢ do przedstawienia kilku typoéw instrumentéw, ktore czesto

wybierane sg jako przedmiot badan finansowych.

'Rynek Catalyst dziata w kilku wariantach, jako regulowany rynek ASO dostepny dla klientéw
detalicznych, prowadzony przez GPW, oraz rynek pozagieldowy, dostepny tylko dla klientéw
hurtowych, prowadzony przez BondSpot S.A
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Jednym z podstawowych instrumentéw na rynku kapitalowym, a jednoczes$nie
jednym za najpopularniejszych aktywow finansowych sa akcje spotek gietdowych.
Jako akcje rozumie¢ mozna (za Kudla [2011]) ,tytul wlasnosci do utamkowej czesci
spotki akcyjnej, lub komandytowo-akcyjnej, wyrazajocy wniesiony wkiad 1 prawa
czltonkowskie, a jednoczesnie papier wartoSciowy (imienny lub na okaziciela), ktory
moze podlegac¢ obrotowi”. Ceny akcji na rynku wtérnym ksztaltowane sa poprzez
popyt i podaz wérdéd inwestoréow. Oprocz zlecen kupna i sprzedazy akcji, dla duzych
spétek (m.in. o wartosci rynkowej powyzej 100 mln euro) mozliwa jest takze tzw.
sprzedaz krotka — sprzedaz akcji pozyczonych =z przeznaczeniem odkupu
w przysztosci (zob. Kudta [2011]).

Zmiany kurséw koszyka akcji odzwierciedla indeks gieldowy. Jest on
statystycznym wskaznikiem, podsumowujacym zmiany kurséw akcji wybranych
spotek podczas sesji gietdowej (zob. Kachniewski i in. [2008]). Indeksy gietdowe moga
dostarcza¢ informacji o konkretnych segmentach rynku, zaleznych przyktadowo od
wielkosci spotek lub wybranej branzy, przez co moga stuzy¢ jako punkt odniesienia
przy ocenie efektywnosci portfeli (lub funduszy) inwestycyjnych. Bezposredni handel
indeksami nie jest mozliwy, odbywa si¢ on z wykorzystaniem instrumentéw
pochodnych, takich jak kontrakty terminowe, opcje lub certyfikaty funduszy
inwestycyjnych typu ETF (ang. FEzchange-Traded Fund), dla ktérych indeksy
stanowig instrument bazowy.

Do najpopularniejszych indekséow gieldowych (zob. Bodie i in. [2018]) naleza
indeksy DJIA (ang. Dow Jones Industrial Average), S&P 500 (ang. Standard and
Poor’s 500), w sktad ktorych wchodza najwieksze spétki notowane na Nowojorskie;
Gieldzie Papieréw Wartosciowych (ang. New York Stock Ezchange - NYSE) oraz
NASDAQ (ang. National Association of Securities Dealers Automated Quotations)
czy indeks FTSE (ang. Financial Times Stock FExchange) ztozony ze spoélek
notowanych na Gieldzie Papieréw Warto$ciowych w Londynie (ang. London Stock
FEzchange). W Polsce, od 1991, roku na Gieldzie Papieréw Wartosciowych notowany
jest indeks WIG (Warszawski Indeks Gietdowy), bedacy najstarszym indeksem
w kraju.

Sposoby obliczania wartosci indeksow gietdowych (oraz kryteria udzialu spétek)
sa rozne, w zalezno$ci od danego kraju i gieldy. Przyktadowo, dla indeksu WIG

notowanego na GPW stosowana jest nastepujaca formuta (Kachniewski i in. [2008]):

S P S
WIG = - 1000, (1.1)
S (P So) - K,

gdzie S; to pakiet uczestnika indeksu ¢ na danej sesji, P; to kurs uczestnika indeksu ¢
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na danej sesji, Py oraz Sy to odpowiednio pakiet i kurs uczestnika w dniu bazowym,
zas K, jest wspotezynnikiem korygujacym indeksu na danej ses;ji.

Zakres instrumentow, ktore podlegaja handlowi na rynkach finansowych jest
bardzo szeroki i nie sposob je tu wszystkie opisa¢. Do najwazniejszych grup aktywow

finansowych naleza takze (zob Kudta [2011]):

— kursy walutowe - rozumiane moga by¢ jako instrumenty finansowe,
odzwierciedlajace stosunek ceny miedzy walutami, wynikajacy z popytu

i podazy na rynku walutowym,

— derywatywy - instrumenty pochodne, ktoérych wycena =zalezy od ceny
instrumentoéw bazowych; do najwazniejszych przyktadow naleza tutaj kontrakty

terminowe oraz opcje,

— towary handlowe (ang. commodities) - produkty wystepujace w naturalny sposob
w ziemi lub uprawiane w ramach rolnictwa, takie jak ropa naftowa, gaz ziemny,

pszenica; handel towarami odbywa si¢ najczesciej poprzez instrumenty pochodne,

— kryptowaluty - rozproszone systemy wirtualnych walut, bazujace na
kryptografii, cieszace sie w ostatnich latach rosngca popularnosciag wsréd
inwestoréw detalicznych; jako najwazniejsze wymieni¢ mozna kryptowaluty

Bitcoin oraz Ethereum,
— inne instrumenty finansowe, w tym obligacje skarbowe, bony skarbowe.

Powyzsza klasyfikacja nie stanowi pelnej klasyfikacji wszystkich typéw i podtypow
instrumentéw finansowych. Szersze informacje na ten temat przedstawione zostaty
w opracowaniach Kudta [2011], Bodie i in. [2018] oraz Babu [2006].

1.1.2 Prognozowanie instrumentéw finansowych

Modelowanie instrumentéw finansowych lezy u podstaw finanséw empirycznych.
Obok oczywistych korzysci finansowych, odpowiednie prognozowanie wartosci stop
zwrotu oraz zmiennosci jest kluczowe w konstruowaniu narzedzi wyceny opcji,
szacowaniu ryzyka, tworzeniu strategii hedgingowych czy tez w obszarze inzynierii
finansowej.

Pomimo powszechnego przekonania, ze szeregi czasowe cen instrumentow
finansowych maja charakter losowy (zob. Cootner [1964], Fama [1965b]), istnieja
pewne charakterystyczne wlasnosci wspomnianych szeregéw stép zwrotu oraz ich
zmiennosci, wskazujace na to, ze modelowanie szeregbw w tej postaci jest uzasadnione

(zob. punkt 2.2.3).
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Wséréd rozmaitych podejéé stosowanych w modelowaniu i prognozowaniu
finansowych szeregow czasowych, jako najwazniejsze nalezy wskaza¢ metody
ekonometrii finansowej. Narzedzia rozwijane w ramach tej dyscypliny skupiaja sie na
analizie danych finansowych z wykorzystaniem metod iloSciowych, w szczegdlnosci
z wykorzystaniem réznego typu modeli zmiennosci. Rozwdj ekonometrii finansowe;j
zyskal na popularnosci na poczatku lat siedemdziesiatych ubiegtego stulecia, kiedy
pojawily sie pierwsze modele wyceny opcji (Black i Scholes [1973]). Do dalszego
rozwoju dyscypliny przyczynily sie prace Mandelbrot [1963], Fama [1965a], Engle
[1982] oraz Bollerslev [1986] dotyczace wlasnosci oraz modelowania szeregdéw stop
zwrotu i ich zmiennosci. Tematyce tej poswiecona jest znaczna czesSé tej pracy (w
szezegblnodei  rozdzialy 2, 5 oraz 6), za$ szczegéltowe omodwienie narzedzi
ekonometrycznych znalez¢é mozna w licznych opracowaniach literaturowych, ktorych
przeglad przedstawiony jest w podrozdziale 1.2.

W ciggu ostatniej dekady, na popularnosci zyskaly metody bazujace na
wykorzystaniu sieci neuronowych i uczenia maszynowego. Co prawda mozliwosci
prognostyczne sieci neuronowych badane byly juz wczesniej, jednak efektywnosé
zbudowanych z ich wykorzystaniem modeli byta ograniczona, gtéwnie ze wzgledu na
znacznie nizg niz obecnie moc obliczeniowg?. Wraz z dynamicznym rozwojem
dostepnego na rynku sprzetu komputerowego i dostepnosci danych, rezultaty badan
wykorzystujacych te narzedzia ulegly znacznej poprawie, gtéwnie za zastuga sieci
neuronowych uczenia glebokiego, stosowanych w obszarze rozpoznawania obrazéw
i przetwarzania jezyka naturalnego. Narzedzia te z powodzeniem zaczeto stosowac
takze w analizie i prognozowaniu danych finansowych, co jest tez gtéwnym tematem
tej pracy. Szeroki zakres literatury dotyczacej prognozowania z wykorzystaniem
metod bazujacych na sztucznej inteligencji przedstawiony zostal w podrozdziatach
1.3, 3.4 oraz 4.1.

Obok przedstawionych powyzej podejs¢ bazujacych na ekonometrii finansowe;
i sztucznej inteligencji, problematyka zwiazana z prognozowaniem instrumentow

finansowych jest przedmiotem badan takze w innych dziedzinach, takich jak:

— matematyka finansowa,
— inzynieria finansowa,
— analiza techniczna,

— teoria chaosu,

2W zasadzie argument ten mozna zastosowaé takze w odniesieniu do innych prezentowanych tutaj

podejsé.
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— analiza falkowa,

— modele logiki rozmytej,

Pomimo, ze podejscia te nie bedg animalizowane w tej pracy, wskaza¢ w tym miejscu
mozna wybrane publikacje z tych dziedzin, do ktérych naleza: Kodogiannis i Lolis
[2002], Ravi i in. [2017], Farias Nazério i in. [2017] czy tez Zolfaghari i Gholami
[2021]. Opublikowane zostalo takze wiele artykutéw przegladowych, prezentujacych
rozne podejscia do analizy szeregow czasowych, z posrod ktorych wymieni¢ mozna
prace: Mallikarjuna i Rao [2019], Majid [2018] oraz Timmermann [2018].

Wielo$¢ i réznorako$¢ przedstawionych powyzej podejs¢é swiadczy o wadze
i popularnoéci problematyki prognozowania instrumentéow finansowych. Wciaz
prowadzone sg nowe badania nad rozwojem metod prognostycznych, pozwalajacych
na dalsza poprawe uzyskiwanych wynikow, o czym S$wiadczyé moze szeroki zakres
literatury przedstawiony w kolejnych podrozdziatach.

Zaznaczy¢ nalezy takze, ze obszar zastosowania wymienionych metod, w tym
takze tych opracowywanych w ramach tej pracy, nie musi ogranicza¢ sie do rynkoéw
finansowych. Proponowane modele mozna stosowaé takze w innych dziedzinach,

przyktadowo do prognozowania cen i zuzycia cen energii elektrycznej.

1.2 Stan badan w nurcie ekonometrii finansowej

W ponizszym podrozdziale przedstawiony zostal przeglad podstawowej (zaréwno
zagranicznej, jak i krajowej) literatury dotyczacej wykorzystania metod ekonometrii
finansowej w modelowaniu stép zwrotu i zmiennosci instrumentéw finansowych.

Najwieksza popularnoscia wsréd narzedzi wykorzystywanych do szacowania
i predykcji zmiennosci sa modele autoregresyjnej warunkowej heteroskedastycznosci
(ang. AutoRegressive Conditional Heteroskedasticity - ARCH), zaproponowane przez
Engla [1982]. Podstawowa posta¢ modelu rozszerzona zostala nastepnie przez
Bollersleva [1986] oraz Taylora [1986], do modeli GARCH (ang. Generalized
Autoregressive Conditional Heteroskedasticity ), ktére znaczenie czesciej stosowane sa
w badaniach rynkéw finansowych.® Modele tej klasy zostaly szerzej opisane w punkcie
2.4.3.

Szeroki i dokladny opis metod wykorzystywanych w badaniu finansowych
szeregbw czasowych, zarowno od strony teoretycznej, jak i praktycznej, przedstawit

w swojej pracy Tsay [2010]. Natomiast w literaturze polskojezycznej tymi

3Engle za swoja prace nad metodami analizowania szeregéw czasowych w 2003 roku otrzymal

nagrode im. Alfreda Nobla.
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zagadnieniami zajmowali si¢ Doman i Doman [2004, 2009] oraz Fiszeder [2009], ktéry
w swojej rozprawie habilitacyjnej szczegdétowo przedstawia rdézne parametryzacje,
uogdlnienia i modyfikacje modeli klasy GARCH (jedno- i wielowymiarowe) oraz ich
zastosowanie w empirycznych badaniach finansowych, w tym takze w prognozowaniu
proceséw finansowych. Poréwnanie mozliwosci predykcyjnych réznych specyfikacji
modeli GARCH w prognozowaniu zmiennosci instrumentéw finansowych znalezé
mozna takze miedzy innymi w pracach: Triick i Liang [2012], Nilsson [2017], Costa
[2017], Tong i in. [2020], oraz Tay i in. [2020].

Na gruncie ekonometrii finansowej silnie rozwijane sg takze podejscia bazujace na
wykorzystaniu modeli SV (ang. Stochastic Volatility) (zob. Clark [1973]), réwniez
w potaczeniu z modelami GARCH, takze w postaci wielowymiarowej. W literaturze
polskojezycznej problematyka ta szczegdélowo opisana zostala w pracach Doman
i Doman [2004], [2009], Osiewalski i in. [2004], Pajor ([2003, 2010]) oraz Osiewalski i
Pajor [2018].

Prognozy zmiennosci maja bardzo istotne znaczenie w wigkszosci probleméw
z obszaru finanséw empirycznych, m. in. w kontekscie szacowania ryzyka
kapitatlowego, mierzonego przy pomocy wartodci zagrozonej oraz oczekiwanego
niedoboru. Modele klasy GARCH w szacowaniu wartosci zagrozonej (VaR)
wykorzystywali w swoich badaniach m.in. Tong i in. [2020], Piontek [2001], Piontek i
Papla [2005], Fiszeder [2007], [2009], Aloui i Mabrouk [2010], Ardia i Hoogerheide
[2014], Bedowska-S6jka [2015], Slim i in. [2017], Bams i in. [2017], Laporta i in.
[2018], Zhang i in. [2018a]. Malecka [2016] z kolei szczegdltowo przedstawia sposoby
oceny prognoz VaR oraz ES.

Obszar zastosowan modeli ekonometrycznych dodatkowo mozna rozszerzy¢ o
prognozowanie catego rozktadu prawdopodobienstwa przysztych cen oraz ich zmian.
Szczegbdtowy opis tych metod, a takze miar i sposobéw ewaluacji wykorzystywanych
w prognozowaniu probabilistycznym, przedstawili w swoich pracach Gneiting i in.
[2007], Gneiting i Raftery [2007], Jordan i in. [2018] a takze Nowotarski i Weron
[2018] w pracy dotyczacej prognozowania cen energii elektrycznej.

Wsréd zwartych monografii wskazujacych metodyke narzedzi ekonometrycznych
w zakresie ekonometrii finansowej wyr6zni¢ mozna: Osiewalski [2001], Brzeszczynski i
Kelm [2002], Tsay [2010] oraz Danielsson [2011].

1.3 Stan badan w zakresie sieci neuronowych

Wraz ze wzrostem popularnosci sieci neuronowych uczenia glebokiego w ciggu

ostatniej dekady, pojawito sie w tym okresie wiele publikacji naukowych poswieconych
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metodom sztucznej inteligencji w modelowaniu szeregéw czasowych. Ponizsze
zestawienie literatury skupia si¢ przede wszystkim na przedstawieniu najnowszych
publikacji, w dodatku z naciskiem na te badania, w ktorych zastosowanie sieci stuzyto
przede wszystkim modelowaniu stép zwrotu, zmiennosci oraz szacowaniu ryzyka.

Jedng =z publikacji, ktora szeroko opisuje problem zastosowania uczenia
maszynowego do prognozowania rynkéw finansowych jest praca doktorska Fletchera
[2012]. Mozna w niej znalez¢ rzetelny i dobrze odzwierciedlajacy éwezesny stan badan
przeglad metod i modeli uczenia maszynowego. Wykorzystanie klasycznych sieci
neuronowych w tym obszarze opisane zostalo takze w monografii Dunis i in. [2016].
Zastosowanie poszczegbdlnych narzedzi uczenia maszynowego do prognozowania
szeregOw czasowych instrumentéw finansowych byto takze przedmiotem prac:
Morajda [2007], Marcek i in. [2009], Devadoss i in. [2013], Bernal i in. [2012], Vui i in.
[2013] Ding i in. [2015], Chen i Lee [2015], Fischer i Krauss [2018], Kurani i in. [2021].

7 kolei problematyka dotyczaca wykorzystania sieci uczenia glebokiego opisana
zostata m.in. w pracach: Fischer i Krauss [2018], Chong i in. [2017], Jiahong Li i in.
[2017], Dixon i in. [2017], Di Persio i Honchar [2016], Hansson [2017], Chen i in.
[2015], Chen i in. [2016], oraz Yang i in. [2019]. Dodatkowy przeglad literatury
dotyczacych stosowania narzedzi uczenia gtebokiego w prognozowaniu finansowych
szeregow czasowych mozna znalezé w pracy Sezer i in. [2020]. Wyniki badan z tego
zakresu doktadniej przeanalizowane zostaty w podrozdziale 3.4. Z kolei poréwnanie
narzedzi ekonometrycznych i metodami uczenia maszynowego oméwione zostalo m.in.
w pracach: Hossain i Nasser [2011], Yu i Li [2018], Zhou i in. [2020] oraz Kijewski i
Slepaczuk [2020].

W literaturze znalez¢ mozna takze wiele publikacji na temat badan nad modelami
hybrydowymi, taczacymi metody ekonometryczne z modelami bazujacymi na sieciach
neuronowych. Wérod prac dotyczacych tej tematyki mozna wyrdznic¢ publikacje: Matias
iin. [2010], Monfared i Enke [2014], Lu i in. [2016], Kristjanpoller i Hernandez [2017],
Kristjanpoller i Minutolo [2018], Kim i Won [2018], Jeong i Lee [2019] oraz Garcia i
Kristjanpoller [2019]. Wyniki badan dotyczacych wykorzystania modeli hybrydowych
doktadniej przeanalizowane zostaly w rozdziale 4.1. Na tle tych rezultatéw wskazany
nastepnie zostal wktad autora w tym nurcie.

Modele bazujace na sieciach neuronowych wykorzystywane sa takze
w prognozowaniu catych rozktadéw prawdopodobienstwa przysztych stop zwrotu.
Problematyka ta zajmowali sie miedzy innymi Toubeau i in. [2019], Brusaferri i in.
[2019], Salinas i in. [2020], Chen i in. [2020]. Tematyka ta poruszana zastala takze
w monografiach Duerra 2020, oraz Murphy’ego [2012, 2022]. Opracowania te opisuja

problematyke prognozowania probabilistycznego z wykorzystaniem narzedzi uczenia
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gtebokiego na poziomie ogdlnym, lub, jak ma to miejsce w przypadku wskazanych
artykutow, dotycza danych spoza obszaru zwiazanego z rynkami finansowymi.
Jednym z celow niniejszej pracy jest propozycja rozwiazan umozliwiajacych
wykorzystanie tych metod w probabilistycznym prognozowaniu finansowych szeregdéw
czasowych.

W tym miejscu zaznaczy¢ nalezy, ze ze wzgledu na duzag liczbe publikacji
naukowych dotyczacych prognozowania finansowych szeregow czasowych, zaréwno
w zakresie ekonometrii finansowej jak i sieci neuronowych, przedstawiona
w powyzszych podrozdziatach literatura dotyczy jedynie wybranych publikacji. W
dalszej czesci rozprawy starano sie mozliwie czesto wskazywaé dodatkowe odniesienia
literaturowe, w miejscach gdzie wydawato si¢ to zasadne, co ma na celu uzupetnienie

obrazu obecnego stanu wiedzy.
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Rozdziat 2

Ekonometryczne modelowanie
1 prognozowanie jednowymiarowych
finansowych szeregéw czasowych

(z wykorzystaniem modeli klasy
ARMA-GARCH)

Ponizszy rozdziat opisuje podstawowe narzedzia wywodzace si¢ przede wszystkim
z dziedziny ekonometrii finansowej, stosowane w analizie szeregéw czasowych. Ze
wzgledu na bardzo szeroki zakres poruszanych kwestii, szczegdlng uwage poswiecono
tutaj metodom, ktére zostang wykorzystane w badaniach empirycznych wykonanych
w ramach w tej pracy, przy czym wskazane zostaly takze inne narzedzia stosowane
przez badaczy w zakresie poruszanej tematyki. Przedstawione w tym rozdziale
definicje i wzory bazujg przede wszystkim na pracach: Tsay [2010], Doman i Doman
[2009], Fiszeder [2009] oraz Matecka [2016], w ktorych znalez¢é mozna znacznie szersze

omoéwienie rozwazanych metod.

2.1 Procesy stochastyczne w ekonometrycznej

analizie szeregéw czasowych

Powszechnie przyjmuje sie, ze procesy cen oraz stop zwrotu maja charakter
losowy (zob. Kendall i Hill [1953], Fama [1965b], Campbell i in. [1997]). Procesy te
zatem traktowaé jako realizacje procesow stochastycznych, pod pojeciem ktorych

rozumiemy (za Doman i Doman [2009]) rodzing zmiennych losowych (X¢)¢er,
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okreslonych na wspdlnej przestrzeni probabilistycznej (£, F, P), gdzie € jest zbiorem
zdarzen elementarnych, F jest o-cialem podzbioru w zbiorze €2, natomiast P jest
o-addytywna miarg probabilistyczna. W dalszym ciagu rozwazane beda tylko procesy
z czasem dyskretnym, czyli takie, gdzie zbior indeksow T jest przeliczalny i zawiera
sie w zbiorze liczb calkowitych (T = Z) lub calkowitych nieujemnych
(T =Ny ={0,1,2,3,...}). Szeregiem czasowym, oznaczanym symbolem (z;), nazywa
sie realizacje procesu stochastycznego (X;)ier, stanowiaca ciag obserwacji xq, xo, ....
W dalszej czesci pracy dla uproszczenia notacji jako (x;) bedzie oznaczany zaréwno
szereg czasowy jak i proces stochastyczny, z pominieciem takze subskryptu t € T.

Na gruncie finanséw empirycznych dwoma typami szeregéw czasowych, ktore
najczesciej podlegaja analizie sg szeregi czasowe cen (notowan) instrumentéw

finansowych oraz ich stopy zwrotu, opisane w ponizszych podrozdziatach.

2.2 Empiryczne wlasnosci finansowych szeregéw

czasowych

Aby prawidlowo zrozumie¢ poruszang w pracy problematyke, konieczne jest
pewne teoretyczne wprowadzenie do tematyki zwigzanej z modelowaniem finansowych
szeregow czasowych, oraz przedstawienie podstawowych definicji i wlasnosci takich
szeregbw. Ponizej przedstawione zostang podstawowe wtasnosci szeregéw czasowych
cen oraz, przede wszystkim, stop zwrotu, ktore stanowig gtéwny przedmiot badan
ekonometrii finansowej. Znajomo$¢ tych wtasnosci jest kluczowa, poniewaz umozliwia

wybor i odpowiednie zastosowanie narzedzi stuzacych do ich modelowania.

2.2.1 Szeregi czasowe cen

Podstawowym Zrédtem informacji w badaniach z zakresu finanséw empirycznych
sg ceny instrumentéw finansowych. Same ceny rzadko sa jednak przedmiotem badan,
w praktyce najczesciej analizie poddaje sie stopy zwrotu. Campbell i in. [1997] (za
Tsay [2010]) zwracaja uwage na dwa powody ku temu: stopy zwrotu zawieraja
kompletne informacje o inwestycji, wyrazone w jednakowej skali, a takze posiadaja
pewne (bardziej atrakcyjne dla badaczy) wlasnosci statystyczne, ktére umozliwiaja
ich modelowanie. Istnieja jednak obszary badan, w ktorych podstawa analizy sa
jednak szeregi cen. Przykladowo, w modelowaniu wielowymiarowym (wielu
instrumentéw finansowych jednoczesnie), w przypadku stép zwrotu mozliwe jest
jedynie badanie krotkookresowych zaleznosci pomiedzy aktywami. Chcac natomiast

modelowaé zaleznosci dlugookresowe (przyktadowo w ramach analizy kointegracji),

20



podstawe stanowig szeregi czasowe w postaci logarytmow cen badanych instrumentow
(zob. Osiewalski i Osiewalski [2013], Pajor i Wréblewska [2017]). Szeregi czasowe cen
instrumentow finansowych sg takze czesto przedmiotem badan w publikacjach
dotyczacych prognozowania 2z wykorzystaniem metod sztucznej inteligencji,
cechujacych si¢ podejéciem eklektycznym (zob. Lu i in. [2020], Shahi i in. [2020]).
Jednakze, ze wzgledu na przedmiot tej pracy (procesy jednowymiarowe) i teoretyczne
podstawy silnie bazujace na ekonometrii finansowej, analizie poddane zostang szeregi

czasowe w postaci stop zwrotu.

2.2.2 Proste i logarytmiczne Stopy zwrotu — ich definicje

1 wlasnosci

Mozna wyrézni¢ dwa rodzaje stép zwrotu (za Fiszeder [2009)):

— zwykla (prosta) stopa zwrotu, wyrazona w punktach procentowych, okreslona

Wzorem:

b — P
Ry = ———-100, 2.1
t P, (2.1)
— logarytmiczna stopa zwrotu, wyrazona w punktach procentowych, okreslona

WZOrernn:

Ty = ln Pt — ln Pt—l . 100, (22)

gdzie P, jest cena instrumentu finansowego w chwili . Doman i Doman [2004]
zwracajg uwage, ze w ekonometrii i matematyce finansowej logarytmiczne stopy
zwrotu analizowane sg czeSciej, gltownie z uwagi na prostote obliczania zwrotow
dhugookresowych, mozliwos¢ przyjmowania przez nie dowolnych wartosci ze zbioru
liczb rzeczywistych (w przeciwienstwie do prostych stép zwrotu, ktére sa lewostronnie
ograniczone przez -1), oraz czeste wystepowanie procesu logarytmu ceny
w  stochastycznych réwnaniach rézniczkowych — wykorzystywanych — modelach
matematyki finansowej, stosowanych w przypadku analizy proceséw 2z czasem
ciagtym. Proste stopy zwrotu z kolei stosowane sa przez inwestorow, w praktyce
bankéw 1 instytucji finansowych oraz w analizie portfelowej, gtownie ze wzgledu na
ich tatwiejsza interpretacje. W dalszych badaniach najczesciej wykorzystywana bedzie

postaé logarytmiczna.
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Powszechnie zaklada sie, ze szeregi (logarytmicznych) stép zwrotu instrumentow
finansowych sa kowariancyjnie (stabo) stacjonarne (zob. Doman i Doman [2009]).

Oznacza to, ze zmienne r; maja skoficzony drugi moment E(r?) < oo, a dodatkowo

B(r) = (23)
Cov(ry, re1) =, (2.4)

dla dowolnych indekséw ¢ oraz [, co oznacza, ze auto-kowariancja jest funkcja tylko
odlegtosci na osi czasu, a nie samego czasu, oraz ze wszystkie r;, maja ta sama,
skonczong wariancje vy.

Z kolei o $cistej stacjonarnosci procesu (r;) méwimy w przypadku, kiedy taczny
rozklad wektora losowego (7,74, ...,7s,) Jjest taki sam jak rozklad wektora
(Tty4ks Ttotks -y Ttotk), CO Oznacza, ze rozklady te nie zmieniaja sie wzgledem
przesuniecia na osi czasu.

Gdy mamy do czynienia z procesem kowariancyjnie stacjonarnym, mozna postuzy¢

sie empiryczna funkcja autokorelacji (ang. AutoCorrelation Function - ACF), w celu

oszacowania wspotczynnikoéw autokorelacji z rzedow | = 1,2, ..., zadana wzorem:
T
> (= 7)(re = 7)
Corr(ry,ry) = pp = = - , (2.5)
Z(Tt — 77)2
t=1

gdzie T oznacza dtugos¢ szeregu czasowego, natomiast 7 oznacza Srednig z proby, ¥ =
T

%Zrt. Nalezy sie spodziewaé, ze dla proceséw kowariancyjne stacjonarnych wplyw
t=1
przesztych wartoscei procesu (r;) na biezace wartosci r, wygasa wraz ze wzrostem /.

[stotnym pojeciem w analizie szeregéw czasowych, o ktorym mnalezy tutaj
wspomnieé, jest bialty szum. Proces stochastyczny nazywamy bialym szumem (ang.
White Noise) gdy zmienne 1, tworza ciag nieskorelowanych zmiennych losowych o
zerowe]j $redniej i statej, skonczonej wariancji. Jesli zmienne losowe sa dodatkowo

niezalezne to proces taki nazywamy Scistym bialym szumem.

2.2.3 Fakty empiryczne

Wséréd empirycznych wlasnosci danych finansowych wyrézni¢é mozna pewne
prawidtowosci, ktore sa obserwowalne podczas analizy szeregéw stop zwrotu
roznorodnych aktywow. Wlasciwosci te okreslane sa mianem faktéw empirycznych

(ang. stylized facts). Naleza do nich nastepujace wlasnosci (za Doman i Doman

22



2004]):

— brak autokorelacji - autokorelacja w szeregach stop zwrotu jest czesto nieistotna
statystycznie (z wyjatkiem zwrotéw $roddziennych, gdzie moze pojawié sie efekt

mikrostruktury rynku),

— grupowanie zmiennosci (ang. volatility clustering) - wystepujace po sobie okresy

podwyzszonej i obnizonej zmiennosci (rozumiane np. jako warunkowa wariancja),

— grube ogony rozkladéw - czeste wystepowanie obserwacji nietypowych

(odstajacych) w poréwnaniu do rozktadu normalnego,
— spiczastosé rozktadow - silniejsza koncentracja wokot modalnej,

— asymetria spadkéw i wzrostéw - znaczne ujemne zmiany sg czesto wieksze co
do wartosci bezwzglednej od znacznych wzrostow, przez co rozktady sa czesto

lewostronnie asymetryczne,

— efekt dzwigni (ang. leverage effect) - ujemna korelacja pomiedzy stopami zwrotu

a ich zmiennoscia,

— wahania zmiennosci - zmienne w czasie natezenie poziomu zmiennosci, niezaleznie

od przyjetego sposobu jej estymowania,

— powracanie zmiennosci do s$redniej - po okresach zwiekszonej zmiennosci

nastepuje powrot do pewnego jej ,normalnego” poziomu,

— powolne zanikanie autokorelacji w szeregach wartosci bezwzglednych stop zwrotu,

co moze wskazywaé na wystepowanie zaleznosci dtugookresowej.

Wtasnoscig tym poswiecona jest szeroka literatura, z posrod ktoérej wskazaé mozna
tutaj takie publikacje jak Cont [2001], Engle i Patton [2001], Brzeszczynski i Kelm
[2002] oraz Doman i Doman [2004, 2009].

2.3 Zmienno$¢ finansowych szeregéw czasowych

Kluczowa wielkoscia podlegajaca modelowaniu 1 prognozowaniu zaroéwno
w ekonometrii finansowej, jak i wsréd praktykow rynku jest zmiennosci cen
instrumentéw finansowych. Najcze$ciej rozumiana jest jako niepewno$é¢ dotyczaca
ceny lub stop zwrotu tego instrumentu, a wyrazana jest jako jego warunkowa
wariancja lub warunkowe odchylenie standardowe (zob. Fiszeder [2009]). Zmiennosé

nie jest bezposrednio obserwowana, przez co powstato wiele sposobow estymacji jej
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warto$ci. Mozliwie najlepszy opis i prognozowanie zmienno$ci jest istotny ze wzgledu
na szeroki zakres jej zastosowania w analizie instrumentéw finansowych, stanowiac
podstawy w takich obszarach jak konstruowanie portfela inwestycyjnego, szacowanie

ryzyka kapitalowego czy wycena opcji.

2.3.1 Zmiennos$¢ historyczna i zrealizowana

Jednym z najprostszych sposoboéw mierzenia zmiennosci sg kwadraty stop zwrotu

wyznaczanych na podstawie cen zamkniecia:
A2 2
Op =T (26)

gdzie r; zadane jest wzorem 2.2. Estymator w tej postaci jest jednak nieefektywny
poniewaz bazuje tylko na jednej obserwacji.
Piontek [2002] oraz Fiszeder [2009] jako popularne estymatory zmiennosci wskazujg

wariancje i odchylenie standardowe stop zwrotu, opisane wzorami:

> orp =7, (2.7)

gdzie 7 jest Srednig arytmetyczng stép zwrotu z proby, zas n ustalong dtugoscia
ruchomego okna obserwacji.

W praktyce, wsrod badaczy zwigzanych blizej ze $rodowiskiem inwestycyjnym,
czesto stosowana miara zmiennosci jest tzw. zmienno$¢ historyczna, (ang. Historical
Volatility - HV), najczesciej przedstawiania w skali rocznej jako odchylenie
standardowe. Zmiennos¢ historyczna obliczana jest za pomoca wzoru (Piontek

[1999)):

n

HV, = \l al Z(Tt - 77)27 (2-8)

n—1/=

gdzie N liczba okreséw sesyjnych w ciagu roku (zazwyczaj 252 dni).

Fiszeder [2009] i Doman i Doman [2009] jako najlepsza miare zmiennosci wskazuja
zmiennosé¢ zrealizowana (ang. Realized Volatility - RV), zaproponowana przez
Andersena i Bollersleva [1998], szacowana na podstawie kwadratéw stép zwrotu o

czestotliwosci wyzszej niz dzienna:

d
RV, = "1}, (2.9)
j=1
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gdzie 7, ; oznacza $rédzienng stope zwrotu o interwale j, zas d to liczba obserwacji
sroddziennych.

Na rynkach finansowych, ktore nie sg notowane przez caty dobe, nalezy wziaé¢ pod
uwage takze mnocnag stope zwrotu. Powstalo kilka propozycji rozwigzania tego
problemu, w tym popularne rozwiazanie zaproponowane przez Martensa 2002,

polegajace na wprowadzeniu dodatkowego wspotczynnika skalujacego c:

D
RV, = Z (2.10)

2

o

c=—2, (2.11)

O-OC
gdzie ¢ = Var(r,;) oznacza wariancj¢ nocnych stép zwrotu, natomiast
o2, Var( Z rdt) jest wariancja dziennych stép zwrotu, przy czym D oznacza tutaj

liczbe obserwaCJl o ustalonej czestotliwosci w ciggu dnia.

Doman i Doman [2009] zwracaja uwage, ze podczas wyboru czestotliwosci
obserwacji $réddziennych nalezaloby wybiera¢ obserwacje o jak najwyzszej
czestotliwodcei, ze wzgledu na to, ze najbardziej zblizone sa one do procesu cigglego.
W praktyce jednak, dane o niskiej czestotliwosci dla dtugich okreséw czesto sa stabej
jakosci lub niedostepne. Dodatkowo pojawiaja sie takze problemy zwigzane z tzw.
efektem mikrostruktury rynku, wynikajace z dynamiki i ulatwien mozliwosci
zawierania transakcji (zob. takze Bien-Barkowska [2016]). Zalicza si¢ do nich miedzy
innymi niska plynnos¢, koszty transakcyjne, roéznice w ofertach kupna i sprzedazy
oraz problemy zwigzane z napltywem informacji i nieregularnoécig handlu. Dla danych
o wysokiej czestotliwosci czesto wystepuje takze silna autokorelacja. Autorzy,
powotujac sie na literature, zalecaja wybdr czestotliwosci pomiedzy 5-minutowa
i godzinna, natomiast Tsay [2010] dla aktywéw o duzej ptynnosci — czestotliwosci od
4- do 15-minutowej (zob. takze Andersen i in. [2000], Oomen [2001], Bedowska-Sdjka i
Kliber [2010]).

2.3.2 Estymatory zmiennosci bazujgce na zakresie cen

W zwiagzku z przedstawionymi powyzej problemami dotyczacymi danych o
wysokiej  czestotliwosci, Fiszeder [2020] proponuje stosowanie —estymatoréw
konstruowanych na podstawie zakreséw cen (ang. Range FEstimators), szczegdlnie
w sytuacjach, gdy wystepuja efekty mikrostruktury rynku lub gdy brakuje dobrej

jakosci danych o wysokiej czestotliwosci.
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Przyjmijmy nastepujace oznaczenia:

— O; — cena otwarcia w okresie t,
— (y — cena zamkniecia w okresie t,
— L; — cena minimalna w okresie t,

— H; — cena maksymalna w okresie .

Ponizej zestawiono wybrane estymatory bazujace na zakresach cen.

Estymator Parkinsona

Jednym z podstawowych estymatorow budowanych na podstawie zakreséw cen
jest estymator Parkinsona [1980], bazujacy na cenach maksymalnej i minimalnej,

zaktadajacy zerows wartosé¢ dryfu:

1 2
67 = <1n Ht) : (2.12)

Estymator Garmana-Klasa

Garman i Klass [1980] przedstawili estymator wprowadzajacy dodatkowo ceny
otwarcia i zamkniecia, zakladajacy jednak brak skoku miedzy cenami zamkniecia

z okresu poprzedniego i otwarcia w bierzacym okresie, a takze zerowg wartos¢ dryfu:

1 H\? Ci\?
A2 P — J _ . —_— . J
o, = 2(1n t) (2-In2-1) ln( t) . (2.13)

Estymator Rogersa-Sachela

Cheac umozliwi¢ wykorzystanie niezerowej wartosci dryfu, Rogers i Satchell [1991]
jako rozszerzenie estymatora Parkinsona zaproponowali estymator przedstawiony
wzorem:

H, . H Ly | Ly

52 =In— -In — +In — - In —. 2.14
oy nOt n0t+n0 DOt ( )

Estymator ten moze jednak przyjmowaé¢ wartos¢ zerowa pomimo duzych zmian ceny
w ciggu dnia. Dzieje sie tak w przypadku gdy cena otwarcia jest réwna cenie

maksymalnej a cena zamkniecia cenie minimalnej.
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Estymator Garmana Klasa zmodyfikowany o skoki pomiedzy cenami

otwarcia i zamknigcia (GKYZ)

Yang i Zhang [2000] rozszerzyli podstawowa postaé estymatora Garmana-Klassa o
roznice pomiedzy cenami zamkniecia z dnia poprzedniego i otwarcia w dniu dzisiejszym

(wciaz jednak zakladajac zerowa warto$¢ dryfu):

O, \? 1 H\? Ci\?
52 — ¢ - Y (9. —1)- —t
o; = <ln Ct—l) + 2<1n Lt) (2-In2—1)-In <Ot> . (2.15)

We wspomnianej pracy, Autorzy zaproponowali takze wtlasna wersje estymatora,
ktory bierze pod uwage skoki cen miedzy zamknieciem i otwarciem, a takze umozliwia
wykorzystanie zatozenia o niezerowym dryfie. Estymator ten zaktada jednak statos¢
wariancji dla okresu diuzszego niz jeden dzien. Ponadto, niemozliwe jest takze
oszacowanie za jego pomocg wariancji dla pojedynczego dnia.

W  literaturze znalezé mozna takze wiele innych propozycji estymatoréw
zmiennosci, ktérych doktadne poréwnanie znalezé mozna w ksiazce Fiszeder [2020],
poswieconej w calosci tej tematyce, a takze w pracach Faldzinski i Osinska [2016]
oraz Shu i Zhang [2006]. W czeéci empirycznej tej pracy wykorzystany zostanie
estymator Garmana-Klasa zmodyfikowany przez Yanga i Zhanga (oznaczany
w dalszej czesci pracy skrotem od nazwisk autoréw - GKYZ), gltéwnie ze wzgledu na
prostote jego konstrukecji, brak zatozenia o statosci wariancji i wzigcie pod uwage

skoku miedzy cenami otwarcia i zamkniecia.

2.3.3 Transformacje estymatoréw zmiennosci

Jak zauwaza Fiszeder [2005], [2009], [2020], estymatory zmiennosci konstruowane
na podstawie zakresu cen czesto niedoszacowuja zmiennos¢. Wynika to z faktu, ze
procesy cen sa procesami dyskretnymi, zas gtéwnym zalozeniem lezacym u podstaw
tych estymatorow jest to, ze mamy do czynienia z procesem z czasem ciggtym.

Jako probe rozwiazania tego problemu zaproponowal on metode skalowania
estymatora bazujacego na prawdziwym zakresie zmian (ang. True Range TR),

wedlug propozycji Wildera [1978):

Ct—l - Ht

TRt = max{Ht - Lt; s Ct—l - Lt‘} (216)
Propozycja Fiszedera przyjmuje nastepujaca postac:

STR, = %TR, (2.17)
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1 R
a= ¥er,b: ;ZTR?, (2.18)
=1 =1

gdzie czynniki skalujace a i b wynikaja z poréwnania srednich kwadratow stop zwrotu
i zmiennosci oszacowanej za pomocg estymatora.

W réwnaniach czynnikéw skalujacych, zadanych w 2.18, zamiast kwadratéw mozna
stosowaé wartosci bezwzgledne, jednak moze to prowadzi¢ do znizonych prognoz. Jak
sugeruje Autor powyzszych prac zrodtowych, skalowanie 2.17 jest konieczne aby mozna
byto wykorzysta¢ STR jako oszacowanie zmiennosci, ktore nastepnie wykorzystane jest
w zaproponowanym przez Fiszedera [2005] modelu GARCH-TR.

Wilder [1978] zaproponowal takze usredniona wersje estymatora prawdziwego

zakresu cen - (ang. Averaged True Range - ATR).
1 n
ATR=—-> TR, (2.19)
ni=

gdzie n to dhugos¢ okna sredniej ruchomej, zazwyczaj ustalany na 14 lub 21 dni.

Dodatkowo stosowanym zabiegiem jest tutaj obliczenie Sredniej z n okreséw
wstecz aby uzyska¢ usredniony szacunek zmiennosci. To podejscie zaktada jednak
statos¢ wariancji w tym okresie, co z formalnego punktu widzenia nie jest stuszne.
Wygtadzone szacunki zmiennosci sa o wiele bardziej zblizone do prognoz uzyskanych
przez modele GARCH. Fiszeder [2020] zauwaza jednak, ze nie nalezy dazy¢ do
dopasowania zmiennosci w ten sposob, poniewaz prognozy te sa jedynie pewnym
przyblizeniem procesu generujacego dane finansowe.

Bazujac na przegladzie literatury mozna stwierdzi¢, ze w praktyce wsrod publikacji
zwigzanych z badaniami nad zmienno$cig w celach inwestycyjnych, a takze w literaturze
dotyczacej uczenia maszynowego, najczesciej stosuje sie ujecie historyczne (HV) lub
kwadraty stép zwrotu (zob. Kim i Won [2018], Kristjanpoller i Minutolo [2018]) . Z
kolei w literaturze ekonometrycznej zaleca sie stosowanie zmiennosci zrealizowanej (RV)
lub estymatoréw bazujacych na zakresach cen (zob. Fiszeder [2009, 2020]).

Odrebnym aspektem skalowania, stosowanym przy obliczaniu zmienno$ci
w dhuzszym horyzoncie, jest wspomniane takze wczesniej mmnozenie estymatora
zmiennosci (wariancji) przez liczbe okreséw (dni sesyjnych) w ciagu roku - N -
zazwyczaj ustalane na 252, uzyskujagc w ten sposdb zmiennos¢ w skali rocznej

(zannualizowana).
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2.3.4 Zmiennos$¢ implikowana

Odrebne podejscie do estymacji zmiennosci polega na obliczaniu jej wartosci na
podstawie cen opcji, uzyskujac w ten sposob warunkowe odchylenie standardowe dla
danego instrumentu bazowego. Wyznaczane w ten sposob odchylenie standardowe
nazywane jest zmiennoscig implikowana (zob. Schmalensee i Trippi [1978], Beckers
[1981]). Przyktadowo, zakladajac, ze ceny opcji sa realizacja procesu Browna,
zmiennosé dla opcji europejskich wyznaczy¢é mozna modelem Blacka i Scholesa (Black
i Scholes [1973]) lub jego uogélnieniami. Jednak takze ten sposéb obliczania
zmiennosci nie jest pozbawiony wad. Podstawowy model Blacka-Scholesa zaktada
stalo$¢ zmiennosci. Dodatkowo, uzyskane w ten sposéb oceny zmiennosci zawieraja
premie za ryzyko (przez co zmienno$¢ wyznaczana w ten sposob jest wyzsza niz ta
uzyskana przy pomocy modeli GARCH), specyfikacja modelu uzytego do wyceny
opcji moze by¢ wadliwa, a takze wystepowaé moze brak rownowagi rynkowej lub efekt
u$miechu zmiennosci (ang. wvolatility smile). Mimo to, zmienno$¢ implikowana cieszy
sie duzag popularnoscia, przyktadowo jest ona podstawa do obliczania wartosci dla
indekséw zmiennosci takich jak VIX (ang. Chicago Board Options Exchange’s
Volatility Index), na podstawie indeksu S&P 500, czy indeksu VDAX, bazujacego na
niemieckim indeksie DAX (zob. Fiszeder [2009]).

2.4 Modele klasy ARMA-GARCH

Jednym z podstawowych narzedzi ekonometrycznych wykorzystywanych w tej
pracy sg modele ARMA-GARCH. Specyfikacja tych modeli umozliwia opis procesu
stop zwrotu jednocze$nie za pomocg warunkowej wartosci oczekiwanej i warunkowej
wariancji. Naleza one do jednych 2z najpopularniejszych metod stosowanych
w finansach empirycznych, stanowig takze podstawe w badaniach nad rozwojem
nowych narzedzi. Wyniki uzyskane przez modele ARMA-GARCH stanowi¢ beda
gtowny punkt odniesienia w analizie poréwnawcze] z modelami hybrydowymi

i sieciowymi modelami prognozowania probabilistycznego.

2.4.1 Definicja procesu ARMA-GARCH

Szeregi logarytmicznych stép zwrotu mozna opisa¢ za pomoca procesu ze zmienna

w czasie warunkowa warto$cig oczekiwana p; 1 wariancja warunkows o?:

7| Wiy ~ D(py, 02), (2.20)
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gdzie W;_; oznacza caly przesztosé procesu (r;) do chwili ¢t — 1 wlacznie, za§ D oznacza
zadany rozktad prawdopodobienstwa.

W  takim przypadku do opisu tego procesu mozna wykorzysta¢é model
ARMA-GARCH, w ktéorym $rednia warunkowa opisana jest za pomoca struktury
ARMA, natomiast dynamike warunkowej zmiennosci opisuje proces GARCH. Proces
ARMA-GARCH mozna zdefiniowa¢ nastepujaco:

p q
Ty = ag + Zairt—i + & — Z bif‘:t—i; (221)
=1 =1
Et = Zt0¢, ¢ ™ N(O, 1), (222)
q p
O'2 = + Z Oél'é"?il- + Z ﬁjU?ij. (223)
i=1 j=1

W kolejnych punktach zostana doktadniej omowione struktury proceséw opisujacych
dynamike $redniej warunkowej oraz sktadnika losowego, a takze metoda

wykorzystywana do estymacji tacznego modelu ARMA-GARCH.

2.4.2 Procesy ARMA

Podstawa modelowania sredniej warunkowej w dalszych rozwazaniach jest proces
ARMA (k,m). Specyfikacje tego procesu mozna opisa¢ za pomoca wzoru (zob. Tsay
[2010], Doman i Doman [2009]):

ry = ag + Xk: a;ri—; + ¢ — i bier—;, (2.24)
i=1 j=1
gdzie k i m sa nieujemnymi liczbami catkowitymi oznaczajacymi maksymalne rzedy
opdznien, natomiast (g;) jest (z regulty gaussowskim) biatym szumem. Zmienna losowa
(g¢) zwana jest sktadnikiem losowym, wstrzasem, szokiem lub innowacjg w okresie t.
Dwie gtéwne wyrazenia sumy przedstawionej w réwnaniu (2.24) opisuja: proces
autoregresyjny (ang. Autoregressive process - AR) oraz proces $redniej ruchomej (ang.
Moving Average process - MA), ktére zostana szerzej opisane ponizej. Polaczenie tych
dwoch sktadowych jest szczegdélnie pomocne przy opisie zalezno$ci dtugotrwatych
z wykorzystaniem mniejszej liczby parametréow (zob. Doman i Doman [2009]).
Do wskazania optymalnych wartosci rzedow opodznien £ i m w modelach
ARMA (k,m) najczesciej stosuje sie kryterium Akaike (ang. Akaike Information
Criterion - AIC) lub kryterium Schwarza (ang. Schwarz Criterion - SC), zwane

réwniez kryterium Bayesowskim (ang. Bayesian Information Criterion - BIC).

30



Roéwnania dla tych kryteriéw przedstawiaja sie nastepujaco (za Doman i Doman
[2009]):

+2—, (2.25)

In L(6) alnT

BIC = -2 2
T * T

(2.26)

gdzie L(0) oznacza warto$¢ funkcji wiarygodnosci oszacowanego wektora parametrow
6 dla obserwacji (rq,...,7r), natomiast a oznacza liczbe wszystkich parametrow
modelu.! Warto zauwazy¢, ze kryterium BIC ma tendencje do preferowania modeli o
mniejszej liczbie parametrow. Obok przedstawionych powyzej kryteriéw proponowane
sa takze inne, takie jak: kryterium informacyjne Hannana-Quinna (ang.
Hannan—Quinn Information Criterion, zob. Hannan i Quinn [1979]) lub kryterium
Shibaty [1976].

Doman i Doman [2004] oraz Tsay [2010] zwracaja uwage, ze funkcje autokorelacji
i czastkowej autokorelacji? w przypadku modeli ARMA raczej nie dajg uzytecznych
informacji na temat rzedow opoznien. W tym przypadku nalezy estymowaé okreslong
liczbe modeli, dla wybranych wartosci K i M, gdzie 0 < £ < K10 < m < M.
Wybierane sa zazwyczaj te modele, dla ktorych wartosci AIC lub BIC sg najnizsze.

W niektérych przypadkach, podczas wyboru rzedéw opéznien modeli ARMA (k,m),
przyktadowo przy uzyciu opisanych powyzej kryteriéw informacyjnych, okazuje sie, ze
optymalng wartoscig parametru m jest zero. Wartos¢ r; opisana jest woéwczas poprzez
liniowg kombinacje¢ opo6znionych wartosci r;_;, co odpowiada procesowi autoregresji
AR(p)*:

ry = ag + Z iT—i + Et, (2.27)
i=1

gdzie g, oznacza Scisty bialy szum z zerowa érednig i staly wariancja? o2

Gdy mamy do czynienia z procesem AR(1): r, = ag + a17r4—1 + ¢, mozna dowiesé

nastepujacych whasnosci (zob. Doman i Doman [2009]):

!Estymacje przy pomocy metody najwiekszej wiarygodnoéci, opisano w punkcie 2.4.5, w kontekscie

modeli ARMA-GARCH.

2Opisane wzorami 2.5 oraz 2.28 - 2.30.

37dazaja sie tez przypadki, w ktérych wartosci optymalne dla obu rzedéw opdznien s réwne zero,
co oznacza, ze logarytm ceny mozna opisywacé za pomocg bladzenia losowego.

4W przypadku zalozenia o zmiennosci wariancji warunkowej, proces stop zwrotu mozemy
modelowa¢ wykorzystujac model AR-GARCH.
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— warunkowa warto$¢ oczekiwana zmiennej 7, wynosi E(r|ri—1) = ap + airi_1,

— warunkowa wariancja Var(rri_,) = Var(g;) = o2,

— proces (1) jest kowariancyjnie stacjonarny w tedy i tylko wtedy gdy —1 < a; < 1

(zachodzi tu tez zaleznosé odwrotna),
— funkcja ACF przyjmuje postaé¢ p; = a1p_1 dlal > 01 p, =d} dlal > 0.

W celu wyboru rzedu modelu AR(p), obok wspomianych powyzej kryteriow
informacyjnych, mozna positkowaé sie takze funkcja autokorelacji czastkowej (ang.
Partial AutoCorrelation Function - PACF). Definiuje sie ja korzystajac ze

wspétezynnikéw autokorelacji (za Doman i Doman [2009)):

(1171 = pP1, (228)
asa = (p2 — p7)(1 — pi), (2.29)
Ps — X521 Gs1,jps—;
Us s = I , dlas=3,4,5,.. (2.30)
1 - j=1 As—10;

gdzie as; = as_1,; — assas-15—; dla j = 1,2,3,...,s — 1. Wspolczynniki autokorelacji
czastkowej oszacowal mozna estymujac za pomocg metody najmniejszych kwadratow
rownania AR kolejnych rzedow.

W przypadkach, w ktorych warto$¢ r; jest wylacznie przez liniowa kombinacje
biezacego praz przesztych zaburzen losowych e stosuje sie¢ model $redniej ruchome;j

(ang. Moving Average) - MA(m). Model ten mozna zapisa¢ w postaci:
Ty = Co — Z bjgtfjv (2'31)
j=1

gdzie c¢g oznacza pewna stalg. ,Czyste” modele sredniej ruchomej rzadko sa
wykorzystywane w empirycznych analizach danych finansowych.

Modele ARMA cieszg sie wéréd badaczy duza popularno$cia, przez dlugi czas
byly jednym z podstawowych narzedzi stuzacych do opisu stop zwrotu. Najczesciej
stosowane sa modele o niskich rzedach opdznien, gtéwnie ze wzgledu na mniejsza
liczbe estymowanych parametrow. Wiecej na temat tych modeli, ich wlasciwosci,
sposob6w doboru liczby opdznien oraz metod prognozowania z ich wykorzystaniem
znalez¢ mozna w licznych opracowaniach (zob. Mondal i in. [2014], Junior i in. [2014],
Kocak [2017]).

32



Warto zauwazy¢, ze procesy AR oraz ARMA, pomimo swoich wtasnosci, nie sg
jednak wystarczajace do opisu szeregow stop zwrotu, i nalezy je rozbudowac o sktadnik

losowy (g;), w ktérym wariancja warunkowa bedzie zmienna w czasie.

2.4.3 Opis struktury GARCH

Jako jedno z gtéwnych narzedzi wykorzystywanych w celu modelowania sktadnika
losowego ze zmienng w czasie wariancja warunkowa, w badaniach i prognozowaniu
szeregbw czasowych stosuje si¢ uogélnione modele autoregresyjnej warunkowej
heteroskedastycznosci (ang. Generalized Autoregressive Conditional Heteroskedasticity
- GARCH). Wykorzystywane sa one przede wszystkim w modelowaniu zmiennosci
w zagadnieniach finanséw empirycznych takich jak analiza ryzyka czy budowa
portfela inwestycyjnego. Rodzina modeli GARCH jest bardzo szeroka, od czasu
pierwszych specyfikacji modelu wprowadzono liczne uogdlnienia i modyfikacje, ktore
maja na celu doktadniejszy opis modelowanych danych, z uwzglednieniem ich
dodatkowych wtasnosci. W tej czesci pracy opisane zostaly wybrane,
najpopularniejsze  specyfikacje modeli klasy GARCH, ktore zostaly takze
wykorzystane w czedci empiryczne;j.

Pojecie heteroskedastycznosci warunkowej zaproponowane zostato przez R. F.
Engle’a [1982]. Zaproponowany przez niego model ARCH cieszyl si¢ duza
popularnoscia gtéwnie w badaniach makroekonomicznych, wykorzystujacych dane o
niskiej czestotliwodci (miesiecznej lub kwartalnej). Ponizej przedstawiona zostala
definicja procesu ARCH, wprowadzajaca do metodyki modelowania zmienno$ci
warunkowe;j.

Proces stochastyczny opisujacy logarytmiczne stopy zwrotu mozna przedstawié¢

réwnaniem (za Doman i Doman [2009]):

T+ = Ut + Et, (232)

gdzie p, = E(ry | U;_1) jest warunkowa wartoscia oczekiwana.

Proces (g;) jest procesem ARCH(q) gdy zachodzi:

Et = Zt0¢, ¢ ™ N(O, 1), (233)
q
o7 =ap+ Y e, (2.34)
i=1
przy ograniczeniach o > 0, a; > 0 dla i = 1,...,q, gdzie o7 oznacza warunkowa

wzgledem przesztodci wariancje procesu (g;).
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Uogdlniona postaé¢ modelu - GARCH

Zaproponowany przez Engla model rozszerzyli w swoich badaniach jednoczesnie T.
Bollerslev [1986] i S.Taylor [1986] proponujac model GARCH. Okazal sie on bardziej
adekwatny do pracy z szeregami o wyzszej czestotliwosci, czesciej wykorzystywanych
w badaniach na gruncie finansowym.

Zgodnie z definicja, proces (g;) jest procesem GARCH(p,q) gdy okreslony jest on

réwnaniem (2.33), natomiast rownanie wariancji warunkowej przyjmuje postac:
2 : 2 z 2
op =g+ ) e+ ) Bioij, (2.35)
i=1 j=1

przy ograniczeniach oy >0, a; > 0dlai=1,...,q,oraz §; > 0dlai=1,....q.

W badaniach empirycznych zwykle przyjmuje sie p = ¢ = 1. Model w postaci
GARCH(1,1) jest wiec jednym z najczesciej spotykanych w literaturze. Do whasnosci
empirycznych procesu stochastycznego (g;) opisanego procesem GARCH(1,1) mozna
zaliczy¢ brak autokorelacji stop zwrotu dla tego procesu, co wskazuje na to, ze
wymagane jest osobne modelowanie warunkowej wartosci oczekiwanej np. za pomoca
procesu ARMA.

Funkcja autokorelacji procesu (£7) ma postaé (za Kwiatkowski [2008]):

a1 (1-B2—a161) dlal =1
pa(l) = q 1TATA ’ (2.36)
(a1 + B1)pe2(l = 1), dlal < 1.

Taki charakter funkcji autokorelacji oznacza pewna persystencje w kwadratach
procesu  GARCH(1,1), co odpowiada wtasno$ciom empirycznym stép zwrotu
i pozwala wychwyci¢ grupowanie zmienno$ci. Suma wartodci parametrow a; i [
odpowiada za tempo wygasania funkcji autokorelacji oraz wpltyw przesztych wartosci
zmiennosci na obserwacje w chwili obecnej, ktory jest wickszy im suma ta jest blizsza
jednosci.

Z kolei, jezeli zachodzi warunek a; + ;1 < 1 (co jest jednocze$nie warunkiem
kowariancyjnej stacjonarnosci rozwazanego procesu), to istnieje skonczona wariancja

bezwarunkowa zadana wzorem:

(%))

Var(e) = —

(2.37)
Co wiecej, w przypadku procesu GARCH(1,1) warunek kowariancyjnej stacjonarnosci

jest silniejszy niz warunek $cistej stacjonarnosci E(In(aie?+0;)) < 0 (zob. takze Nelson
[1990], Osiewalski [2001]).
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Z réwnania (2.33) wynika, ze rozktad warunkowy e; jest rozktadem normalnym:

(el Wio1,0) = (2130, 07). (2.38)

Mimo to, mozna pokazaé, ze rozkltad bezwarunkowy posiada kurtoze wyzsza od 3, co
oznacza, ze ogony rozkladu brzegowego ¢; sa grubsze niz te w rozktadzie normalnym.

Szersze opracowanie wtasnosci proceséw GARCH przedstawione zostato takze
w pracach Piontek [2002], Pipiefi [2006], Kwiatkowski [2008], Doman i Doman [2009]
oraz Fiszeder [2009].

Typy rozktadéw warunkowych

Jednym z podstawowych rozktadoéw prawdopodobienstwa, stosowanych w modelach
GARCH jako rozktad zmiennej losowej, jest rozktad normalny, ktéry w pelni opisany
moze by¢ za pomoca dwoch parametréw: sredniej p (parametr potozenia, ang. location)
oraz wariancji 0% (parametr skali, ang. scale) , co dla zmiennej losowej X mozna zapisa¢

jako:

X ~ N(u,o?). (2.39)
Funkcje gestosci rozktadu normalnego zapisa¢ mozemy jako:

Lo (=) (2.40)

fx) =

e
oV 2w

Rozktad normalny ma zerowy wspotezynnik skosnosci, kurtoze rowng trzy, a kurtoze
nadwyzkowa (ang. excess kurtosis) réwna zero. Pomimo tego, ze juz przy warunkowe;
normalnosci kurtoza rozktadu brzegowego jest wyzsza niz w rozkladzie normalnym,
czesto w dalszym ciggu rozkitad ten okazuje si¢ niewystarczajacy. Z tego wzgledu
stosowane sa takze inne rozklady warunkowe, lepiej wychwytujace obserwacje
odstajace, w szczegdlnosci rozktad t-Studenta oraz sko$ny rozktad t-Studenta.
Rozklad t-Studenta po raz pierwszy do modeli GARCH zastosowany zostal przez

Bollersleva [1987]. Do oznaczenia rozktadu t-Studenta stosujemy ponizszy zapis:

X ~ St(pu,0°,v), (2.41)

gdzie pu oznacza parametr niecentralnosci (modalna), o > 0 parametr skali (odwrotnosé
precyzji) zas v > 0 jest liczba stopni swobody. Funkeje gestosci tego rozktadu mozna

zapisac¢ jako:
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() () ety () (22)

si(1) = ==
gdzie I" oznacza funkcje Gamma. Rozktad t-Studenta ma zerowy parametr skosnosci
(’/6%4) dla v > 4 i wariancje Var(X) = -%50?
dla v > 2. > Wraz ze wzrostem liczby stopni swobody, rozklad ten przyjmuje postaé

przy v > 3, nadwyzkowa kurtoze réwna

zblizona do rozktadu normalnego.

Przy warunkowo symetrycznym rozktadzie stop zwrotu, otrzymujemy réwniez
symetryczny rozktad brzegowy, podczas gdy z empirycznych wlasnosci stoép zwrotu
(asymetria) wynika, ze bardziej adekwatny do ich opisu jest rozktad skosny. W tym
celu stosuje sie skosny rozktad t-studenta, ktéry uzyskaé¢ mozna za pomocg metody
zaproponowanej przez Fernandez i Steela [1998]. Do oznaczenia skosnego rozktadu

t-Studenta mozna zastosowaé zapis:

X ~ sSt(p, 0%, v,8), (2.43)

gdzie & > 0 jest parametrem skosnosci (réwnym 1 dla symetrycznych rozktadéw).

Funkcje gestosci zmiennej losowej mozna zapisac jako:

2

fsSt($‘€> - 5—1—5_1

[Fsi(6a) H_ (=) + fsu(€ ™ 2) Hy ()], (244)
gdzie H() oznacza funkcje Heaviside’a:

Odlaz <0
H(z) = (2.45)
1dlaxz > 0.

W przypadku, gdy parametr skosnosci & € (0,1) mamy do czynienia z asymetria
lewostronna, natomiast gdy & > 1 z asymetrig prawostronna. Jak pokazuje Pipien
[2000], warunkowa wartos¢ oczekiwana i warunkowa wariancje wyznaczy¢é mozna

w nastepujacy sposob:
E(X) = ¢o, (2.46)

Var(X) = (y — ¢%)o?, (2.47)

SW pakiecie rugarch zaimplementowany jest standaryzowany rozktad t-Studenta.
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gdzie:

: (2.48)

_ (€-e) v . (2.49)

Typy rozktadow opisane powyzej rozwazane beda w czeSci empirycznej tej pracy.
Niekiedy stosowane sa takze inne typy rozktadow, wsrod ktorych wymieni¢ mozna
uogdlniony rozktad btedu (ang. Generalized Error Distribution - GED) czy uogdlniony
rozktad hiperboliczny (ang. Generalized Hyperbolic Distribution - GHD, zob. Chorro i
in. [2012], Dritsaki [2019]).

2.4.4 Uogoéblnienia i modyfikacje podstawowej specyfikacji
procesu GARCH

Modele GARCH przez dtugi czas byly jednym z najczedciej wykorzystywanych
narzedzi w modelowaniu szeregéw jednowymiarowych. Z czasem doczekaty sie jednak
licznych rozwinigé. Poszczegdlne uogodlnienia modelu GARCH majg na celu przede
wszystkim poprawe opisu poszczegolnych wtasnosci szeregéow czasowych, a co za tym
idzie, poprawienie jakosci prognoz uzyskanych za pomoca modeli.

Jedna z czesto obserwowanych zaleznosci, charakterystycznych dla rynkéw
rozwinigtych, jest asymetryczny wplyw dodatnich i ujemnych stop zwrotu
z przesztoSci na biezacy poziom wariancji warunkowej (zob. Fiszeder [2009], za
ktérym podane sa takze dalsze wzory). W takich przypadkach czesto stosowane sg
uogolnione specyfikacje podstawowego modelu GARCH, takie jak progowy model
GARCH (ang. Threshold GARCH - T-GARCH, Rabemananjara i Zakoian [1993]),
wykladniczy model GARCH (ang. Exponential GARCH - EGARCH, Nelson [1991])
oraz GJR-GARCH (Glosten 1 in. [1993]). W szczegblnosci, najczescie]
wykorzystywany jest ten ostatni, w ktorym réwnanie wariancji warunkowej dla

procesu GJR-GARCH(p,q) definiowane jest nastepujaco:
q q p
af =g+ Z ozigf,i + Zwift_ﬁ?,i + Z 6]'0-1527]'7 (2~50)
i=1 i=1 j=1
gdzie

I, 1=1, gdy ¢;,_1 <0,
t—1 gay €¢—1 (2.51)

I 1 =0, gdy €41 >0,
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oraz o > 0,0, 20,05 +w; >20,dlai=1,...,¢q,zas§ 5, >0dlaj=1,...,p

Doman i Doman [2009] zwracaja uwage, ze taka specyfikacja modelu umozliwia
wychwycenie efektu dzwigni, poprzez oszacowanie parametru w, ktorego wartoscé
wpltywa na poziom asymetrii i réznice w uwzglednianiu zwrotow dodatnich
i ujemnych na poziom zmiennosci (zob. takze Piontek [2002]).

Wsréd specyfikacji modelu z nieliniowym réwnaniem wariancji warunkowej czesto
stosowany jest takze model EGARCH, w ktérym rownanie zmiennosci zadane jest

w nastepujacy sposob:

ho? = ap+ 3 a {ez” +[lz-i] = B(ze-i])] } Y B e? (2.52)
i=1 j=1
przy zatozeniu a; = 1. W modelu EGARCH wariancja warunkowa przyjmuje postac
logarytmiczna, dzieki czemu nie jest wymagane wprowadzanie dodatkowych ograniczen
na parametry w celu zapewnienia dodatniej wartosci wariancji, jednak taka postaé
modelu moze prowadzi¢ do znacznych przeszacowan prognoz zmiennosci (zob. Fiszeder
[2009]).

Posta¢ modelu EGARCH zalezy od przyjetego rozktadu warunkowego zmienne;
z;_;. Odchylenie zmiennej z,_; od jej wartosci oczekiwanej E|z_;| wplywa na zmiane
wariancji w zaleznosci od kierunku i sity tego odchylenia. Przyktadowo, wartosé
oczekiwana dla rozkladu normalnego wynosi Elz_;| = \/g . Innymi czesto
przyjmowanymi rozkltadami dla tego modelu sa takze skosny rozktad t-Studenta, oraz
rozktad GED, dla ktoérych postaci wartosci oczekiwanej przedstawione sa we
wspomnianych publikacjach Piontek [2002] oraz Doman i Doman [2009].

Kolejng rozwazana w tej pracy specyfikacja jest model APARCH (ang. Asymmetric
Power ARCH model), zaproponowany przez Dinga i in. [1993]. Réwnanie wariancji

warunkowej w tym modelu przyjmuje postac:

o0 = ag + zq: o [|€t,i| — fyiet,ir + zp: ﬂjof_j, (2.53)
i=1 j=1
przy nastepujacych restrykcjach natozonych na parametry: § > 0, —1 < v, < 1,7 =
1,....q.

Dobierajac odpowiednio parametry ¢, 3; i 75 model uzyskuje postac¢ zblizong do
opisanych wczesniej modeli, takich jak ARCH, GARCH i GJR-GARCH i innych
(wiecej w Ding [2011] oraz Ding i in. [1993]). Parametr ~; okresla tutaj wplyw efektu
dzwigni - wartos¢ dodatnia oznacza wptyw informacji pozytywnych na zmiennos¢,
natomiast parametr o okresla tzw. efekt Taylora, opisujacy roéznice w autokorelacji

zwrotow bezwzglednych i1 kwadratowych.
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Dla odpowiednich wartosci parametréow o, (; i < mozliwe jest uzyskanie
szczegblnych przypadkéw modelu APARCH, co jest jedna z gléwnych jego zalet (zob.
takze Doman i Doman [2009]):

gdy 60 =2,8,=00(=1,..,p), =0 (i =1,...,q), model APARCH redukuje
sie do modelu ARCH,

—gdyd=2,v%=0(:=1,...,q), model APARCH redukuje sic do modelu GARCH,
— gdy 6 = 2, model APARCH redukuje si¢ do modelu GJR-GARCH,

— gdy 6 = 1, model APARCH redukuje sie do modelu TARCH (zob. Zakoian
[1994)),

~gdy B, =0 =1,..,p), =0 (i = 1,...,q), model APARCH redukuje si¢ do
nieliniowego modelu ARCH (ang. Non-Linear ARCH - NARCH, zob. Higgins i
Bera [1992)),

— gdy 6 = oo, model APARCH redukuje si¢ do logarytmicznego modelu ARCH
(ang. Logarythmic ARCH - Log-ARCH, zob. Higgins i Bera [1992]).

Obok omoéwionych powyzej specyfikacji, istnieje jeszcze takze wiele innych
modyfikacji podstawowego modelu GARCH, ktére szerzej opisane zostaty m.in.
w pracy Terédsvirta [2009].

Do zarzutéow stawianych wobec modeli klasy GARCH mozna zaliczy¢ fakt, ze ich
specyfikacja posiada stabe podstawy teoretyczne (zob. Fiszeder [2009]). W
podstawowych postaciach modelu naptywajace na biezaco na rynek nowe informacje
brane sg pod uwage tylko w réwnaniach stopy zwrotu, natomiast nie sa uwzgledniane
w roéwnaniach zmiennosci, ktora jest funkcjg tylko i wytacznie przesztosci. Mozna tez
zauwazy¢, ze modele nie wyjasniajag w zaden sposOb przyczyn zmiennosci, a stuzg
jedynie jako narzedzie do opisu przebiegu jej procesu. Mimo to, modele tej klasy
wciaz sa jednym z najczesciej wykorzystywanych narzedzi stuzacych do szacowania

i prognozowania zmiennosci.

2.4.5 Estymacja modeli klasy ARMA-GARCH

Jednym z podstawowych narzedzi stosowanych do estymacji parametrow modeli
ARMA-GARCH jest metoda najwiekszej wiarygodnosci (MNW). Metoda ta polega
na wyznaczeniu analitycznej postaci funkcji wiarygodnosci, czyli funkcji wektora

parametrow modelu dla ustalonego wektora obserwacji, a nastepnie maksymalizacji
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wzgledem wektora parametréow 6. W ogodlnosci, dla obserwacji rq,...,7; logarytm

funkeji wiarygodnosci przyjmuje postaé (za Doman i Doman [2009]):

In L(0) = iln f(re|Weq;0), (2.54)
t=1

gdzie f(ry|¥;_1;60) oznacza wartosé¢ funkcji gestosci rozktadu warunkowego dla stopy
zwrotu r; w zaobserwowanej wartosci tejze stopy zwrotu. Dla modeli ARMA-GARCH,

funkcja przyjmuje postac:

a(le)g (Tt - E%\)Pt_l; 9)>’

gdzie g jest funkcja gestosci innowacji z;. Estymator MNW wektora nieznanych

f(re|Wy—150) = (2.55)

parametrow 6 stanowi taki wektor é, dla ktoérego funkcja L(6) przyjmuje wartosé

maksymalna:

0 = argmax L(f) = argmax In L(6). (2.56)
e €O

Autorzy zwracaja takze uwage, ze jednym z problemoéw zwigzanych ze stosowaniem
MNW jest sytuacja, w ktérej przyjeta funkcja gestosci rozktadu (standaryzowanego
sktadnika losowego z;) nie odpowiada nieznanemu prawdziwemu rozktadowi, a wiec nie
ma gwarancji, ze estymator 0 bedzie zgodny. W takim wypadku, czesto stosowane jest
podejscie nazywane metoda quasi-najwiekszej wiarygodnosci (ang. Quasi Maximum
Likelihood Estimator/Estimation - QMLE) (zob. Doman i Doman [2009)]).

Warto roéwniez zauwazyé, ze w modelach ARMA-GARCH jednocze$nie
estymowane sg rownania Sredniej i zmiennosci, co jest lepszym rozwiazaniem niz
estymowanie proceséw sktadowych osobno, poniewaz biorac pod uwage obie struktury
jednoczesnie, estymatory uzyskane za pomocg MNK dla modelu ARMA-GARCH sa
efektywniejsze, w stosunku do estymatorow uzyskanych poprzez oddzielne
estymowanie procesow ARMA i GARCHS. Z drugiej strony, w celu zapewnienia
kowariancyjnej stacjonarnoéci dla procesu ARMA-GARCH wystarczy koniunkcja
warunku kowariancyjnej stacjonarnosci osobno dla struktury ARMA i tego dla
struktury GARCH.

Estymacja parametréw z wykorzystaniem przestawionych powyzej metod
przypisuje tym parametrom pewne okreslone wartosci punktowe. Odmiennym

podejsciem jest wnioskowanie bayesowskie, w ktorym brana pod uwage jest

SW przypadku estymowania samej struktury ARMA, estymatory uzyskane w ten sposob sa zgodne,

asymptotycznie nieobcigzone, ale nieefektywne.
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niepewnos¢ dotyczaca parametréw, opisana rozkladem prawdopodobienstwa, a nie
tylko wartoscia punktowa (zob. Osiewalski [2001], Pipien [2006], Bauwens i in. [2000]).

W celu wyznaczenia wartoSci rzedéow opéznien dla modeli GARCH (lub
ARMA-GARCH) stosuje si¢ te same kryteria informacyjne, co w przypadku modeli
ARMA - zwykle kryterium informacyjne Akaike lub kryterium Schwarza. Kryteria te

przedstawione zostaly w punkcie 2.4.2

2.4.6 Alternatywne specyfikacje modeli zmiennoSsci

Innym, czesto wykorzystywanym podejsciem do modelowania zmiennosci stop
zwrotu sa modele oparte na zmiennosci stochastycznej (ang. Stochastic Volatility -
SV), zaproponowane przez P.K. Clarka [1973] oraz S. Taylora [1986]. Modele tej klasy
wywodza sie z matematyki finansowej. Jednym z zatozen modeli SV, odrézniajacych
je od modeli klasy GARCH jest, ze to biezaca wartosci wariancji warunkowej nie jest
tylko funkcja przesztosci, ale oddzialuje na nig takze dodatkowe, réwnoczesne

zaburzenie losowe. Podstawowa postaé¢ procesu SV opisa¢ mozna réwnaniami (zob.
Piontek [2002], Pajor [2003]):

Et = Oz, (257)
Inof = ¢ + dlnop | + oy, (2.58)

gdzie, z;,m; maja standaryzowane rozklady normalny (N(0,1)) i sa niezalezne. Z
rownania (2.58) wynika, ze o7 zalezy takze od innowacji 7, ktére okresla¢ moga
zaburzenia intensywnosci naptywu informacji, natomiast szoki e, sa zwigzane
z treScia tych informacji (zob. Doman i Doman [2009]). Modele SV, dzigki
wprowadzeniu dodatkowego zrédia losowosci 7, sa w praktyce bardziej elastyczne
i tatwiej dopasowuja sie do danych, natomiast ze wzgledu na trudniejsza estymacje
wcigz sa rzadziej stosowane niz modele GARCH. Szerokie opracowanie modeli
zmiennosci stochastycznej przedstawione zostato w pracach A. Pajor ([2003], [2010]).

W  ekonometrii finansowej prowadzone sa takze badania nad modelami
hybrydowymi, laczacymi mozliwosci modeli GARCH i SV, zaréwno jedno-, jak
i wielowymiarowych (zob. Osiewalski i in. [2004], Osiewalski i Pajor [2018]). Jak
wykazuja Pajor i Wréblewska [2017] oraz Wréblewska i Pajor [2019] stosowanie
(wielowymiarowych) modeli hybrydowych jest szczegélnie optacalne w kontekscie
prognozowania, gdyz prognozy uzyskane przez modele hybrydowe sa lepsze niz te
uzyskane przez modele GARCH czy SV.
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2.4.7 Wielowymiarowe uogoélnienia modeli ARMA-GARCH i
ARMA-SV-GARCH

Opisane powyzej narzedzia stuza do modelowania proceséow jednowymiarowych,
w zwigzku z czym ich zastosowanie jest ograniczone przy takich zagadnieniach
wielowymiarowych jak analiza portfelowa. W zwigzku zaproponowane zostaty metody
pozwalajace na modelowanie warunkowych kowariancji, zmiennosci calego portfela
lub jego poszczegdlnych sktadowych oraz ich ryzyka. Jedna 2z najczedciej
wykorzystywanych w tym celu klas modeli sa wielowymiarowe procesy GARCH (ang.
Multivariate GARCH - MGARCH).

Poniewaz modele te nie sg przedmiotem tej pracy, a ich formalne przedstawienie
wymagato by szerokiego wstepu, ponizej wymienione zostana jedynie
najpopularniejsze postaci wielowymiarowych modeli GARCH, wraz z odniesieniami
do literatury. Zaznaczy¢ nalezy natomiast, ze modele te ciesza sie obecnie duza
popularnoscia wsréd badaczy, wiaz prowadzone sg liczne badania po$wiecone tej
tematyce, co objawia sie duza ilodcig nowych publikacji w tym temacie (zob. Fiszeder
[2009], Pajor [2010], Francq i Zakoian [2019]).

Jedng z ogodlniejszych postaci wielowymiarowych modeli GARCH jest model
VECH (alternatywnie oznaczany przez VEC) zaproponowany przez D. F. Krafta i R.
F. Engla w 1983 roku (Engle i Kraft [1983]). Jednak ze wzgledu na duza ilosé
parametrow i trudnosci z formutowaniem warunkéw dodatniej okreslonosci macierzy
kowariancji warunkowej (H;) model ten rzadko znajduje zastosowanie w praktyce.
Problem iloSci parametréw poprawiony zostal przez Bollersleva [1988] poprzez
sformutowanie diagonalnego modelu VECH (ang. Diagonal VECH - DVECH), ktory
jednak wcigz nie gwarantuje dodatniej okreslonosci macierzy. Kolejna propozycja byt
model BEKK, zaproponowany przez Baba, Engle’a, Krafta i Kronera w 1990 roku
(zob. Engle i Kroner [1995]). Przedstawiona przez nich posta¢ modelu zapewnia
dodatnio$¢ macierzy warunkowych kowariancji, jednak wcigz cechuje si¢ relatywnie
wysoka liczba parametréw. Engle [2002] oraz Tse i Tsui [2000] zaproponowali model
opisujacy dynamiczne korelacje warunkowe (ang. Dynamic Conditional Correlation -
DCC). W modelu tym zaklada sie, ze korelacje warunkowe moga zmieniaé¢ sie
w czasie. Modele te opisuja korelacje warunkowe bezposrednio, posiadajg mniej
parametrow i umozliwiaja estymacje parametréw w dwoch krokach: w pierwszym
kroku dokonywana jest estymacja dowolnej specyfikacji jednowymiarowych modeli
GARCH, a w drugim wyznacza sie korelacje warunkowe na podstawie reszt. Model
DCC jest jednym z najpopularniejszych stosowanych obecnie wielowymiarowych

modeli zmienno$ci.
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Badania nad nowymi postaciami modeli wielowymiarowych wciaz sa silnie
rozwijane. Proponowane w tym nurcie sg takze wielowymiarowe modele MSV, modele
hybrydowe MSV-MGARCH oraz ich uogélnienia (zob. Osiewalski i in. [2004],
Silvennoinen i Terdsvirta [2009], Pajor i Osiewalski [2010], Osiewalski i Pajor [2018].

2.5 Prognozowanie stop zwrotu i ich zmiennosci

w ramach modeli klasy ARMA-GARCH

Prognozowanie stop zwrotu i ich zmiennosci jest jednym z gtéwnych przedmiotéw
tej pracy. Stosujac w tym celu modele ARMA-GARCH mozna uzyska¢ prognozy
zaré6wno warunkowej wartosci oczekiwanej jak i warunkowej wariancji. Modele te
mozna  wykorzystywa¢  do  otrzymania  prognoz  jednookresowych,  jak
i dlugookresowych. Poniewaz w czeSci empirycznej pracy skupia¢ sie bedziemy
wytacznie na prognozach jednokresowych, wtasnie temu podejsciu poswiecony bedzie

ponizszy podrozdzial.”.

2.5.1 Predykcja punktowa
Prognozowanie punktowe stéop zwrotu

Prognoza punktowa stop zwortu w modelach ARMA-GARCH przebiega tak samo,

jak w zwyktych modelach ARMA, w ktorych, jak wskazano wczesniej:
k m
Ty = Qg + Z Q;Te—; + & — Z bjgt—j7 (259)
j=1

i=1

Optymalng prognoza punktowa na jeden okres do przodu w przypadku tego tego

modelu, jest:

Terlpe = E(ripq1|Vy). (2.60)

Przyjmujac okredlony rozktad warunkowy, warto$¢ oczekiwana, moze przyjmowac

rozng postac:

"Prognozy dtugookresowe dla modeli ARMA oraz GARCH szczegbélowo opisane sa w pracy Doman
i Doman [2009]
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pre1 gdy 2z ~ N(0,1)
Pevre = E(reen|Ve) = g gdy 2z ~ St(0,1,v),v > 1 (2.61)
Ht+1 + gba— gdy zt SSt(Ov 1’I/7§),V > 1

gdzie ¢ zadane jest wzorem (2.48).

Prognozowanie punktowe zmiennosci

Punktowa prognoza zmiennoéci w modelach ARMA-GARCH jest uzyskiwana
w taki sam sposéb, jak w modelach GARCH, poniewaz Var(rii1w,) = Var(es v, )

Przyjmuje ona nastepujaca postac:

p q
Ut2+1|t = E(0152+1|¢t) = Qo + Z az’5152+1—i + Z ﬁj0t2+1—j = Ut2+1- (2.62)
i=1 j=1
Prognoza wariancji warunkowej dla okreslonych rozktadéw warunkowych przyjmuje

zatem nastepujace postaci:

‘7t2+1 gdy 2 ~ N(0,1)
Var(riaw,) = ooty gdy z ~ St(0,1,v),v > 2 (2.63)
(7 - ¢2)O_t2+1 gdy Z SSt(Oa 17 v, 5)7 v>2

gdzie ¢ zadane jest wzorem (2.48), zas v wzorem (2.49).

Zauwazy¢ nalezy, ze wraz z wydluzeniem horyzontu maleje w tempie
wyktadniczym wplyw zmiennosci o7, na prognozy. W przypadku, gdy mamy do
czynienia z procesem kowariancyjnie stacjonarnym, granicg wygasania bedzie
wariancja bezwarunkowa zmiennej &,. Efekt powrotu zmiennos$ci do Sredniej jest
jedna z wtasnosci takich proceséw.

Prognozy zmiennosci w omawianych uprzednio uogélnieniach modelu GARCH
wyznacza sie¢ w sposob analogiczny do przedstawionego powyzej. W przypadku
modelu EGARCH, ze wzgledu na logarytmiczng posta¢ réwnania zmiennosci,
konieczne jest dokonanie transformacji odwrotnej poprzez funkcje eksponencjalng, co

moze powodowaé zawyzone wyniki.

2.5.2 Mierniki trafnosci prognoz punktowych

Istnieje szereg miar i kryteriow, ktore mozna wykorzysta¢ w celu oceny trafnosci

prognoz punktowych zaréwno stop zwrotu, jak i zmiennosci. Zaprezentowane ponizej
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miary (za Fiszeder [2009]), stosowane w dalszej czesci pracy, naleza przede wszystkim do
grupy miar symetrycznych (w ktérych taki sam wpltyw na ocene jakosci maja prognozy
przeszacowanie, jak i niedoszacowane).

Do podstawowych miernikéw dokladnosci prognoz naleza btad éredni (ang. Mean
Error - ME) oraz wzgledny blad $redni (ang. Relative Mean FError - RME)
informujace badacza o wzglednym obciazeniu prognozy. W praktyce czedciej
stosowane sg jednak takie mierniki jak sredni btad absolutny (ang. Mean Absolute
Error - MAE), btad $redniokwadratowy (ang. Mean Squared Error - MSE) oraz jego
pierwiastek (ang. Root Mean Squared Error - RMSE). Kryteria MSE oraz MAE
skorygowane o heteroskedastycznosé okreslane sa odpowiednio jako HMSE (ang.
Heteroskedasticity Adjusted Mean Square Error) oraz HMAE (ang. Heteroskedasticity
Adjusted Mean Absolute Error). Cheac przej$¢ na wielkosci relatywne bledéw stosuje
siec Sredni absolutny btad procentowy (ang. Mean Absolute Percentage Error -
MAPE) oraz pierwiastek procentowego btedu $redniokwadratowego (ang. Root Mean
Squared Percentage Error - RMSPE) - ktére sa tozsame z miarami HMAE i HRMSE.
W przypadku wystepowania duzej liczby wartosci skrajnych mozna stosowac takze
logarytmiczna funkcje straty (ang. Logarithmic Loss - LL), na ktéra tego typu
obserwacje maja mniejszy wplyw. Postaci wymienionych powyzej miernikow

przedstawione zostaly w tabeli 2.1.
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Tabela 2.1: Miary trafnosci prognoz punktowych.

Miernik Wzbr
ME NV - V)
t=1
RME ME/LYy,
t=1
MAE Ny
t=1
MSE 1Ny, - V)2
t=1
RMSE J LY (v-v)
t=1
" Y, — Y\ 2
HMSE }jj( i t)
I ¢
"y, — Y,
MAPE, HMAE LS
"ol Y
LN AT
RMSPE, HRMSE |23 ( ! t)
i N ¢

LL LS (In(¥) — (%)’

Uwaga: Y; to warto$é¢ badanej zmiennej (przykladowo stopy zwrotu lub zmiennosci) w chwili ¢,
natomiast ¥; to wartosé prognozy

Zrédlo: Opracowanie wlasne na podstawie Fiszeder [2009].

Dodatkowa miarg, ktérg mozna wykorzysta¢ do pordéwnania trafnosci prognoz

zmiennosci jest wspétezynnik determinacji R?, opisany wzorem

S (Y —Y)

RR=EL____ >y, (2.64)
> (Y —Y)?
t=1

gdzie Y, jest wartoscia zaobserwowana, Y, jest wartoscia prognozowang, zas Y jest
srednig arytmetyczng warto$ci zmienne;j.
Przedstawione powyzej miary wykazujg jednak pewne wady w praktycznym

zastosowaniu i moga prowadzi¢ do mylnych wnioskéw (zob. Hyndman i Koehler
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[2006]). Przyktadowo, w przypadku funkcji MSE kwadraty wartosci odstajacych maja
wiekszy wpltyw na ocene btedu niz obserwacje o nizszych (co do modutu) wartosciach.
Miary MAPE i HMAE nie mogg by¢ stosowane gdy w szeregu obserwacji
zrealizowanych wystepuje zero (problem tez dotyczy miar skorygowanych o
heteroskedastycznosé, jak HMSE). Wykazuja tez tendencje do silniejszego
penalizowania btedow prognozy, gdy Y; < Yt, co przy poréwnaniu metod
prognostycznych skutkuje wyborem modelu dajacego zanizone prognozy (zob. Kim i
Kim [2016], Tofallis [2014]). Wspoétczynnik R? réwniez nie penalizuje prognoz
obcigzonych, przez co moga charakteryzowaé sie one wyzszg wartoscig wspotczynnika
w stosunku do prognoz nieobciazonych (Fiszeder [2009)]).

Ze wzgledu na wspomniane problemy poszczegélnych miar oceny prognoz,
w wynikach i wnioskach z badan zaprezentowanych w dalszej czesci pracy, wziete pod
uwage zostang takze dodatkowe aspekty umozliwiajace szersze spojrzenie na uzyskane
wyniki, takie jak strategie inwestycyjne zbudowane na podstawie punktowych
prognoz zmiennosci, czy oszacowania poziomu ryzyka z wykorzystaniem prognoz
zmiennosci.

Poniewaz nawet znaczne roéznice pomiedzy modelami w ocenie prognoz uzyskane
przez miary trafnosci moga okazac sie nieistotne statystycznie zaleca sie dodatkowo
stosowanie testow badajacych istotnosé¢ roznicy wartosci miernika uzyskanych przez
dwa rézne modele. W czeSci empiryczne] pracy wykorzystany zostanie test
Diebolda-Mariano [1995] w wersji zmodyfikowanej przez Harveya i in. [1997].
Hipoteza zerowa testu zaktada, ze wartosci danego miernika uzyskane w wybranych
dwoch modelach sg jednakowe, natomiast hipoteza alternatywa zaktada konkretny
kierunek nieréwnosci pomiedzy modelami lub nieréwnos$¢ w obydwie strony. Doktadny

opis procedury testowej mozna znalezé we wspomnianych wyzej opracowaniach.

2.5.3 Ocena trafnosci predykcji punktowej stép zwrotu

w kontekscie strategii inwestycyjnych

Zdolnosci  predyktywne badanych modeli ocenione zostang dodatkowo
w kontekscie strategii inwestycyjnych. Taka ptlaszczyzna oceny charakteryzuje sie
konkretnym i wymiernym aspektem trafnosci prognoz punktowych.

Podstawowe miary trafnosci prognoz nie sg w stanie jednoznacznie okresli¢, w jaki
sposob zachowa si¢ strategia inwestycyjna budowana na podstawie prognozowanych
stép zwrotu. Do oceny jakosci algorytmicznych strategii inwestycyjnych (ang.

Algorithmic Investment Strategies - AIS), wykorzystaé mozna szereg miar wydajnosci
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strategii (ang. performance metrics).® Wykaz wybranych miar, zaproponowanych
przez Slepaczuk i in. [2012], oraz Ko$é i in. [2019] przedstawiony zostal w tabeli 2.2.
Kluczowe przy ocenie strategii inwestycyjnych sg nie tylko zannualizowane wskazniki
skumulowanego zwrotu (ang. Annualized Return Compounded - ARC), ale przede
wszystkim wskazniki informacyjne (ang. Information Ratio - IR), ktoére oprbcz
zwrotu biora pod uwage takze zannualizowane odchylenie standardowe (ang.
Annualized Standard Deviation - ASD), maksymalng procentowa wielko$é obsuniecia
kapitatu (ang. Maximum Drawdawn - MD) oraz dlugosé straty z nig powiazana (ang.
Maximum Loss Duration - MLD), stanowiaca liczbe dni pomiedzy lokalnymi
maksimami krzywej kapitatowej. Wynika to migedzy innymi z faktu, ze na strategiach
charakteryzujacych sie niewielkimi wskaznikami MD i MLD, mozna przyktadowo

stosowaé efekt dzwigni, co znacznie wptywa na poprawe uzyskiwanych zwrotow.

Tabela 2.2: Mierniki oceny strategii inwestycyjnej

Miernik Oznaczenie Wzor
N/T
Skumulowany zwrot roczny ARC ((%) - 1) -100%
Roczne odchylenie standardowe ASD \/ Y Lo(Ri—y — R)?-100%
Maksymalne obsuniecie kapitatu MD max-¢[o,7] (maxte[o_,T](RtT — Rtﬁ)) -100%
Maksymalna dlugos¢ straty MLD max W
Wskaznik informacyjny IR* %
Zmodyfikowany wskaznik informacyjny IR** IR* - ARC- %
Zagregowany wskaznik informacyjny [R*** %

Uwaga: Pr to konicowa cena instrumentu finansowego dla okresu 0, ...,T', N oznacza liczbe okreséw

sesyjnych w roku dla danej czestotliwodci, zas mj, m; to liczby dni wskazujace kolejne lokalne
maksima krzywej kapitatowej.
Zrédto: Slepaczuk i in. [2012], oraz Ko$é i in. [2019)].

Dla wskaznikow ARC oraz IR preferowane sg wartoéci wyzsze.” Natomiast,
w przypadku wskaznikéw ASD, MD, MLD, preferowane sa wartosci nizsze, ktore
wskazuja na nizsze ryzyko zwiazane z zastosowaniem badanej strategii.

Mierniki doktadnosci prognoz przedstawione w tabeli 2.1 czesto nie sprawdzaja

8Wydajnoéé strategii rozumiana jest tutaj jako miara jej oplacalnoéci czy tez dochodowoéci.
9Ujemne wartoéci IR sa nieinterpretowalne.
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siec dobrze w roli funkcji straty'®, ktérej minimalizacja miataby korzystnie wpltynaé
na zyskownos¢ strategii inwestycyjnych (zob. Michankéw i in. [2022]). Przyktadowo,
funkcje MSE lub MAE moga wskazywa¢ bardzo mate wartosci btedu, nie biorac jednak
pod uwage kierunku przewidywanego zwrotu. Z drugiej, strony istnieje grupa miar, jak
przyktadowo miara MDA (ang. Mean Directional Accuracy), ktére biora pod uwage
jedynie kierunek zmian, nie zwracajac uwagi na wartos¢ oczekiwanej korzysci lub straty.
W odpowiedzi na ten problem autorzy wspomnianych badan zaproponowali funkcje

MADL (ang. Mean Absolute Directional Loss), zadana ponizszym wzorem:

1 & . .
MADL = — Z(—l) -sign(ry - Typ—1) - ‘Tt

t=1

: (2.65)

gdzie funkcja sign(ry - 74,—1) zwraca znak iloczynu (warto$é 1 jest zwracana gdy znak
obu czynnikéw sie zgadza a -1 w sytuacji niezgodnosci znaku). Dzieki takiej specyfikacji,
nizsze wartosci funkcji MADL oznaczaja bezposrednio lepsze wyniki uzyskane przez

strategie bazujace na prognozowaniu kierunku zmian.

2.5.4 Wyznaczanie i ocena trafnosci prognoz

probabilistycznych

Przedstawione w powyzszych podrozdziatach metody stuzyty w duzej mierze do
uzyskiwania szacunkéw i prognoz punktowych. Nieco odmiennym, a zarazem
ogoblniejszym podejsciem jest prognozowanie calych rozktadéw prawdopodobienstwa,
ktore przedstawiaja catoksztalt niepewnosci zwigzanej z ksztattowaniem sie danego
zjawiska w przysztosci, co wydaje si¢ by¢ bardziej naturalnym i kompleksowym
podejsciem do problematyki zwigzanej z prognozowaniem. W ostatnich latach
podejscie to zyskuje na znaczeniu i coraz czeSciej wykorzystywane jest w pracach
badawczych. Gneiting 1 Katzfuss [2014] zwracaja uwage na pewna zmiang
paradygmatu w podejsciu do prognozowania, polegajaca wtasnie na odchodzeniu od
prognoz punktowych w strone prognoz probabilistycznych, dzigki czemu mozliwe jest
lepsze uchwycenie niepewnosci zwiazanej z prognozami, co z kolei moze wptynaé¢ na
poprawe podejmowanych decyzji. Z tego wzgledu, takze w tej pracy zasadnym wydaje
si¢ zastosowanie takiego podejscia. W ponizszym podrozdziale opisane zostaty
podstawowe metody prognozowania probabilistycznego finansowych szeregow
czasowych oraz sposoby oceny doktadnosci tych prognoz.

W tym miejscu mozna wspomnieé¢ o statystyce bayesowskiej, na gruncie ktorej to

10Rozumianej jako funkcje realizacji procesu i predyktora, reprezentujaca ilosciowo skutki bledu
predykcji (za Fiszeder [2009]).
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wtladnie probabilistyczne podejscie do wyznaczania prognozy — w postaci tzw.
rozktadu predyktywnego — jest najbardziej naturalne. W dodatku, bayesowski
rozktad predyktywny w sposéb w petni formalny ujmuje w sobie niepewnosé¢
zwigzang 7z estymacja nieznanych parametrow modelu statystycznego, jak i te
zwiazang z wyborem poprawnej specyfikacji modelowej (w kontekscie poréwnywania
alternatywnych modeli bayesowskich). Szersze informacje na ten temat przedstawione
zostaly w pracach Osiewalski [2001], Osiewalski i in. [2004].

Jednookresowe prognozy probabilistyczne z wykorzystaniem modeli
ARMA-GARCH

Rozwazmy szereg czasowy stop zwrotu (r;), modelowany za pomoca procesu

ARMA-GARCH, na ktory sktadaja sie nastepujace réwnania:

T+ = Ut + Et, <266)
Et = O¢Z¢, (267)
(2¢) ~ iiD(n), (2.68)

gdzie proces (02) ma specyfikacje zadang zgodnie z wybranym procesem klasy GARCH
i jest procesem W; j-mierzalnym, czyli (¢2) jest funkcja tylko i wylacznie przeszlosci,
zas D jest zadanym typem rozktadu prawdopodobienstwa, o parametrach 7.

Z powayzszego wynika, ze dla kazdego t = 1,..,T (w probie), warunkowy rozktad
biezace] stopy zwrotu pod wzgledem przesztosci, przy okreslonych wartosciach

parametréw, 0):

p(r W, 1;0) = [5)(r1;6)), (2.69)

gdzie 0 zawiera w sobie parametry z réwnan okreslajacych p;, o; oraz rozktadu
sktadnika losowego z;,. W szczegblno$ci, w zaleznosci od przyjetego rozktadu

warunkowego, rozklad (2.69) moze przyjaé postaé:

I3 (rii pe, 07), gdy D = N(0,1)
p(re|Wi-150) = f&)(rt;ut,af, v), gdy D = St(0,1,v) (2.70)

fs(é'zf(rt;uho—tz? v, 6)7 gdy D= SSt(Ov 17 v, 5)

7 2.71 wynika, ze rozktad przysztej stopy zwrotu, r;11, pod warunkiem informacji

dostepnej do chwili t wtacznie (tj. jednookresowa prognoza probabilistyczna) przyjmuje
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postac:

fj(vl)(TtJrl;MtH, Ut2+1), gdy D = N(0,1)
p(rt+1|\llt; 0) - fé?(”-i-l; Hi+1, Jt2+17 V)? gdy D = St((), 17 V) (271)

F o (ren; s, 02,0, 1, €), gdy D = sS40, 1,1, &)

Czym jest p4q oraz oy, zostalo wyjasnione podczas omawiania prognoz punktowych

stop zwrotu i zmiennosci w punkcie .

Ocena trafnosci prognoz probabilistycznych

Prognozy probabilistyczne wymagaja stosowania odpowiednich narzedzi
pozwalajacych na ocene ich trafnosci. Ponizej przedstawiono wybrane metody oceny
trafnodci prognoz rozktadéw prawdopodobienstwa, ktore zastosowane zostaly takze
w czesci empirycznej prezentowanej w punkcie 5.6.1.

Glowng klase narzedzi oceny prognoz probabilistycznych stanowia tzw. proper
scoring rules.! Gneiting i in. [2007] zwracaja uwage, ze miary te powinny prawidtowo
oceniaé zaréwno kalibracje jak i ostro$¢ (ang. sharpness) prognozowanego rozkltadu,
przy czym przez ostros¢ rozumiana jest tu koncentracja prognozowanego rozktadu —
preferowane sg prognozy o bardziej skoncentrowanym rozktadzie prawdopodobienstwa
i tym samym o wyzszej ostrodci. Oceni¢ ja mozna zaréwno na podstawie analizy
graficznej, jak i numerycznej szerokodci przedziatéw predykecji. Oceny te sa wiec
pewnymi wskaznikami btedu prognozy, ktéry powinien by¢ minimalizowany. Sa one
wlasciwe (ang. proper), w przypadku kiedy przyjmuja najmniejsze wartosci gdy
zachodzi réwnos¢ F' = G, gdzie F' oznacza dystrybuante rozkladu prognozy, a G —
dystrybuante prawdziwego rozktadu zmiennej w okresie prognozy.

Jedng z najpopularniejszych miar wykorzystywanych w ocenie trafnosci predykcji
probabilistycznych jest miernik LPS (ang. Log Predictive Score, zob. Good [1952],

Bernardo [1979], za Gneiting i in. [2007]), ktéra mozna opisa¢ wzorem:

LPS = —Inp(re | Wi 0), (2.72)

gdzie W, oznacza dane wykorzystane do wyznaczenia rozkltadu predyktywnego
w okresie t, za$ ;41 jest realizacja zmiennej w okresie ¢t + 1. W przypadku rozwazania
calej trajektorii prognoz wygastych, oblicza sie albo skumulowana warto$¢ LPS (ang.
Cummulative LPS - CLPS) albo wartos¢ srednig (ang. Average LPS -ALPS), zadane

UWedlug najlepszej wiedzy autora nie istnieje polski przeklad terminu ,proper scoring rules”,

wobec czego, postanowiono zachowaé tu jego oryginalne, anglojezyczne brzmienie.
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wzorami:

CLPS = =) Inp(rip | Uy 0), (2.73)
t=1
ALPS = L .cLps. (2.74)
n

Do popularnych miar trafnosci prognoz probabilistycznych nalezy takze miara
CRPS (ang. Continuous Ranked Probability Score), ktéra zaproponowana zostala jako
alternatywa dla LPS (zob. Gneiting i Raftery [2007] i Gneiting i in. [2007]). Miare

CRPS dla obserwacji x mozna przedstawi¢ za pomocg wzoru

CRPS(F,z) = / -

—00

Fly) - 1(y > ) dy, (2.75)
(

gdzie 1 jest funkcja charakterystyczna zbioru.
Gnueiting i Raftery [2007] wykazuja, ze mozna to zapisa¢ takze jako:

CRPS(F,z) = Ep|X — 2| - ;EF‘X ~ X/, (2.76)

gdzie X oraz X' sg niezaleznymi kopiami zmiennej losowej o dystrybuancie F
i skonczonym pierwszym momencie. Korzystajac z takiego zapisu, nizsze wartosci
CRPS oznaczaja lepsze wyniki. Podobnie jak w przypadku miary LPS, dla ciggu
prognoz wygastych z reguty oblicza si¢ $rednia wartos¢ CRPS.

Glowne zalety tej miary wynikaja z faktu, ze lepiej oceniane sa wartosci
z rozkladu predyktywnego, ktére sa blizsze (cho¢ niekoniecznie réwne) wartosciom
zaobserwowanym. W stosunku do miary LPS, miara ta jest tez mniej wrazliwa na
obserwacje znajdujace sie w ogonach rozktadu prognozy (zob. Clark i Ravazzolo
[2015]). Miara CRPS jest tez pewnym uogdlnieniem miary MAE, wykorzystywanym
w przypadkach gdy mamy do czynienia z prognozami w postaci rozkladow
prawdopodobienstwa, a nie prognozami punktowymi.

Jako komplementarne podejscie stosowane jest takze kryterium PIT (ang.
Probability Integral Transform), zaproponowane przez Dawida [1984] oraz Diebolda

iin. [1998] jako narzedzie stosowane do oceny kalibracji rozkladéow predyktywnych:

PIT = F(re,y). (2.77)

PIT okresla zgodno$¢ rozktadu prognozowanego z domniemanym prawdziwym
rozktadem przysztej wartosci prognozowanego zjawiska GG. W przypadku gdy rozktad

prognozy F jest zgodny rozkladem G, wtedy wartos¢ PIT;,; ma rozktad jednostajny,
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tj. PIT ~ U(0,1)).1? Co wigcej, dla ciagu prognoz probabilistycznych, wartosci PIT
powinny stanowi¢ ciag niezaleznych zmiennych losowych (o tym samym,
jednostajnym rozktadzie prawdopodobienstwa).

Tematyka dotyczaca miar CRPS oraz PIT, a takze wielu innych metod oceny
trafnoéci prognoz probabilistycznych nalezacych do proper scoring rules, zostata
szerzej przedstawiona w Gneiting i in. [2007], Gneiting i Raftery [2007]. W praktyce
w dalszym ciggu jednak najpopularniejszymi sposobami oceny trafnosci prognoz
probabilistycznych sa LPS oraz CRPS.

2.6 Ocena zdolnosci predyktywnych modeli

w konteksScie szacowania ryzyka kapitalowego

Jedna z podstawowych dziedzin, w ktorych wykorzystywane sa metody oparte na
modelowaniu zmiennosci jest pomiar ryzyka na rynkach finansowych. Istnieje wiele
definicji i klasyfikacji ryzyka, z ktorych ponizej przedstawione zostaly jedynie
wybrane, zwiazane z tematyka rynkéw finansowych. Knight [1921], (za Piontek
[2002]) przedstawil popularna definicje ryzyka, stosujac rozréznienie miedzy
pojeciami ryzyka i niepewno$ci. Niepewno$ci okresla jako odchylenie mozliwosé
odchylenia od stanu oczekiwanego, ktéra nie jest mierzalna poprzez zastosowanie
rachunku prawdopodobienstwa. Z kolei ryzyko definiuje jako ,niepewno$é mierzalng,
w  ktorej odpowiednim przyszltym  stanom natury mozna przypisa¢  okreslone
prawdopodobieristwa”. Piontek [2002] podaje takze kilka definicji ryzyka finansowego,
wedtug ktoérych jest ono ,prawdopodobienstwem utraty przez organizacje posiadanych
zasobow finansowych oraz prawdopodobienstwem utraty srodkow finansowych, ktore sq
Juz w organizacji, oraz mnieosiggniecia spodziewanych zyskow”  (definicja wg.
Bizon-Goérecka [2000]). Z kolei wedlug Joriona 2006 ryzyko finansowe mozna okresli¢
jako ,ryzyko, ktore wigie sie z mozliwoscig poniesienia strat na rynkach
finansowych”.

W dalszych rozwazaniach skupiaé¢ sie¢ bedziemy na ryzyku rynkowym, ktore
wyrozniane jest jako jeden z podstawowych rodzajow ryzyka finansowego, obok
przyktadowo ryzyka kredytowego czy bankowego (zob. Piontek [2002]). Ogodlnie,
ryzyko rynkowe rozumiane jest najczesciej jako ryzyko wynikajace ze zmian cen
rynkowych  (Malecka [2016]). Autorka przytacza kilka definicji ryzyka,
funkcjonujacych obecnie w literaturze. Ryzyko rynkowe moze wiec byé¢ rozumiane

jako: | ryzyko strat ma pozycjach bilansowych i pozabilansowych, wynikajgcych ze

12 Jednym z testéw stosowanych w celu oceny zgodnos$ci rozkladéw jest test Andersona-Darlinga,

szerzej opisany w pracy Anderson i Darling [1954].
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zmian cen rynkowych” (definicja wg Komitetu Bazylejskiego, zob. Basel Committee
on Banking Supervision [2005]); ,ryzyko straty w wyniku zmiany wartosci aktywow
bedacych przedmiotem obrotu i znajdujacych si¢ w posiadaniu przedsiebiorstwa”
(definicja wg Tarczynskiego i Mojsiewicza, zob. Tarczynski i Mojsiewicz [2001]);
ryzyko ceny jako mozliwosé wystgpienia niekorzystnych zmian ceny rynkowej
w czasie, gdy bank zajmuje spekulacyng lub zwigzang z obstugq klienta pozycje netto
w towarach, stopach procentowych czy tez zmiennosci implikowanej w opcjach” (w
terminologii bankowej, zob. Riehl [2001]). W ramach ryzyka rynkowego wyr6znié
mozna dodatkowo: ryzyko cen akcji, ryzyko kursu walutowego, ryzyko cen towarow,
ryzyko stopy procentowej (zob. Jajuga [1999], Piontek [2002]). Opisane w ponizszym
podrozdziale miary ryzyka sa istotnym narzedziem wykorzystywanym zaréwno przez
instytucje finansowe, jak i inwestoréw.

Jajuga [1999] (za Fiszeder [2009], Piontek [2002]) wyrdznia trzy podstawowe
sposoby konstruowania miar ryzyka. Pierwsza grupa opiera si¢ na gtownych miarach
zmiennosci - wariancji i odchyleniu standardowym. Najczesciej stosowanym
narzedziem sa tutaj modele klasy GARCH. Do drugiej grupy zalicza si¢ miary
wrazliwosci, wykorzystujace wspotezynniki beta. Miary te wykorzystywane sa
najczesciej w optymalizacji ryzyka oraz przy zabezpieczaniu portfela akcji. Trzecig
grupe stanowig miary zagrozenia. Podstawowym narzedziem jest tutaj miara wartosci
zagrozonej VaR, ktora w ciagu ostatnich lat stata sie jedna z najpopularniejszych
miar ryzyka, oraz miara oczekiwanego niedoboru - ES (zob. Acerbi i in. [2001]). Do
zalet miary VaR =zaliczy¢ mozna mozliwos¢ bezposredniego wskazania rozmiaru
potencjalnych strat z okreslonym prawdopodobienstwem, mozliwos¢ szacowania
ryzyka dla calych portfeli, oraz zastosowania w ocenie ryzyka kredytowego (zob.
Matlecka [2016]). W praktyce, jako poziomy tolerancji VaR zwykle przyjmuje sie¢ 5%,
2,5% lub 1% (Fiszeder [2009]), przy czym w ostatnich regulacjach Komitetu
Bazylejskiego (zob. Basel Committee on Banking Supervision [2017]) zalecane jest
ustalanie ich na poziomie 1%. Obok wartosci zagrozonej, jako zalecana miara ryzyka,
coraz cze$ciej wskazywana jest takze miara szacowanego niedoboru (zob. Matecka
[2016]), stanowiaca oczekiwana warto$¢ straty przekraczajaca poziom wartosci

zagrozonej.

2.6.1 Wartos¢ zagrozona - VaR

Wartosé zagrozona (inaczej: wartosé¢ narazona na ryzyko) zdefiniowaé mozna (za
Fiszeder [2009]) jako oczekiwana strate wartosci rynkowej instrumentu finansowego
lub portfela instrumentéw, taka, ze prawdopodobienstwo jej osiagniecia lub

przekroczenia ~w  danym  przedziale czasowym  jest rowne  zadanemu
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prawdopodobiefistwu (poziomowi tolerancji). Z kolei Malecka [2016] wskazuje, ze VaR
nalezy do grupy tzw. kwantylowych miar ryzyka, ktorych definicje oparte sa na
pojeciach dolnego i gornego kwantyla zmiennej losowej X obrazujacej strate (stosujac
ogblna  konwencje notacyjna  wykorzystywana ~we  wskazanych  pracach),
oznaczanynych, odpowiednio, jako ¢,(X) i ¢*(X), o € (0,1) (zob. takze Embrechts i
in. [1997]) '3:

¢o(X)=inf{z e R: P(X <) > a}, (2.78)
¢“(X)=inf{reR: P(X <z)>a}l. (2.79)

Matecka [2016] oraz Artzner i in. [1999] definiuja VaR na poziomie tolerancji o €

(0,1) zmiennej losowej X jako

VaR.(X) = —¢*(X), (2.80)

co mozna zapisaé tez jako

VaR,(X)=inf{r e R: P(—X > z) < a}. (2.81)

W ramach tematyki poruszanej w tej pracy, zmienng losowg X nalezy utozsamic
z prosta lub logarytmiczng stopa zwrotu. Przyktadowo, w celu wyznaczenia wartosci

zagrozonej dla prostej stopy zwrotu (w prébie) mozna skorzystaé z wzoru:

VaRy(R;) = —q“(Ry). (2.82)

Poniewaz przedmiotem tej pracy sa stopy zwrotu w postaci logarytmicznej,
w dalszych rozwazaniach stosowana bedzie wtasnie postaé¢ logarytmiczna, pomimo, ze
bardziej zasadne (od strony praktycznej) jest wyznaczanie wartosci zagrozonej dla
prostych stop zwrotu. Warto tez wzia¢ pod uwage, ze w obu podejsciach moga
zachodzi¢ znaczne rozbieznosci (zob. Osiewalski i Pajor [2010]).

W celu uzyskania prognoz wartosci zagrozonej, oznaczanych w dalszym ciggu jako
VaRifl(a) okreslajacych prognoze na jeden okres do przodu dla pozycji dhlugiej
(oznaczanej indeksem gérnym 1) lub krotkiej (oznaczanej indeksem gérnym s), mozna

skorzysta¢ z wzoréw:

13W oryginalnych pracach do oznaczenia rzedu kwantyla stosowany jest symbol p. Jednak z uwagi
na konwencje typowo stosowana w opracowaniach z zakresu ekonometrii finansowej w dalszej czedci

pracy stosowane bedzie oznaczenie a.
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VaRj,,(a) : Priri < VaRp, ()|} = o, (2.83)

VaR{ (a) : Priri, > VaRfH(a)’\I’t} = a, (2.84)

gdzie U, oznacza informacje dostepna do chwili ¢ wtacznie. Wobec (2.83) i (2.84) VaR
stanowi odpowiedni kwantyl w rozktadzie prognozowanej stopy zwrotu w okresie ¢ + 1,
pod warunkiem wszystkich informacji dostepnych do chwili ¢ wlacznie.

Mozna zauwazy¢ (za Doman i Doman [2009]), ze VaR;, (o) dla instrumentu o
procesie zwrotu (r;) pokrywa sie z VaR!_ () dla instrumentu o procesie zwrotu (—r;).
7 tego wzgledu w czesci empirycznej pracy rozwazane beda jedynie prognozy uzyskane
dla pozycji dtugich. W zwiazku z tym, dla uproszczenia notacji, pomijany bedzie indeks
gorny .14,

W celu obliczenia wartosci zagrozonej zdefiniowanej wzorem (2.83) mozna
skorzysta¢ z ponizszego zapisu, ktory mozna wykorzysta¢ w szczegélnosci przy okazji

korzystania z modeli ARMA-GARCH:

VGRtH(Oé) = T4t — 0t+1q,§7 (2'85)

gdzie ryq; oznacza prognoz¢ punktows stopy zwrotu uzyskang na jeden okres do
przodu, 0,41 — prognoze warunkowego odchylenia standardowego, zas ¢> oznacza a-
kwantyl zmiennej losowej z;.

Doman i Doman [2009] (s. 202) zwracaja uwage, ze W powyzszym sposobie
wyznaczania wartosci zagrozonej bardzo duze znaczenie ma jako$¢ prognoz
zmiennosci, ktora zalezy od jakosci przyjetego modelu zmiennosci. Jest to jeden
z powoddéw, dla ktorych to podejscie — oparte na prognozach zmiennosci uzyskanych
za pomoca modeli GARCH - stosowane bedzie w dalszej czesci pracy do oceny
prognoz zmiennosci, wyznaczanych wilasnie w ramach modeli GARCH, jak i modeli

hybrydowych, a takze do oceny prognoz probabilistycznych.

2.6.2 Oczekiwany niedobor - ES

Jako uzupelnienie miary wartosci zagrozonej, Acerbi i in. [2001] zaproponowali mire

ES (ang. Ezpected Shortfall), nalezaca do tak zwanych miar koherentnych. * Miara ES

147, definicji VaR' zadanej wzorem 2.83 wynika, ze jest to wartoéé ujemna. W literaturze mozna
sie spotka¢ takze z odmienng konstrukcja, zgodnie z ktéra VaR! powinien byé wyrazony jako wartosé

dodatnia
15Wtasnosci miar koherentnych oméwione zostaty ponizej.
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oznacza oczekiwang warto$é¢ straty, pod warunkiem, ze strata ta przekracza poziom
wartosci zagrozonej. Acerbi i in. [2001] (za Matecka [2016]), definiuja ES jako

BSu(X) =~ (B(X Lyapon) — 4" (X)(P(X < ¢°(X)) - ), (2.56)

gdzie 1 oznacza funkcje charakterystyczna zbioru. Powyzsze réwnanie mozna tez

zapisac¢ jako:

ES.(X) = —; /Oa ¢u(X)du. (2.87)

Zblizona miara jest warunkowa wartosé¢ zagrozona (ang. Conditional Value-at-Risk
- CVaR) zaproponowana przez Pfluga [2000] oraz Rockafellara i Uryaseva [2000] (za
Matecka [2016]):

CVaR,(X) = mf{ _sise R}, (2.88)

gdzie a to zatozony poziom tolerancji.

Acerbi i Tasche [2002] wykazali, ze miary ES i CVaR sa rowne:

CVaRa(X) = ESa(X). (2.89)

Podobnie jak w przypadku wyznaczania wartosci zagrozonej, do prognozowania
oczekiwanego niedoboru mozna takze wykorzysta¢ podejscie parametryczne,
wykorzystujace prognozy uzyskane z modeli ARMA-GARCH. W takim podejsciu,
prognoza na jeden okres do przodu, dla pozycji dtugiej uzyskana moze by¢
w nastepujacy sposob (za McNeil i Frey [2000], Osinska i Fatdzinski [2007]):

EStlH(a) = E(rt+1|7’t+1 < VaRiH(oz)) = T + o B2z < @) (2.90)

Miara oczekiwanego niedoboru (wraz z warto$cia zagrozona) stanowi obecnie
fundament pomiaru ryzyka. Spelnia tez podstawowe witasciwoéci miar koherentnych,
do ktérych naleza: monotonicznosé, niezmienniczosé, dodatnia jednorodnos¢ oraz
subaddytywnos¢. Mozna takze zauwazy¢, ze pomimo iz miara VaR nie jest
w ogblnosci miarg subaddytywna, to moze taka miarg by¢, przy spetnionych pewnych
warunkach (zob. DDanielsson [2011]). Szersze informacje na temat miar koherentnych
i ich wtasnosci znalezé mozna w Artzner i in. [1999], Dhaene i in. [2008], Doman i
Doman [2009] oraz Matecka [2016].
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2.6.3 Testy weryfikacyjne modeli ryzyka

Ze wzgledu na rosnaca popularnos¢ miar warto$ci zagrozonej i oczekiwanego
niedoboru w szacowaniu ryzyka, bardzo istotne jest odpowiednie zweryfikowanie
uzyskanych przez nie wynikow. Poniewaz miary te nie sa bezposrednio obserwowalne,
konieczne jest stosowanie skonstruowanych specjalnie w tym celu testow
statystycznych, ktorych podstawa jest zwykle analiza przekroczen. Istnieja takze inne
grupy testow modeli ryzyka, ktérych szczegdtowe omowienia znalezé mozna w pracy
Mateckiej [2016].

llos¢ przekroczen wartosci zagrozonej oraz szacowanego niedoboru mozna
testowaé na danych historycznych (ang. backtesting), poréwnujac wyznaczone przez
model warto$ci VaR i ES ze zrealizowanymi zwrotami. Istnieje kilka opracowanych
w tym celu testow statystycznych, z ktorych najpopularniejszy jest test Kupca
(Kupiec [1995]), nalezacy do klasycznych testéw rozktadu bezwarunkowego frakeji
przekroczen VaR (lub inaczej testéw bezwarunkowego pokrycia — ang. wuncoditional
coverage). Hipoteza zerowa (Hj) testu zaktada, ze prawdopodobienstwo przekroczen
jest rowne przyjetemu poziomowi tolerancji «. Testowana wstecznie jest liczba
przekroczen VaR w stosunku do ilosci obserwacji dla ktérych wyznaczono wartosci
prognoz. W przypadku, kiedy wystepuje zbyt duza liczba przekroczen, model
niedoszacowuje ryzyko (méwimy wowczas, ze prognozy ryzyka sa zbyt liberalne),
natomiast w sytuacji przeciwnej, liczba przekroczen jest zbyt mata, a model
przeszacowuje ryzyko (moéwimy, ze prognozy ryzyka sa zbyt konserwatywne). Test
moze by¢ stosowany zarowno dla pozycji dtugich, jak i krotkich, a hipoteza zerowa
jest odrzucana zaréwno gdy liczba przekroczen jest zbyt mata, jak i zbyt duza.
Statystyka testu ma posta¢ (za Doman i Doman [2009]):

LR =2|In ((%)Np(l _ Ny

n n

)”*Np> —In (aNP(l — a)"Np)}, (2.91)

gdzie N, oznacza w tym przypadku liczbe przekroczen VaR, zas n to liczba obserwacji.
Jezeli hipoteza zerowa jest prawdziwa, statystyka testowa ma asymptotyczny rozktad
x? o jednym stopniu swobody.

Test Kupca jednakze nie bierze pod uwage mozliwej zaleznosci przekroczen
w czasie, czyli sytuacji kiedy przekroczenia wystepuja seriami w krotkich odstepach,
a nie s roztozone réwnomiernie. W tym celu zastosowa¢ mozna, rownie popularny,
test Christoffersena [1998], nalezacy z kolei do grupy testéw warunkowego rozktadu
liczby przekroczen VaR. Kryterium testowe, nazywane wtasnoscia warunkowego
pokrycia (ang. conditional coverage), sprawdza zaréwno czestotliwo$é przekroczen,

jak i ich niezalezno$¢. Hipoteza zerowa (lacznego) testu zaktada, ze pokrycie
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warunkowe i bezwarunkowe jest réwne przyjetemu poziomowi tolerancji a. Natomiast
hipoteza alternatywna zakltada, ze moga wystepowaé¢ zaleznosci o charakterze
jednorodnego tancucha Markowa.

Obok wspomnianych testéw Kupca i Christoffersena wsrod sposobdéw testowania
wstecznego wartosci zagrozonej stosowane sg takze inne podejscia, jak przyktadowo
zaproponowany przez Engla i Manganelliego dynamiczny test kwantylowy (ang.
Dynamic Quantile Test, zob. Engle i Manganelli [2004], Dumitrescu i in. [2012]), czy
tez przy pomocy pewnych funkcji strat, na podstawie ktorych otrzymujemy
informacje odnosnie réznie definiowanych strat ekonomicznych/finansowych
poniesionych z tytutu przekroczenn VaR (zob. Osiewalski i Pajor [2010]).

Testowanie wsteczne oczekiwanego niedoboru jest zdecydowanie trudniejsze niz
w przypadku VaR, przez co ilo$¢ metod stosowanych w tym celu jest ograniczona
(szerszy opis stosowanych metod przedstawiono w pracy Malecka [2016]). Jako jeden
z popularnych testéw stosowanych do oceny jakosci prognoz ES uzyskanych przez
model, wykorzysta¢ mozna test McNeila i Fraya [2000], nalezacy do grupy testéw
nieparametrycznych. Test mierzy srednig réznic pomiedzy wartosciami stép zwrotu,
ktore przekroczyly poziom VaR, a oszacowaniami oczekiwanego niedoboru, ktéra
powinna wynosi¢ zero (Hp) dla prawidlowo okreslonego modelu ryzyka. W
przypadku, gdy rozwazane jest podejscie oparte na warunkowych resztach procesu

przekroczen VaR, statystyka testowa ma postaé (za Matecka [2016]):

ri — (ES}(a))

O¢

t= ; (2.92)
dlar; < VaRl(«a), gdzie ES! () jest oszacowang wartoscig ES przy zalozonym poziomie
tolerancji «, dla pozycji dhugie;j.

W tescie dodatkowo generowana jest préba bootstrapowa, co pozwala uniknaé
silnych zatozen dotyczacych rozktadu bazowego reszt oczekiwanego niedoboru. Wynik
testu zalezy jednak od wynikow uzyskanych przez model VaR, poniewaz pod uwage
brane sa jedynie te obserwacje, dla ktoérych odnotowano przekroczenie poziomu

oszacowanego przez ten model.
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Rozdziat 3

Sieci neuronowe uczenia glebokiego
— koncepcja 1 wykorzystanie

w budowie modeli predykcyjnych

Analiza modeli wykorzystujacych sieci neuronowe uczenia glebokiego stanowi
gtowny cel niniejszej rozprawy. W ponizszym podrozdziale przedstawiono teoretyczne
wprowadzenie do zagadnien zwigzanych z budowa sieci neuronowych, a takze
praktyczne aspekty zwigzane procesem ich uczenia 1 optymalizacji poprzez
dostrajanie hiperparametrow. Informacje zawarte w tym rozdziale przedstawione
zostaly w sposob umozliwiajacy intuicyjne zrozumienie koncepcji zwigzanych
z sieciami uczenia glebokiego. Bardziej formalny opis przedstawionej ponizej
problematyki przedstawiony zostal m.in. w opracowaniach Murphy [2012],
Shalev-Shwartz i Ben-David [2014] oraz Deisenroth i in. [2020].

3.1 Wpybrane architektury sieci neuronowych

W problematyce analizy danych duza popularnoscia w ciaggu ostatnich latach
cieszg sie rozwigzania wykorzystujace metody sztucznej inteligencji, a w szczegdlnosci
sztuczne sieci neuronowe oraz uczenie maszynowe. Narzedzia te znajduja szerokie
zastosowanie w roznych dziedzinach nauki i technologii. Dzigki coraz wiekszej ilosci
dostepnych danych i tatwego dostepu do sprzetu komputerowego o wysokiej mocy
obliczeniowej, stosowanie tego typu technik staje sie coraz bardziej powszechne.
Obszar zastosowania sztucznej inteligencji jest obecnie bardzo szeroki, jako
najwazniejsze przyktady wymieni¢ mozna m. in. rozpoznawanie obrazéw oraz pisma
recznego, przetwarzanie mowy 1 budowa oprogramowania automatycznego

tlumaczenia, produkcje pojazdéw autonomicznych oraz prace z duzymi zestawami

61



danych.

Ze wzgledu na szeroka game struktur i typéw sieci neuronowych, ktore dynamicznie
rozwijane sa od lat 50-tych dwudziestego wieku, w czesci teoretycznej i praktyczne;j
pracy wybrane zostaly trzy podstawowe architektury. Jako architekture podstawowa
zaprezentowano wielowarstwowe sieci perceptronowe, opisane szerzej w punkcie 3.1.1,
wykorzystang takze w czesci empirycznej jako narzedzie nalezace do klasycznych sieci
uczenia maszynowego.

W ciggu ostatniej dekady w ramach metod opartych na sztucznej inteligencji
szczegblne uznanie zyskuja sieci neuronowe uczenia glebokiego, ktére stanowia pewne
rozwiniecie klasycznych sieci wielowarstwowych. Bengio [2009] i Schmidhuber [2015]
definiujg sieci uczenia gtebokiego jako sztuczne sieci neuronowe z kilkoma warstwami
ukrytymi - czyli warstwami pomiedzy warstwa wejsciowa i wyjsciowa sieci. Sposrod
architektur sieci uczenia gltebokiego w badaniach wybrane zostaly dwa typy sieci:
rekurencyjne sieci LSTM oraz sieci konwolucyjne, oméwione w punktach 3.1.2 oraz
3.1.3.

Zaznaczy¢ jednak nalezy, ze pojecie uczenia glebokiego nie stanowi odmiennej
klasyfikacji sieci, a jedynie rozwinigecie metod klasycznego uczenia maszynowego.
Szerzej odnosi sie ono takze do dynamicznie rozwijanego nurtu w badaniach
naukowych nad sieciami neuronowymi i ich wdrozeniami praktycznymi. Obok nowych
rozwigzan zwigzanych z rozwojem struktur sieci, w ramach tego podejécia silnie
rozwijane sg takze nowe narzedzia i metody wykorzystywane podczas uczenia sieci,
czy tez w procesie doboru hiperparametrow sieci. Tematyce tej poswiecone zostaly

podrozdziaty 3.2 oraz 3.3.

3.1.1 Wielowarstwowe sieci MLP jako podstawowa forma sieci

neuronowych

Jedna z podstawowych architektur sieci neuronowych sa sieci wielowarstwowe -
sktadajace sie z kilku warstw z gesto polaczonymi neuronami (ang. Densely
Connected Layers lub Fully Connected Layers). Oznacza to, ze neurony w danej
warstwie sa polaczone ze wszystkimi neuronami w warstwie kolejnej (i poprzedniej).
Jako jeden z podtypoéw tej sieci mozna uznaé sieci perceptronowe ! MLP (ang. Multi
Layer Perceptron). Klasyczne sieci tego typu skladaty sie najczesciej tylko z trzech

warstw: wejsciowej, jednej warstwy ukrytej i wyjsciowej (zob. Géron [2019)]).

'Pojecie perceptronu po raz pierwszy zaproponowane zostalo w pracy Rosenblatt [1957].
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Warstwa Warstwa Warstwa
wejsciowa ukryta wyjsciowa

Wagi w, ; Wagi w, ,

Rysunek 3.1: Struktura sieci MLP.

Zrédlo: Opracowanie wlasne.

Rysunek 3.1 przedstawia strukture podstawowej sieci MLP. Jako x,, oznaczone sa
wejscia sieci, wy,; oznaczaja wagi polaczen pomiedzy neuronami sieci w warstwie [, b
oznacza wartos¢ progowa czyli inaczej tzw. bias (najczesciej ustawiany na wartosé 1
lub 0), ¥ jest suma wazona wej$¢ poszczegdlnych neuronéw, f ich wybrana funkcja
aktywacji, natomiast y, oznaczaja wyjscia sieci. Podstawowe perceptrony sktadaty sie
z tzw. neuronéw McCullocha-Pittsa (ang. McCulloch-Pitts neuron), nazywanych
rowniez neuronami progowymi (ang. threshold neuron, zob. Géron [2019]). Wartos$¢ na

wyjsciu takiego neuronu, o, obliczana jest nastepujacy sposob:

S = b() + inwi, (31)

1=0

1 jeslis >0
o= f(s) = (3.2)

0 jeslis<O

Wartosé wyjéciowa neuronu jest wiec ewaluowana przez funkcje aktywacji f,

ktorej warto$¢ zalezy od sumy wazonej wej$¢ x oraz wartosci wag. Pierwotnie funkcje
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aktywacji miaty postaé progowa (przybieraty postaé funkcji Heavisidea lub funkcji
signum), w poézZniejszym czasie zaczeto jednak stosowaé takze inne, liniowe oraz
nieliniowe, postaci funkcji aktywacji (zob. punkt 3.3.3). Charakter poltaczen miedzy
neuronami w sieciach tego typu zaklada jednokierunkowy przepltyw sygnatu (od
warstwy wejsciowej do wyjsciowej).? Z czasem, rosnaca moc obliczeniowa
komputeréw, pozwolita na dodawanie kolejnych warstw ukrytych, co przyczynito si¢
do rozwoju koncepcji uczenia glebokiego. Warstwy gesto potaczone (ang. densely
connected) sa obecnie réwniez czesto stosowane jako uzupelnienie architektur sieci

rekurencyjnych oraz konwolucyjnych, opisanych w kolejnych rozdziatach.

3.1.2 Rekurencyjne sieci LSTM i GRU

W pracy z danymi przedstawionymi w postaci szeregéw czasowych czesto
wykorzystywanym typem sieci sa sieci rekurencyjne, charakteryzujace sie
wystepowaniem potaczen wstecznych. Ze wzgledu na ich konstrukcje, sieci tego typu
bardzo dobrze radzg sobie z modelowaniem danych sekwencyjnych. W zwiazku z tym
sieci rekurencyjne czesto znajduja zastosowanie m.in. w zadaniach zwiazanych
z  przetwarzaniem jezyka naturalnego: rozpoznawaniem — pisma  recznego,
automatycznymi tlumaczeniami i rozpoznawaniem mowy. Koncepcje sieci
rekurencyjnych po raz pierwszy w literaturze pojawily si¢ w pracach Hopfielda [1982]
(jako sieci Hopfielda), Rumelharta i in. [1986] oraz Jordana [1986].

W sieciach rekurencyjnych neurony maja mozliwos¢ modelowania relacji przesztych
o dowolnym odstepie czasowym. Sygnal wejsciowy w biezacym momencie ¢t zalezy od
obliczen z okresow t — 1 1 wezesniejszych. Mozna wiec powiedzieé, ze posiadaja pewna
pamieé, w ktérej przechowywane sa informacje o poprzednich obliczeniach, dzieki ktérej
moga zachowywaé informacje o parametrach (wagach) na caltej dtugosci sekwencji.
Wzér 3.3 opisuje rekurencyjne polaczenia miedzy neuronami (zob. Goodfellow i in.

2016]):

he = f(hi_1, x5 w). (3.3)

gdzie h; oznacza tzw. ukryty stan pamieci sieci (ang. hidden state), x; jest wektorem
wejsciowym sieci, a w jest wektorem parametréw sieci, na ktory sktadaja sie wagi,

aktywacje i wartosci progowe (inaczej obciazenia, ang. bias) sieci. Schemat pojedynczej

2Sie¢ MLP z jedna warstwa ukrytg wykorzystywana jest w czeéci empirycznej pracy jako przyklad
klasycznej sieci uczenia maszynowego, cho¢ w jej architekturze wykorzystane zostaly takze liczne
usprawnienia powstale w wyniku rozwoju prac nad uczeniem glebokim, takie jak nowe typy funkcji

aktywacji oraz sposoby regularyzacji.
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komorki podstawowej sieci rekurencyjnej przedstawiony zostat na rysunku 3.2.

Yt '

X |

Rysunek 3.2: Struktura podstawowej komoérki w sieci rekurencyjne;j.

Zrédlo: Opracowanie wlasne.

Wektory wejéciowe, x;, oraz wyjsciowe, y;, w sieciach rekurencyjnych moga by¢
roznej dlugosci, co pozawala modelowaé zaleznosci typu sekwencja-wektor, wektor-
sekwencja lub sekwencja-sekwencja, szczegblnie w sieciach typu enkoder-dekoder (zob.
podrozdziat 3.1.4).

Sieci rekurencyjne w postaci gltebokiej sktadaja sie najczesciej z kilku natozonych
na siebie warstw rekurencyjnych (zob. Hihi i Bengio [1995], Pascanu i in. [2014], Géron
[2019]). Struktura takiej postaci sieci przedstawiona zostala na rys 3.3.

Obok klasycznych sieci rekurencyjnych szczegdlng popularnosécia w ostatnich latach
ciesza si¢ ich rozwiniecia, w postaci sieci LSTM oraz GRU, przedstawione w kolejnych

podrozdziatach.
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Rysunek 3.3: Struktura wielowarstwowych (glebokich) sieci rekurencyjnych.

Zrédlo: Opracowanie wlasne na podstawie Géron [2019].

Sieci LSTM

Podczas pracy z sieciami rekurencyjnymi zauwazono, ze dla obserwacji z okreséw
odlegtych w czasie informacje zawarte w pamieci z tych okresow stopniowo zanikaja.
W literaturze problem ten okreslany jest jako zanikajacy gradient (ang. vanishing
gradient, zob. Hochreiter i in. [2001] oraz punkt 3.2.2). W celu jego rozwiazania
Hochreiter i Schmidhuber [1997] zaproponowali sieci LSTM (ang. Long Short-term
Memory). Wprowadzona w nich zostata dodatkowa jednostka stanu (ang. cell state),
oznaczona jako C) , zalezna w sposob liniowy od stanu poprzedniego, C;_;. Dzieki
takiemu rozwigzaniu udalo sie wprowadzi¢ do sieci pamie¢ dlugoterminowa (ang.
long-term memory), w ktorej informacje o wczesniejszych obliczeniach nie zanikaja,
nawet przy dtugich rekurencjach.

Na rys. 3.4 przedstawiona zostata struktura pojedynczej komorki sieci LSTM.
Wektor sygnalu wejsciowego w sieci oznaczony zostat jako x;, natomiast jako h,
oznaczony zostal stan krotkoterminowy (ang. short-term), zwany takze stanem
ukrytym (ang. hidden state). Komoérka sklada sie takze z trzech typow kontroleréw
bramkowych, decydujace o tym ktére informacje nalezy zachowa¢ w pamieci
dhugoterminowej, a ktore maja zosta¢ z niej usuniete. W poszczegdlnych bramkach
stosowane sa sigmoidalne funkcje aktywacji (zob. punkt 3.3.3), okreslajace czy dana

bramka powinna zosta¢ otwarta czy zamknieta.
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Rysunek 3.4: Pelna struktura komorki sieci LSTM.

Zrédlo: Opracowanie wlasne na podstawie Matsumoto [2020].

W pierwszej kolejnosci, informacje w postaci wektoréw x; i hy_y przechodza przez
bramke zapominania (ang. forget gate), w ktorej przeksztalcane sa z wykorzystaniem

nastepujacych wzorow:

e =o(Usze + Wihi—q1 + by), (3.4)
Cy = froCi, (3.5)

gdzie b, U, W oznaczaja kolejno obciazenia, wagi wejsciowe i wagi rekurencyjne komorki
sieci, natomiast C} definiuje obecny stan komorki.

Bramka zapominania, za pomoca funkcji sigmoidalnej, kontroluje ile informacji,
pochodzacych z biezacego sygnatu wejsciowego x; oraz pamieci krotkoterminowej hy_q,
powinno zosta¢ odrzuconych z pamieci dtugoterminowej. Wynikiem tej funkcji jest
liczba z zakresu pomiedzy 0 a 1 — wartosci blizsze zera oznaczaja, ze wieksza czes¢
informacji powinna zosta¢ odrzucona, a blizsze 1 wskazuja, ze wieksza czes¢ informacji
powinna zostaé¢ przekazana dalej, do dtugoterminowego stanu komoérki Cj.

Kolejng bramksa, przez ktora przechodzg informacje w strukturze komorki sieci
LSTM, jest bramka wejsciowa (ang. input gate). Podobnie jak w poprzednim kroku,
do tej bramki takze przekazywane sa informacje z wektor6w h; (stan

krétkoterminowy) i x; (sygnal wejsciowy z biezacego okresu). Przy pomocy funkcji
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sigmoidalnej (wzor 3.6), bramka ta decyduje o istotnosci informacji ktére maja zostaé
przekazane do uaktualnionego stanu komoérki (). Druga funkcja aktywacji
wystepujaca w tej bramce jest funkcja tangensu hiperbolicznego, zadana wzorem
(3.7), ktéra przyjmuje te same informacje z wektorow x; i hy_; i przeksztalca je do
wyniku w postaci liczby z przedziatu miedzy -1 a 1. W kolejnym kroku (wzér 3.8)
warto$ci wyjsciowe funkcji sigmoidalnej i tangens przekazywane sa do aktualnego

stanu komorki:

it = O'(Uil't + VViht_l + bl), (36)
C:_ = tanh(cht + Wcht—l + bc), (37)

W ostatnim kroku, bramka wyjsciowa (ang. output gate) decyduje jakie informacje
powinny znalez¢ sie w wektorze wyjsciowym komorki, h;. W tym celu informacje
z wektoréw h;_; 1 x; przechodza przez sigmoidalng funkcje aktywacji (wzér 3.9)

a nastepnie mnozone sa przez funkcje tangens aktualnego stanu komérki (wzér 3.10):

0y = O-(ont + Woht—l + bo), (39)
hy = o4 o tanh(Cy). (3.10)

Utworzony w ten sposéb wektor wyjsciowy h; przekazywany jest do kolejnej komorki
w strukturze sieci. Poniewaz w sieciach LSTM funkcje aktywacji stosowane sg tylko do
poszczegdlnych bramek, a nie catej komoérki stanu, jak w przypadku tradycyjnych sieci
rekurencyjnych, nie pojawia si¢ tutaj problem znikajacego gradientu.

W sieciach rekurencyjnych, w tym w sieciach LSTM, poza podstawowa funkcja
aktywacji stosowana jest takze dodatkowo tzw. rekurencyjna funkcja aktywacji.
Podczas gdy podstawowa funkcja aktywacji odpowiada za transformacje danych
w stanie krétkoterminowym (ukrytym, h;) i diugoterminowym (C}), aktywacja
rekurencyjna stosowana jest wewnatrz komorki pamieci, do transformacji przeptywu
informacji wewnatrz poszczegdlnych bramek. W sieciach LSTM domyslnie jako
funkcje aktywacji stosuje sie funkcje tangensu hyperbolicznego, natomiast do
aktywacji rekurencyjnej stosowana jest twarda” funkcja sigmoidalna (ang. hard
sigmoid) ( zob. Courbariaux i in. [2016]).

Architekture sieci LSTM mozna dodatkowo rozrézni¢ na bezstanowa (ang.

stateless) oraz stanowa (ang. statefull, zob. Géron [2019]). Rozr6znienie to dotyczy

68



dhugosci okresu przez jaki przechowywane sg informacje w pamieci dtugoterminowej.
W architekturze stanowej, istnieje mozliwosé doktadnego kontrolowania kiedy (np. co
ile epok) nastapi¢ ma reset dtugoterminowego stanu sieci. Natomiast w architekturze
bezstanowej, pamieé ta resetowana jest dla kazdej nowej partii wsadowej (ang. batch).
Kontrolowanie stanu diugoterminowego sieci wciaz jest jednak mozliwe, poprzez
zwiekszenie dtugosci partii wsadowej (np. w przypadku gdy jest ona réwna calemu
dostepnemu  zbiorowi informacji, stan pamieci dlugoterminowej nie bedzie
resetowany). Takie podejécie moze mie¢ jednak wplyw na czas uczenia sieci
i zwiekszenie wykorzystania dostepnych zasobéw, przede wszystkim pamieci
komputera.

Sieci rekurencyjne moga by¢ wykorzystywane takze jako sieci dwukierunkowe
(ang. bidirectional networks). Rozwiazanie to, zaproponowane przez Schustera
i Paliwala [1997], dobrze sprawdza si¢ w sytuacjach, kiedy obecna obserwacja moze
zaleze¢ takze od obserwacji kolejnych. W takich przypadkach sie¢ przetwarza
sekwencje nie tylko do poczatku do konca, ale takze wstecznie, taczac i osadzajac obie
interpretacje w stanie dhugoterminowym. Zastosowanie to szczegélnie przydatne jest
W rozpoznawaniu mowy i pisma recznego, gdy do przewidzenia kolejnego stowa
w zdaniu przydatny jest caly kontekst wokot tego stowa, a nie tylko wyrazy
poprzedzajace. Sieci tego typu znalazty takze zastosowanie w prognozowaniu szeregdéw
czasowych, kiedy struktura dwukierunkowa moze zosta¢ wykorzystana w procesie

uczenia sieci na zbiorze treningowym (zob. Lu i in. [2021], Park i Ryu [2021]).

Sieci GRU

Architektura sieci rekurencyjnych GRU (ang. Gated Reccurent Unit),
zaproponowana przez Cho i in. [2014], stanowi pewne uproszczenie sieci LSTM. W
sieciach tego typu decyzje o odrzuceniu lub uaktualnieniu stanu pamieci podejmuje
pojedynczy mechanizm, oznaczony dalej jako z;,, w przeciwienstwie do trzech
osobnych bramek uzywanych w sieciach LSTM. Aktualizacja stanu pamieci w sieciach
GRU przedstawiona jest wzorami 3.11 - 3.14 (za Goodfellow i in. [2016]):

%= o(Wary + Uhy_y +bs), (3.11)

re =o(W,xy + Uy0p_1 + b,), (3.12)

hy = tanh,, (tht + Up(ry © hy—q) + bh), (3.13)
he=(1—2) ® hi_y + 2 @ hy, (3.14)
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gdzie z; oraz r; oznaczajg funkcje aktualizacji stanu pamieci oraz funkcje zapominania,
W oraz U to matryce parametréw, b jest wektorem obcigzen, a o i tanh to funkcje
aktywacji (sigmoidalna oraz tangensa hiperbolicznego).

Struktura komorki w sieciach GRU przedstawiona zostata na rysunku 3.5.
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Rysunek 3.5: Pelna struktura sieci GRU.

Zrédlo: Opracowanie wlasne.

Sieci GRU wykazuja zblizona efektywnosci do sieci LSTM (zob. Greff i in. [2017]),
jednak ze wzgledu na ich prostsza budowe obliczenia zajmuja czesto mniej czasu,
przez co sieci tego typu mogg stanowi¢ dobry wybér w badaniach wymagajacych
duzych zasobéw i mocy obliczeniowej. Sposrdd trzech podstawowych rodzajow sieci
rekurencyjnych, sieci LSTM sa wykorzystywane najczesciej i uwaza sie ze daja
najlepsze rezultaty (zob. Goodfellow i in. [2016]). Z tego wzgledu to wlasnie ta
architektura sieci rekurencyjnych uzyta zostanie w badaniach opisanych w czesci

empirycznej.

3.1.3 Sieci konwolucyjne

Innym rodzajem sieci uczenia gltebokiego, ktory znalazt szerokie zastosowanie
w praktyce, sa sieci konwolucyjne (ang. Convolutional Neural Networks - CNN),
nazywane réwniez sieciami splotowymi. Funkcja konwolucji, ktorej idea bazuje na
badaniach neurobiologicznych dotyczacych kory wzrokowej, wykorzystywana byta juz

wczesnie] w matematyce i informatyce. Jedng z pierwszych prob wykorzystania tej
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koncepcji w sieciach neuronowych byla propozycja neocognitronu (zob. Fukushima
[1980]). Kolejna wazna praca w tym zakresie byla publikacja Lecun i in. [1998],
w ktérej autorzy zaproponowali architekture sieci LeNet-5, stanowiaca podstawy
wspotezesnych sieci konwolucyjnych.

Glownym obszarem zastosowania sieci konwolucyjnych bylo poczatkowo
rozpoznawanie obrazéw, jednak okazalo sie, ze ze wzgledu na bardzo wysoka
wydajnos¢ tego typu sieci, mozna je sukcesywnie stosowaé takze w innych obszarach,
w tym w modelowaniu szeregdéw czasowych.

Goodfellow i in. [2016] podstawowa operacje konwolucji opisuja wzorem:

s(t) = / z(a)w(t — a)da. (3.15)

gdzie x() oznacza funkcje sygnatu wejsciowego, za$ funkcja w() oznacza filtr (ang.
kernel) okre§lajacy wagi potaczen neuronu, a wartosci wyjsciowe okreslane sa jako
mapa cech (ang. feature map).

W formie dyskretnej, rownanie przyjmuje posta¢ opisana wzorem:

s(t) = (zxw)(t) = > z(a)w(t—a). (3.16)
W przypadku gdy sygnatem wejSciowym jest dwu-wymiarowy obraz I, oraz gdy

korzystamy z dwu-wymiarowego filtra K, funkcje ta mozna opisa¢ wzorem:

S(i,7) = (K« I)(i,5) = >_ Y I(i —m,j —n)K(m,n). (3.17)

Przy projektowania warstwy konwolucyjnej sieci, nalezy ustali¢ przede wszystkim
za ilo$¢ stosowanych filtréw, ich rozmiar, oraz wielko$¢ kroku przesuniecia (ang.
stride). Konieczne jest takze ustalenie formy funkcji aktywacji. Przybiera ona
najczesciej postaé¢ funkcji ReLU (ang. Rectified Linear Unit), jednak niekiedy
stosowane sa takze inne typy funkcji takie jak softmax czy funkcja sigmoidalna (zob.
Glorot i in. [2010], Ramachandran i in. [2017]). Zastosowanie tych funkcji ma na celu
zwiekszenie nieliniowosci cech (lub zmniejszenie liniowosci, ktéra mogta powstaé we
wezesniejszej fazie konwolucji).

Gléwnym celem warstwy konwolucyjnej, stanowiacej najczesciej pierwszg warstwe
w strukturze sieci CNN, jest redukcja ilosci danych. Sie¢ zachowuje przy tym jedynie
najwazniejsze informacje tworzac w ten sposéb mape cech (ang. feature map, zob.
Goodfellow i in. [2016]). Dzieki temu dalsze obliczenia wymagaja mniejszej mocy

obliczeniowej i zasobow pamieciowych, co skraca czas potrzebny na trenowanie sieci.
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Rysunek 3.6: Operacja konwolucji i funkcja aktywacji w sieci CNN.

Zr6dlo: Opracowanie wlasne na podstawie superdatascience.com [2018].

Druga warstwa najczesciej wystepujaca w strukturze sieci konwolucyjnych jest tak
zwana warstwa laczaca (ang. pooling layer). Warstwa ta wykorzystuje funkcje ktora
zastepuje dane w okre$lonej lokalizacji pewna statystyka danych z pobliskich
obszaréw. W ramach parametrow tej warstwy mnalezy wustali¢ rozmiar pola
recepcyjnego, warto$¢ kroku (czyli wartosé, o jaka to pole bedzie przesuwane) oraz
sposéb wypelnienia zerami (ang. zero padding). W warstwie taczacej wybraé nalezy
tez sposob w jaki dane z poszczegdlnych obszaréow beda redukowane. Najczesciej
stosowanym podejsciem jest tzw. maz pooling (zob. Zhou i Chellappa [1988]),
przedstawiony na rys. 3.7, w ramach ktérego, z okreslonego pola danych pobierane
i przekazywane dalej sa jedynie maksymalne wartosci. Mozna tu stosowac¢ takze inne
statystyki, przyktadowo pobierajac z sasiadujacych obszaréw sume (sum pooling),

srednia (average pooling) lub norme (norm poling).

Wycinek danych
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Rysunek 3.7: Funkcja maz pooling.

Zrédlo: Opracowanie wlasne na podstawie commons.wikimedia.com.

Podstawowym zadaniem warstwy taczacej jest jest dalsza redukcja ilosci informacji
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poprzez probkowanie obrazu wejsciowego (zob. Boureau i in. [2010], Ciresan i in. [2011]).

W kolejnych warstwach sieci konwolucyjnch czesto stosuje si¢ takze warstwe
sptaszczajaca (zob. Géron [2019]). Dane w tej warstwie przeksztalcone zostaja do
postaci wektorowej. W ten sposob latwiej jest je przekazac¢ do kolejnych warstw sieci,
ktore z kolei najczeSciej przybieraja postaé warstw gesto polaczonych (ang.
densely/fully connected layer), w ktérych neurony potaczone sa z wszystkimi
neuronami z poprzedniej warstwy. Celem sieci zawartych w konicowych warstwach jest
przeksztalcenie uzyskanej mapy cech w atrybuty, ktére pomocne sg podczas koncowej

klasyfikacji lub predykcji.

Jednowymiarowe sieci konwolucyjne i sieci TCN

Aby wykorzystaé sieci CNN do pracy z szeregami czasowymi, warstwa konwolucji
musi mie¢ posta¢ jednowymiarowa, w przeciwienstwie do klasycznej postaci
dwuwymiarowej, stosowanej najczesciej gdy  sygnatem — wejSciowym  jest
dwuwymiarowy obraz (zob. Duerr i in. [2020], Géron [2019]). Przyktadowa struktura
sieci konwolucyjnej, stosowanej do przetwarzania jednowymiarowych sekwencji

przedstawiona zostata na rys. 3.8.
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Rysunek 3.8: Struktura jednowymiarowej sieci CNN.

Zrédlo: Opracowanie wlasne.

W przypadku gdy dane wejsciowe maja strukture sekwencyjna, filtr
w jednowymiarowej warstwie konwolucyjnej porusza si¢ tylko w jednym kierunku —
z gory na dot, wykorzystujac tylko okresy przeszte. Taka konfiguracja nazywana jest

konwolucja przyczynowa (ang. causal, zob. Duerr i in. [2020]) i moze by¢ wymuszona
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poprzez odpowiednie ustawienie wartosci parametru padding jak i odpowiednie
przygotowanie sekwencji wejsciowych i oczekiwanych wartosci wyjsciowych sieci (zob.
Géron [2019]).

Poczatkowo idea wykorzystania sieci konwolucyjnych do przetwarzania sekwencji
bazowata na koncepcji sieci typu time-delay (zob. Waibel i in. [1989], Lang i in. [1990]).
Funkcja konwolucji pozwalata sieci na wspotdzielenie parametréw w kolejnych okresach
czasu, jednak w podstawowej postaci sieci takie zaleznosci sg ptytkie, poniewaz brana
jest pod uwage tylko niewielkg liczbe obserwacji sasiadujagcych wektora wejsciowego
(zob. Goodfellow i in. [2016]).

Podejscie to rozwiniete zostato przez van der Oorda i in. [2016], w proponowanej
przez nich sieci WaveNet. Architektura tej sieci sktada si¢ z wielu jednowymiarowych
warstw konwolucyjnych i stosowana jest przez Autoréw do generowania dzwieku.
Interesujgcym rozwigzaniem wprowadzonym w architekturze tej sieci byto
zastosowanie rozszerzonych  (ang. dilated) potaczenn pomiedzy — warstwami
poszczegolnych warstw, stopniowo zwigkszajac odstepy w poszczegdlnych warstwach.
Rozwiazanie to wprowadzito mozliwos¢ obserwowania zaleznosci dlugoterminowych,
podobnie jak jest to mozliwe w przypadku sieci rekurencyjnych, choé¢ stosujac inny
mechanizm dziatania. Poréwnanie klasycznych warstw konwolucyjnych z warstwami

konwolucji rozszerzonej przedstawione zostalo na rys. 3.9.
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Rysunek 3.9: Poréwnanie sieci konwolucyjnych.
Uwaga: Gorna figura przedstawia sie¢ zlozona z wielu warstw konwolucyjnych, na dole
przedstawiona zostala sie¢ z konwolucjami rozszerzonymi.

Zr6dlo: Opracowanie wlasne na podstawie van den Oord i in. [2016].
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Bai i in. [2018] zaproponowali architekture sieci TCN (ang. Temporal
Convolutional Networks), bazujaca na podobnych rozwiazaniach jak sieci WaveNet.
Podstawowa cecha architektury sieci TCN jest wykorzystanie przyczynowych
jednowymiarowych warstw konwolucyjnych przetwarzajacych dane wytacznie z okresu
t i wezeéniejszych.® Co wiecej, warstwy ukryte w sieciach TCN maja taka sama liczbe
neuronéw wejsciowych i wyjsciowych.

Podstawowsg operacja wykorzystywang w sieciach tego typu jest funkcja rozszerzonej
konwolucji (ang. dilated convolution), ktéra umozliwia wykladnicze zwigkszanie pola

recepcyjnego. Formalnie mozna zapisa¢ ja jako (zob. Bai i in. [2018]):

k—1
F(s) = (xxq f)(s) = z;) f@@) - zs_qq, (3.18)
gdzie z € R™ jest wektorem wejsciowym, f : {0,...,k—1} — R jest filtrem o rozmiarze
k, d oznacza wspotczynnik rozszerzenia, natomiast s—d-¢ okresla kierunek w przesztosci.
W zaprezentowanych we wspomnianej pracy badaniach empirycznych wykazano, ze
sieci TCN lepiej radza sobie z prognozowaniem danych sekwencyjnych, niz sieci LSTM.
Stosowanie sieci sieci CNN w modelowaniu i prognozowaniu finansowych szeregdéw
czasowych wciaz jest rozwijane, najczesciej wykorzystywane sa w  tym celu
jednowymiarowe postaci sieci, lub modele taczace sieci CNN z sieciami
rekurencyjnymi LSTM. Jako przyktady takich badan poda¢ mozna prace Jin i in.
[2020], Livieris i in. [2020], Lu i in. [2021], Tang i in. [2021], Mehtab i Sen [2022].

3.1.4 Inne typy sieci gtebokich

Obok przedstawionych powyzej struktur sieci, w ramach uczenia gtebokiego
rozwijana jest szeroka gama innych typoéw sieci, czesto majacych korzenie
w proponowanych juz wczesniej rozwigzaniach. W ponizszym punkcie przedstawione
zostaly narzedzia i kierunki badan, ktore ciesza sie obecnie duzag popularnoscig wsrod

badaczy.

Sieci generatywne i uczenie niedazorowane

Przedstawione powyzej typy sieci stuzg przede wszystkim do uczenia
nadzorowanego (zob. punkt 3.2.1), czyli przypadkéw w ktorych docelowe sygnaly
wyjsciowe sieci (klasa lub warto$¢ zrealizowana) sa okreslone. Istnieja takze inne typy

sieci, wykorzystywane do rozwigzywania probleméw uczenia nienadzorowanego

3Istnieja jednak wyjatki od tej zasady w postaci tzw. sieci Non-causal TCN, ktére wykorzystuja

dane z okreséw przysztych, jednak maja one ograniczone zastosowanie.
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i uczenia ze wzmocnieniem (ang. reinforcement learning). Jednymi z podstawach
typéw sieci uczenia nienadzorowanego sa ograniczone maszyny Boltzmana (ang.
Restricted Boltzman Manchines, zob. Smolensky [1986]). Ich zastosowanie w uczeniu
gltebokim spopularyzowane zostato gtéwnie dzieki praca Hintona [2006, 2009, 2012]
w tzw. glebokich sieciach przekonan (ang. Deep Belief Networks - DBN), ktérych
architektura stanowi najczesciej ztozenie prostszych postaci sieci takich jak maszyny
Boltzmana czy autoenkodery, oraz w zaproponowanych przez Salakhutdinova

i Hintona [2009] gtebokich maszynach Boltzmana (ang. Deep Boltzman Machines).

Sieci typu GAN (Generative Adversarial Network)

Do klasy sieci typu GAN zalicza sie sieci umozliwiajace generowanie nowych danych
(przyktadowo obrazéw, dzwieku, tekstu i innych). Prace nad sieciami generatywnymi
sg obecnie jednym z gtéwnych kierunkow badan dotyczacych rozwoju narzedzi uczenia
gtebokiego. Wciaz powstaja nowe rozwiania, czesto wykorzystujace ,klasyczne” sieci
uczenia glebokiego (jak w przypadku konwolucyjnych sieci generatywnych). Przyktady
takich modeli i ich zastosowan przedstawione zostaly w pracach Goodfellow i in. [2014],
Salimans i in. [2016], Creswell i in. [2018] oraz Yoon i in. [2019].

Autoenkodery

W zadaniach uczenia nienadzorowanego czesto wykorzystywane sg takze sieci typu
autoenkoder (zob. Hinton i Zemel [1993]). Sieci tego typu stosowane sa przede
wszystkim do redukcji wymiarowos$ci poprzez uczenie odpowiedniej reprezentacji
danych. Proces ten nazywany jest czesto uczeniem reprezentacji (ang. representation

learning) lub uczeniem cech (ang. feature learning).

Sieci wykorzystywane w przetwarzaniu jezyka naturalnego

Jednym =z wiodacych obszarow zastosowan sieci uczenia glebokiego, obok
rozpoznawania obrazow, sg zadania zwigzane z przetwarzaniem jezyka naturalnego,
takie jak rozpoznawanie mowy, zautomatyzowane tlumaczenie i analiza sentymentu.
Do takich narzedzi zaliczyé mozna sieci typu sekwencja do sekwencji (ang.
sequence-to-sequence, zob. Sutskever i in. [2014]), lub enkoder-dekoder (zob. Cho i in.
[2014]). Dtugosé sekwencji wyjsciowej w tych sieciach moze by¢ zmienna, i nie zalezy
od dhugosci sekwencji wejsciowej, co pozwala na stosowanie ich np. przy ttumaczeniu
tekstu lub automatycznym odpowiadaniu na pytania. Sieci tego typu najczesciej
wykorzystuja warstwy rekurencyjne (RNN, LSTM lub GRU). Warstwy kodujace

maja za zadanie mapowanie sekwencji wejsciowej do reprezentacji wektorowej o
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ustalonym lub zmiennym wymiarze (zwanej réwniez kontekstem), ktéra nastepnie
wykorzystywana jest jako wejscie do dekodera, generujacego sekwencje wyjsciowa
(zob. Alshemali i Kalita [2020]).

Sieci bayesoweskie

W prognozowaniu probabilistycznym, coraz wicksza popularnoscia ciesza sie sieci
bayesowskie (ang. Bayesian Neural Networks - BNN), zaproponowane po raz
pierwszy w pracy Neal [1996]. Wartosci wag i wyjs¢ poszczegblnych neurondéw
w sieciach bayesowskich przyjmuja podsta¢ catych rozktadow prawdopodobienstwa,
podczas gdy w innych typach sieci sa to najczesciej okreslone wartosci punktowe (zob.
rys. 3.10). * Zdaniem sieci BNN jest znalezienie takich rozktadéw tych parametrow,
ktére najlepiej pasujg do danych uczgcych. Celem sieci jest okreslenie niepewnosci
w taki sposob, aby modele mogly przypisywaé¢ mniejsze poziomy ufnosci blednym
prognozom. Zrédlami niepewnosci moga byé zaréwno stabej jakosci dane jak
i nieprawidtowo dobrane przez model parametry. Jako metody wykorzystywane do
estymacji rozktadéw najczedciej wykorzystywane sg metody Monte Carlo tancuchéw

markowa (MCMC) oraz wnioskowanie wariacyjne (ang. variational inference).
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Rysunek 3.10: Oceny parametréow w klasycznych sieciach neuronowych oraz w sieciach bayesowskich.
Uwaga: Figura (a) przedstawia schemat podstawowej sieci neuronowej z punktowymi ocenami
parametréw, (b) przedstawia schemat sieci bayesowskiej, w ktérej parametry okredlaja rozklady
prawdopodobienstw.

Zrédlo: Opracowanie wlasne na podstawie Géron [2019].

Rozwigzania bazujace na wnioskowaniu bayesowskim nie sa przedmiotem niniejsze;j

pracy, jednak w kontekscie prognozowania finansowych szeregéw czasowych i rozktadow

“Podobne podejécie stosowane jest takze w probabilistycznych sieciach neuronowych (ang.
Probabilistic Neural Networks - PNN, zob. Mohebali i in. [2020]).
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prawdopodobienstw z pewno$cig zastuguja na szersza uwage. Problematyka szerzej

opisana zostata w Duerr i in. [2020], Chang [2021] oraz Jospin i in. [2022].

Inne typy sieci uczenia glebokiego

Sposérod pozostatych narzedzi rozwijanych w ramach uczenia glebokiego wymieé

w tym miejscu nalezy takze:

— VAE - Variational Autoencoder (Kingma i Welling [2014], Kingma i Welling
[2019], Rezende i in. [2014])

Representation Learning (Bengio i in. [2014]), Transfer Learning (Bozinovski
2020))

Echo State Networks i Liquid State Machines (Jaeger i Haas [2004], Maass i in.
2002])

Sieci Hopfielda (Hopfield [1982]), Maszyny Helmholza (Dayan i in. [1995]),

Transormery (Vaswani i in. [2017], Wolf i in. [2020]).

3.2 Podstawowe zagadnienia zwigzane z uczeniem

sieci

3.2.1 Sposoby uczenia sieci neuronowych

Proces uczenia sieci gtebokich, podobnie jak w przypadku klasycznego uczenia
maszynowego, przeprowadza sie najczesciej na dwa sposoby (zob. Géron [2019]).
Ucznie nadzorowane, z nauczycielem, (ang. supervised learning) wymaga danych
w postaci par obiektu wejSciowego (np. wektor obserwacji) i wyjsciowego (oznaczone
wartosci pozadane do ktérych sieé¢ jest uczona). Na tej podstawie mozna okresli¢ btad
pomiedzy wartosciami pozadanymi, a rzeczywistymi wygenerowanymi przez sie¢
i minimalizowa¢ go w procesie uczenia. Do przyktadow zastosowania uczenia
nadzorowanego zaliczy¢ mozna takie problemy jak regresja czy klasyfikacja. Podejscie
to wykorzystywane jest takze w algorytmach bazujacych na drzewach decyzyjnych,
lasach losowych i maszynach wektoréw nosnych (ang. Support Vector Machines -
SVM, zob. Cortes i Vapnik [1995]). Jest to takze gtéwny typ uczenia wykorzystywany
w badaniach przedstawionych w tej pracy.

Drugim typem uczenia jest uczenie nienadzorowane (ang. unsupervised learning,

zob. Hinton i Sejnowski [1999]). Gléwnym zadaniem tego typu proceséw jest
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odnajdywanie nowych wzorcow, bez wczesniej okreslonych prawidtowych wartosci
wyjsciowych sieci, czyli np. poprawnych prognoz liczbowych lub etykiet klas
przynaleznosci danego obiektu. Ucznie nienadzorowane najczesciej stosuje sie podczas
analizy skupien, wykrywania anomalii, redukcji wymiarowos$ci poprzez analize
sktadowych oraz przy odkrywaniu asocjacji.

Obok tych dwoch podstawowych typow stosowane sg takze inne sposoby uczenia
sieci, takie jak uczenie czesciowo nadzorowane, w ktorych sieci otrzymuja zardéwno
dane oznaczone jak i nieoznaczone, wykorzystywane przyktadowo w sieciach DBN
(ang. Deep Belief Networks), oraz uczenie wzmocnione (ang. reinforced learning, zob.
Kaelbling i in. [1996]) realizowane na podstawie interakcji z okreslonym
srodowiskiem, do ktorego zaliczy¢ mozna przyktadowo algorytmy stosowane do gry
w szachy lub Go rozwijane m.in. przez zespét DeepMind (zob. Silver i in. [2017]),
ktore przyczynity sie¢ do znacznej popularyzacji uczenia glebokiego pokonujac

w rozgrywkach mistrzéow $wiata obu dyscyplin.

3.2.2 Algorytmy oparte na metodzie gradientu

Podstawowg metoda uzywana podczas minimalizacji btedu sieci, okreslonego przez
wybrang funkcje straty, jest algorytm oparty na metodzie gradientu prostego (ang.
gradient descent, zob. Lemaréchal [2012]). Podczas pracy algorytmu wagi
poszczegdlnych neuronéw modyfikowane sa na podstawie obliczonych pochodnych
zadanej funkcji straty. Wagi te modyfikowane sa podczas kazdej iteracji algorytmu, az
do momentu odnalezienia minimum funkcji straty. Obecnie w uczeniu gltebokim
stosuje sie przede wszystkim metode gradientu stochastycznego (ang. Stochastic
Gradient Descent - SGD, zob. Bottou [1998]), w ktorej w kazdym kroku uczenia
wykorzystywany jest tylko wycinek dostepnych danych, zwany wsadem lub partia
wsadowa (ang. minibatch lub batch) (zob. Goodfellow i in. [2016]). Dzigki temu
algorytm dziata znacznie szybciej i wykorzystuje mniej zasobéw obliczeniowych.
Niektorzy badacze dokonuja dodatkowego rozréznienia miedzy algorytmem gradientu
stochastycznego, a algorytmem gradientu Mini-Batch (zob. Géron [2019]). Diugosé
partii wsadowej (ang. batch size) w poszczegdlnych metodach okreslana jest

nastepujaco:

— dla metody gradientu prostego (Batch Gradient Descent) batch size = caly zbidr

uczacy,

— dla metody gradientu stochastycznego (Stochastic Gradient Descent) batch size =
L
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— dla  metody gradientu Mini-Batch  (Mini-Batch ~ Gradient  Descent)
1 < batch size < calty zbidr uczacy.

Roéznice w przebiegu algorytméw, w zaleznosci od przyjetej wielkosci partii

wsadowej, przedstawione zostaty na rysunku 3.11.

3D
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3.0 1
—@— Gradient prosty
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Rysunek 3.11: Wizualizacja przebiegu poszczegdlnych algorytméw w przestrzeni parametréw w.

Zrédlo: Opracowanie wlasne na podstawie Géron [2019].

Modyfikacje wag w procesie uczenia algorytmami opartym na optymalizacji

gradientowej mozna przedstawi¢ wzorem (zob. Goodfellow i in. [2016]):

W1 = W — nVJ(wt), (319)

gdzie w jest wektorem parametrow (wag, obciazen i aktywacji), n to ustalony
wspolezynnik uczenia (ang. learning rate) a J(w) to wybrana funkcja straty,
natomiast t jest tutaj krokiem algorytmu. Gradient V.J(w;) w uczeniu maszynowym
obliczane jest 2z wykorzystaniem algorytmu wstecznej propagacji  (ang.
backpropagation). W przypadku algorytmu SGD warto$¢ n jest stata.

Jedna 7z gtéwnych zalet uczenia glebokiego jest fakt, ze wykorzystywany
w procesie uczenia optymalizator SGD nie musi znalez¢ znalez¢é minimum globalnego
funkcji. Minima lokalne najcze$ciej w zupelosci wystarczaja do uzyskania bardzo
dobrej jakosci prognoz (dobrze generalizuja, zob. Choromanska i in. [2015], Duerr i in.
2020]).
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Algorytm wstecznej propogacji btedu

Algorytm wstecznej propagacji btedu (Rumelhart i in. [1986], Werbos [1988]) jest
jedng z podstawowych metod stuzacych do optymalizacji gradientowej podczas
uczenia sieci. Umozliwia on modyfikacje wag neurondéw w procesie uczenia sieci na
zbiorze treningowym, poprzez propagacje btedu wyniku otrzymanego na wyjsciu sieci
w stosunku do wyniku oczekiwanego, dostarczonego wraz z danymi uczacymi. W
ramach tej metody, sygnaly w sieci przeptywaja w dwoéch kierunkach: do przodu
(ang. forward propagation), kiedy dokonywana jest predykcja, oraz wstecz (ang. back
propagation), kiedy aktualizowane sa wagi neuronéw w poszczegdlnych warstwach.
Wagi dla kazdego neuronu modyfikowane sa w taki sposéb aby wartos¢ btedu byta
zmniejszana. 7Z czasem powstaly liczne usprawnienia podstawowego algorytmu,
z ktérych duza popularnoscia cieszyt sie adaptacyjny algorytm wstecznej propagacji
btedu z bezwladnoscia (ang. momentum) (zob. Qian [1999]). Funkcje aktualizacji

parametrow w tym algorytmie mozna zapisa¢ nastepujaco:

Awy = —nVJ(wy) + BAw;_1, (3.20)
gdzie 3 jest stalym wspotczynnikiem bezwtadnosci procesu uczenia.

Algorytm ADAM

ADAM (ang. Adaptive Moment Estimation) zaproponowany przez Kingma i Ba
[2017] jest kolejnym rozszerzeniem podstawowego algorytmu SGD. Powstal jako
polaczenie koncepcji w proponowanych wezesniej metodach RMSProp (ang. Root
Mean Square Propagation) oraz ADAGrad (ang. Adaptive Gradient Algorithm) (zob.
Hinton i in. [2012b], Duchi i in. [2011]). Gléwna zaleta tych metod jest dynamiczne
dostosowywanie parametru 7, czyli predkosci uczenia sieci (ang. learning rate).
Optymizator ADAM wykorzystuje w tym celu pierwsze i drugie momenty gradientu,

tworzac wyktadnicze $rednie ruchome (zob. Kingma i Ba [2017], Hansen [2019]):

W1 = wy — 2T (3.21)
Uy + €
e = 2 e (3.22)
- M
B =—1, (3.23)
1 =055
my = Pimy—1 + (1 — 51) g, (3.24)
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v = v + (1 — 52)91527 (3.25)

gdzie g oznacza gradient danej partii wsadowej g = V.J(6:;), m,v to wykladnicze
wspotezynniki zanikania, 3 to wspotezynnikii bezwtadnosci algorytmu, zazwyczaj
ustawiane na wartosci 0,9 — 0,999, natomiast € jest niewielka wartoscia (zazwyczaj
1078) stosowang w celu unikniecia dzielenia przez zero.

Powstaty tez liczne dodatkowe rozszerzenia algorytmu Adam, takie jak Adamax
(Kingma i Ba [2017]), Nadam ( Dozat [2016]) czy ND-Adam ( Zhang i in. [2018c]).
Pomimo duzej popularnosci algorytm ten nie jest jednak pozbawiony wad, wsrod

ktérych najezesciej wskazuje sie problemu z generalizacja (Wilson i in. [2018]).

Problem zanikajacego gradientu

Jednym z probleméw pojawiajacym sie podczas uczenia sieci algorytmami SGD
jest zanikajacy gradient (ang. vanishing gradient) (zob. Hochreiter i in. [2001]). Polega
on na tym, ze podczas procesu uczenia gradient funkcji straty staje sie coraz mniejszy
wraz ze zblizaniem sie przeptywu informacji do warstwo poczatkowych sieci (blizszych
warstwy wejsciowej). Z tego powodu wagi neuronéw w tych warstwach, przy bardzo
matym gradiencie nie sa aktualizowane, przez co proces uczenia nigdy nie jest zbiezny
do dobrego rozwigzania. Odwrotnym problemem, cho¢ wystepujacym rownie czesto,
jest gradient eksplodujacy (ang. ezploding gradient, zob. Géron [2019], Goodfellow i
in. [2016]), w ktérym gradient przyjmuje bardzo duze wartosci, przez zmiany wielkosci
wag sieci sa bardzo duze, a uczenie staje si¢ niestabilne. Oba problemy najczesciej
pojawiaja sie przy modelowaniu zaleznosci dhugoterminowych. Badacze wcigz sugeruja
nowe rozwigzania tych probleméw (zob. He i in. [2015], Noel i in. [2021]), powstaja
nowe typy sieci ktore lepiej maja radzi¢ sobie z tymi problemami, stosowane sg nowe
typy inicjalizacji wag oraz nowe funkcje aktywacji. Wigcej informacji na ten temat

przedstawionych zostato w kolejnych podrozdziatach.

3.2.3 Generalizacja i regularyzacja

Zdolnosé sieci do modelowania zupetnie nowych zestawéw danych (danych ze zbioru
testowego, lub z poza proby uczacej) nazywana jest generalizacja (zob. Géron [2019]).
Blad funkcji straty sieci na zbiorze testowym nazywa sie bltedem generalizacji (ang.
generalization error) natomiast uzyskany na danych ze zbioru uczacego, btedem uczenia
(ang. training error). W celu poprawienia generalizacji sieci stosuje sie najczesciej
przedstawione ponizej metody oparte na tzw. regularyzacji, przez ktora rozumie si¢

takie zmiany wprowadzane do algorytmu uczenia, ktére poprawiaja jego mozliwosci
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generalizacji jednoczesnie nie wplywajac negatywnie na btad uczenia (Goodfellow i in.
[2016]).
Formalnie, jako regulacje w ujeciu sieciowym rozumie¢ mozemy pewng modyfikacje

funkeji straty poprzez wprowadzenie parametr regularyzacji Q(w) :

J(w) = J(w) + af2(w), (3.26)

gdzie « € [0, 00] jest hiperparametrem ustalajacym wage parametru regularyzacji.
Obok przedstawionych ponizej form regularyzacji, takze opisany w podrozdziale 3.3
proces dostrajania hiperparametréw stosowany jest najczesciej wtasnie w celu poprawy

mozliwosci generalizacji sieci oraz uniknigcia problemu przetrenowania.

Dropout

Bardzo istotna forma regularyzacji jest dropout, zaproponowany przez Hinton i
in. [2012a] oraz Srivastava i in. [2014], ktéry okresla ile neuronéw z poszczegdlnych
warstw zostanie losowo pominietych w procesie uczenia sieci.> Dropout jest jednym
z najpopularniejszych i najbardziej efektywnych sposobéw regularyzacji (zob. Géron
[2019]). Kazdy neuron w sieci, z wyjatkiem neuronéw warstwy wyjsciowej, ma ustalone
prawdopodobiefistwo p (okreslane przy pomocy parametru dropout rate), ze zostanie
pominiety w bierzacym kroku w procesie uczenia, poprzez ustawienie wartosci wejscia
takiego neuronu na zero.

Zalézmy, ze w sieci o liczbie L warstw ukrytych, [ € 1,...,L okresla indeks
kolejnych warstw, a [ = 0 jest warstwa wejsciowa sieci, 2 oraz y® sa wektorami
wejsciowymi 1 wyjsciowymi warstwy [, W® oraz b)) sg wektorami wag i obciazen
warstwy [, natomiast f oznacza wybrana funkcje aktywacji. r®) jest wektorem
niezaleznych ~ zmiennych  losowych  z rozktadem Bernoulliego, ktore
z prawdopodobienstwem p wynosza 1, a z 1 — p wynoszag 0. W sieciach
jednokierunkowych (typu feed-forward) wyjscie opisanej w ten sposéb warstwy

mozemy zapisaé jako (zob. Srivastava i in. [2014]):

g=r0y", (3.27)
21 = Wi + biga, (3.28)
Yiy1 = f(2’1+1), (3-29)

STermin ten niekiedy jest thumaczony w polskiej literaturze jako ,,porzucanie” (zob. Sawka [2022]),

jednak w dalszej czesci pracy stosowane bedzie jego oryginalna, anglojezyczna nazwa.
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gdzie ©® oznacza iloczyn Hadamarda.

Neurony pomijane sg tylko w pojedynczym kroku uczenia, i zostaja wtaczone
ponownie w kolejnych krokach. W procesie testowania sieci, wagi poszczegdlnych
neuronéw nie sa wylaczane, natomiast sa skalowane wedlug formuty W/fest = piv.
Warto$¢ hiperparametru dropout rate zazwyczaj zwiekszana jest w przypadkach
dochodzi do przeuczenia (ang. overfitting), czyli sytuacji w ktérych sie¢ wykazuje
duza efektywnos$¢ na zbiorze uczgcym, natomiast uzyskuje stabe wyniki na zbiorach
walidacyjnym i testowym. Hiperparametr ten najczesciej ustalany jest na wartosci
z zakresu 0,001. do 0,5, przy czym wyzsze wartosci stosuje sie czesciej w sieciach
konwolucyjnych. Poniewaz odpowiednie ustalenie tej wartosci moze mie¢ bardzo duzy
wpltyw na uczenie sieci, czesto brana jest ona pod uwage jako jedna
z optymalizowanych zmiennych w procesie dostrajania hiperparametréw. Metoda
regularyzacji wykorzystujaca dropout opisana zostata szerzej w Srivastava i in. [2014]
oraz Warde-Farley i in. [2014].

Dodatkowym sposobem regularyzacji, stosowanym w sieciach rekurencyjnych, jest
dropout rekurencyjny (Moon i in. [2015], Gal i Ghahramani [2016] oraz Semeniuta i
in. [2016]). Podczas gdy zwykly dropout wytacza potaczenia pomiedzy
poszczegbdlnymi warstwami sieci, dropout reukrencyjny wytacza potaczenia pomiedzy
zalezno$ciami rekurencyjnymi w czasie (przyktadowo, pomiedzy wektorami ukrytymi
hi—1 a hy) podczas obliczania wartosci bramek i aktualizacji w biezacym kroku
uczenia. Podobnie jak zwykly dropout, pelni on takze funkcje regularyzacyjna

i zapobiega przetrenowaniu sieci.

Regularyzacja [; i [y

Innym typem regularyzacji wykorzystywanym w sieciach sa metody naktadajace
ograniczenia na parametry modelu sieciowego, przede wszystkim z wykorzystaniem
tzw. regularyzacji [y oraz ly (zob. Goodfellow i in. [2016]).

Regularyzacja [1, nazywana réwniez regresja LASSO (ang. Least Absolute Shrinkage

and Selection Operator) definiowana jest wzorem:

J(w) = J(w) + aZ = 1"|w;l, (3.30)

gdzie w oznacza w tym przypadku wagi sieci (obciazenia, b, nie sa regularyzowane),
natomiast « jest ustalanym hiperparametrem regularyzacji. Wartos¢ regularyzacji
zalezy wiec tylko od sign(w;)® i wptywa na gradient ze stala wartoscia,

W regularyzacji tego typu niektore parametry moga przyjmowaé wartosci zerowe

5Funkcja signum opisana zostala w rozdziale 2
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i w takim wypadku sg usuwane, co powoduje ze znalezione rozwigzanie jest bardziej
rzadkie (ang. more sparse). Whasnosé ta wykorzystywana jest czesto w procesie wyboru
zmiennych wejsciowych sieci (ang. feature selection), gdy dzieki regularyzacji [1 mozna
wskazaé, ktore cechy (zmienne wej$ciowe) moga zostaé¢ usuniete, jesli wartosci ich wag
wyniosg zero (zob. Géron [2019]).

Regularyzacja [, okreslana jest réwniez jako regresja grzbietowa (ang. ridge

regression), weight decay lub regularyzacja Tichonova, i przyjmuje postaé:
- 1 X2 9
J(w) = J(w) + EaZwi. (3.31)

Wprowadzenie tego typu regularyzacji powoduje, ze wektor wag w kazdym kroku
algorytmu optymalizacji gradientu jest pomniejszany o staly wspolezynnik (zob.
Goodfellow i in. [2016]). Podobnie jak w przypadku dropoutu, regularycje 11 i (2

wykorzystywane sa tylko w procesie uczenia sieci.

Funkcje wczesnego zatrzymania i punktu kontrolnego modelu

Pewng forma regularyzacji sa tez dodatkowe funkcje wywotania zwrotnego (ang.
callback function), stosowane podczas procesu uczenia. Jednag z takich funkcji jest
funkcja wezesnego zatrzymania (ang. early stopping, (zob. Yao i in. [2007]),
umozliwiajaca zatrzymanie procesu uczenia w najbardziej optymalnym momencie.
Rys. 3.16 przedstawia krzywe ksztaltowania sie wartosci funkcji straty (ktéra
przyktadowo moze by¢ funkcja MSE) w procesie uczenia sieci na zbiorze uczacym
i walidacyjnym. Warto$¢ funkcji straty maleje z kazdym krokiem uczenia, jednak
w pewnych przypadkach, np. przy wystapieniu efektu przeuczenia sieci, moze dojs¢
do sytuacji, gdy warto$¢ ta maleje na zbiorze uczacym ale zaczyna rosnaé¢ na zbiorze
walidacyjnym. Moment w ktérym obie krzywe uzyskuja najmniejszag warto$¢ moze
by¢ interpretowany jako optymalny wynik, ktory moze uzyskaé sie¢, i w ktérym
powinno nastapi¢ zatrzymanie uczenia (zob. Prechelt [2012]). W praktyce, poniewaz
linie te nie zawsze sa gltadkie, algorytm pozwala sieci uczy¢ sie jeszcze przez klika
epok, po czym nastepuje powrot do zapisanego wezesniej punktu, z ktérego pochodza
optymalne (finalne) sa parametry modelu.

Na podobnej zasadzie dziala funkcja punktu kontrolnego modelu (ang. model
checkpoint, zob. Géron [2019]). W kazdej epoce (kroku uczenia) sprawdzana jest
warto$¢ funkcji straty dla ustalonego zbioru (uczacego lub walidacyjnego). Jezeli
warto$¢ ta jest mniejsza niz w epoce poprzedniej to model zapisywany jest jako
najlepszy, natomiast nie jest zapisywany jesli wartos¢ ta jest wyzsza. Zapisany model

nastepnie moze zosta¢ wykorzystany jako optymalny model do testowania sieci.
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Roéznica pomiedzy funkcja wezesnego zatrzymania a funkcja punktu kontrolnego
polega na tym, ze w pierwszym przypadku proces uczenia jest calkowicie
zatrzymywany, a w przypadku punktu kontrolnego sie¢ uczy sie dalej (do czasu
osiagniecia ustalonej wezesniej liczby epok). Funkcja wezesnego zatrzymania pozwala
wiec na skrocenie czasu uczenia sieci, jednak w przypadku gdy krzywe uczenia sg
bardzo nieréwne, optymalny wynik moze zosta¢ uzyskany znacznie pézniej. W takich

przypadkach lepiej sprawdza sie funkcja punktu kontrolnego.

——  Zbidr uczacy
1.50 1 . . .
Zbioér walidacyjny
1.25 A
m 1.00 A
n
=
0.75 A1
0.50 1 Stop
0.25 1
0 50 100 150 200 250

Epoka

Rysunek 3.12: Funkcja wczesnego zatrzymania.

Zrédlo: Opracowanie wlasne.

Normalizacja wsadowa

loffe i Szegedy [2015] jako forme regularyzacji zaproponowali metode zwana
normalizacja wsadowa (ang. batch normalization). Pozwala ona na reparametryzacje
modelu poprzez standaryzacje i przeskalowanie wejs¢ wzgledem wartosci Sredniej
i wariancji dla kazdej partii wsadowej (minibatch) danych w procesie uczenia. Metoda
ta jest pomocna zaré6wno w regularyzacji jak i przy problemach zwigzanych
z zanikajacym (lub eksplodujacym) gradientem, przewaznie w sieciach o duzej liczbie

warstw ukrytych.

3.2.4 Podzial zbioru danych w procesie uczenia i testowania
sieci

Podczas budowy modeli bazujacych na sieciach neuronowych, istotne jest takze

odpowiednie przygotowanie danych. Jednym z podstawowych krokéw, ktére nalezy
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w tym procesie wykonaé, jest podzial danych na zbidér uczacy i testowy. Podziat taki
pozwala unikna¢ problemu nadmiernego przeuczenia sieci (ang. overfitting), czyli
sytuacji, w ktorej sie¢ dobrze radzi sobie na danych, z ktérymi zetkneta si¢ wcze$niej
w zbiorze uczacym natomiast wykazuje brak efektywnosci dla nowych przypadkow
zawartych w zbiorze testowym (zob. Goodfellow i in. [2016]). W praktyce, dane
dzielone sa na zbiér uczacy i testowy najczesciej w proporcjach 70:30 lub 80:20.
Podczas procesu uczenia sie¢ wykorzystuje tylko dane dostepne w zbiorze uczacym.
Przyktadowo, jezeli dany szereg czasowy obejmuje okres dziesieciu lat, do uczenia
sieci wykorzystywanych jest tylko siedem pierwszych lat, a trzy kolejne
wykorzystywane sa do testowania sieci.

W celu kontrolowania zdolnosci generalizacyjnych sieci, jeszcze na etapie jej
uczenia, czesto stosowang metoda jest dodatkowe wydzielenie ze zbioru uczacego tzw.
zbioru walidacyjnego (ang. validation set), zawierajacego ok 15-30% obserwacji (zob.
Xu i Goodacre [2018]). Zbiér walidacyjny ma na celu dodatkowe sprawdzanie
parametréw (wag) sieci juz w trakcie procesu uczenia. Podczas kazdego kroku w tym
procesie, oprocz dokonywania predykcji na podstawie danych uczacych, dodatkowo
taka sama operacja wykonywana jest na danych walidacyjnych. Sie¢ przekazuje
informacje o btedzie zaréwno z predykcji na danych uczacych jak i walidacyjnych,
dzigki czemu lepiej oceni¢ mozna stopien ewentualnego przetrenowania sieci

i poprawi¢ ewentualne problemy poprzez zmiane hiperparametrow.

Wszystkie dostepne dane

' - g '|
' Zbior uczacy Zhior testowy

Dane wydzielone do procesu uczenia

'l

I Zbidr uczacy Zbidrwalidacyjny | Zbiortestowy

Rysunek 3.13: Podzial danych na zbiory uczacy, testowy oraz walidacyjny.

Zrédlo: Opracowanie wlasne.

Po zakonczeniu procesu uczenia, dziatanie sieci sprawdzane jest na zupelnie
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nowym zestawie danych, czyli zbiorze testowym, na ktorym uzyskiwane przez sie¢
wyniki sa zazwyczaj nieco stabsze. Bardzo istotna kwestia jest, aby wyniki na
zbiorach testowych nie byty brane pod uwage podczas dostrajania hiperparametrow
sieci. Mozna wiec zalozyé, ze zbior testowy nie jest dostepny (nie jest znany) w czasie
uczenia sieci i podczas dostrajania hiperparametrow.

Jednym ze sposob zapewniajacych poprawna ocene testowanego modelu
sieciowego jest zastosowanie schematu rolowanego (przesuwanego) okna (zob.
Goodfellow i in. [2016]Bergmeir i Benitez [2012]). W przypadku szeregéw czasowych,
podejscie to polega na przesuwaniu zbiorow uczacego, walidacyjnego i testowego o
okreslona warto$¢ (najczesciej réowna dlugosci zbioru testowego), z zachowaniem
kolejnosci (zob. rys. 3.14). Po przesunieciu okna, model jest uczony i testowany
ponownie na nowych zbiorach danych. Stosowanie takiego podejscia umozliwia
doktadniejsza weryfikacje efektywnosci modelu na réznych zestawach danych. W
niektérych przypadkach stosowaé mozna takze schemat rekursywny (okreslany takze
jako schemat okna rozszerzanego, ang. erpanding window), w ktoérej punkt
poczatkowy zbioru uczacego jest staly, zmienia sie tylko jego dlugo$é oraz punkt
poczatkowy zbioru testowego (zob. Schnaubelt [2019]). Pozwala to na zweryfikowanie
czy dhugosé okna treningowego (ilos¢é danych w zbiorze uczacym) wplynie na poprawe

wynikow.

Czas

Okno | ]

okno2 [ |

Okno3 | I |

Okno | | [

Oknos| [ [ [

Wszystkie dostepne dane
I:l Pominiete |:| Z. uczacy I:l Z.walidacyjny I:I Z.testowy

Czas

Okno1| |

Okno2| |

Okno3 | | | |

Okno 4| |

Oknos | [

Wszystkie dostgpne dane
|:| Z.uczacy |:| Z. walidacyjny I:l Z.testowy

Rysunek 3.14: Wizualizacja podzialu danych przy zastosowaniu okna rolowanego oraz okna
rozszerzanego.

Zrédlo: Opracowanie wlasne.

W pracy z danymi w formie szeregéw czasowych, w procesie uczenia sie¢ dobiera
wagi tak, aby wykorzystujac sekwencje wejsciowe (ang. sample lub sequence) jak
najlepiej prognozowaé kolejne wartosci pozadane (ang. target, zob. Brownlee [2018]).
Zbior poszczegdlnych par sekwencji wejsciowych i wartosci pozadanych stanowi
z kolei paczke wsadowa. Jednokrotna prezentacja wszystkich przypadkow uczacych

(partii wsadowych), stanowiacych zbiér uczacy nazywana jest epoka (zob. Goodfellow
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i in. [2016]). W procesie uczenia sie¢ przechodzi przez zbiér uczacy nawet do kilku
tysiecy razy (dlugosé procesu uczenia ustalana jest na kilka tysiecy epok), przy czym
po kazdej epoce zwracana jest uzyskana warto$¢ funkcji straty, tworzac w ten sposob
krzywa uczenia (por. rys. 3.12).

Zarowno sekwencje wejéciowe jak i wartosci pozadane, pobierane sg ze zbioru
uczacego, w zwigzku z czym sie¢ podczas uczenia moze w uzyska¢ trafnosé¢ predykeji
zblizong do poziomu 100%, co jednak nie oznacza, ze tak samo dobrze bedzie radzié
sobie z zupelnie nowymi obserwacjami (pochodzacymi ze zbioru walidacyjnego lub

testowego).

3.2.5 Przygotowanie danych

Duzy wplyw na efektywnosé sieci ma takze odpowiedni dobdr i przygotowanie
danych. Wspomniany wczes$niej podzial danych na zbiory uczace i testowe musi by¢
dokonany w taki sposob, aby w jednym i drugim zbiorze znalazlty sie zblizone
reprezentacje danych. Jezeli zbiér uczacy nie bedzie reprezentatywny (bedzie
znaczaco roézny) od zbioru testowego, sie¢ nie bedzie w stanie dobrze wychwycié
zalezno$ci zachodzacych na danych testowych. Wazne jest wiec, aby wszystkie trzy
typy zbiorow (uczacy, walidacyjny i testowy) byly zblizone jesli chodzi o reprezentacje
danych (zob. Goodfellow i in. [2016]).

Inng istotna czynnoscia jest odpowiedni dobdr zestawéw cech (ang. feature
selection) - czyli zestawu zmiennych wejsciowych do sieci (zob. Cai i in. [2018]).
Przyktadowo, w finansowych szeregach czasowych moga to by¢ takie zmienne jak
stopa zwrotu, cena, estymowana zmiennosé¢ lub wolumen. Wszystkie cztery zmienne
moga by¢ uzyte jako dane wejsciowe do sieci, jednak nalezy rozwazy¢ (lub zbadad)
czy wszystkie maja istotny wptyw przy prognozowaniu przyktadowo stop zwrotu lub
zmiennosci. Czesto okazuje sie, ze dodatkowe zmienne wprowadzaja niepotrzebne lub
redundantne informacje zwiekszajac szum, co moze wpltynaé negatywnie na proces
uczenia oraz predykeji dokonywanych przez sie¢ (zob. Géron [2019]). Upewnié sie
trzeba takze czy dane nie posiadaja duplikatéw lub brakujacych wartosci.

Innym czesto stosowanym zabiegiem podczas przygotowywania danych jest
transformacja danych (ang. feature scaling) polegajaca najczesciej na standaryzacji
lub normalizacji (zob. Han i in. [2011], Brownlee [2018]). Zabiegi te stosowane sa
najczesciej w przypadkach gdy zmienne wejSciowe maja rozne skale wartosci
(przyktadowo stopy zwrotu i wolumen). Pomocne sa takze w przypadkach gdy
w danych wystepuja wartosci odstajace. Normalizacje i standaryzacje stosuje sie tylko
dla danych wej$ciowych sieci, z kolei oczekiwane wartosci (np. zrealizowana stopa

zwrotu) powinny zawiera¢ wartosci oryginalne, gdyz w praktyce podczas eksploatacji
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modelu sg to wartosci nieznane.
Odpowiednie przygotowanie danych moze mie¢ bardzo duzy wplyw na jakosc¢
uzyskanych prognoz. Podobnie jak w przypadku dostrajania hiperparametréw proces

najczesciej jest dos¢ czasochtonny, jednak nie powinien by¢ pomijany.

3.3 Dostrajanie hiperparametréw sieci

[stotnym elementem, ktory nalezy bra¢ pod uwage podczas projektowania
struktury sieci neuronowych, a w szczegdlnosci sieci uczenia glebokiego, jest
odpowiedni dobér hiperparametréw. W zaleznosci od typu sieci mozemy mieé¢ do
czynienia z roznymi zestawami parametréw, ktore mnalezy wustalic. Doboru
hiperparametréw mozna dokonywaé heurystycznie, na podstawie teoretycznych
przestanek i wartosci przekazanych w literaturze, lub eksperymentalnie, poprzez
doktadne ,dostrajanie” hiperparametréw (ang.  hiperparameter tuning) podczas
procesu uczenia sieci. Odpowiedni wyboér hiperparametréow sieci moze mie¢ duzy
wpltyw na jako$¢ uzyskiwanych wynikéw, dlatego jest to proces ktéremu nalezy
poswieci¢ duzo uwagi. Poniewaz liczba kombinacji wartosci poszczegdlnych
hiperparametréw moze by¢ duza, a sprawdzenie wydajnosci sieci wymaga
przynajmniej cze$ciowego jej trenowania, jest to takze proces bardzo czasochtonny.
Ponizej opisane zostaly najwazniejsze parametry, zarowno ogdlne, wystepujace
w prawie wszystkich strukturach sieci, jak i1 bardziej szczegdétowe, typowe dla

poszczegolnych rodzajow sieci.

3.3.1 Liczba warstw 1 neuronow sieci

Do podstawowych parametrow, ktore najczesciej nalezy ustali¢c na poczatku
projektowania struktury sieci nalezg liczba warstw sieci, oraz liczba neuronow
w poszczegdlnych warstwach. W sieciach neuronowych uczenia gtebokiego moéwi sie
najczesciej o liczbie warstw wiekszej niz trzy (wliczajac w to warstwe wejSciowa
i wyjsciowa), w praktyce najczesciej jest ich mmiej niz 10. Z kolei liczba neuronéw
moze zaleze¢ od funkcji jaka pelni dana warstwa. Ilo$¢ neuronéw w warstwach
wejSciowych 1 wyjsciowych najczesciej uzalezniona jest od wymiaru danych
wejSciowych 1 danych oczekiwanych na wyjsciu  modelu. W  przypadku
jednowymiarowych szeregdw czasowych, warstwy wejsciowe i wyjsciowe maja tylko
jeden neuron (przyktadowo, gdy na wejsciu sie¢ otrzymuje informacje o wartosci
w okresie t, a na wyjsciu przekazuje warto$¢ prognozowana w okresie t 4+ 1). Liczba
neuronéow w warstwach ukrytych moze by¢ ustalana dowolnie. Zwigkszenie liczby

neuronow i warstw ukrytych, moze prowadzi¢ do poprawy wydajnosci modelu, jednak

90



zazwyczaj wigze sie ze znacznym wydluzeniem czasu potrzebnego na wykonanie

obliczen oraz wigkszym uzyciem zasobéw pamigciowych (zob. Goodfellow i in. [2016]).

3.3.2 Optymalizatory i inicjalizatory

Optymalizator sieci (ang. optimizer) informuje sie¢ w jaki sposéb aktualizowaé
parametry takie jak wagi, wykorzystujac przy tym parametr predkosci uczenia
learning rate. Obecnie najczesciej stosowanym optymalizatorem jest ADAM i jego
odmiany, takie jak algorytm SGD, RMSProp czy Adagrad, opisane w punkcie 3.2.2.

Inicjalizator (ang. initializer) z kolei ustala jakie powinny byé¢ poczatkowe wartosci
wag parametréw sieci, co ma bezposredni wplyw na czas procesu uczenia - dobrane
odpowiednio wagi poczatkowe znacznie skroca ten proces.

Niektore parametry sieci, w szczegdlnosci poczatkowe wartosci wag neurondw,
musza zostaé¢ zainicjalizowane (zob. Skorski i in. [2020]). Istotne jest tutaj aby wagi
neuronéw roznity sie miedzy soba (w przeciwnym razie ich wartosci najczesciej
zmienialy by sie jednakowo). Wartosci wag najczesciej losowane sa z rozktadu
normalnego lub jednostajnego, natomiast wartosci parametréw bias najczescie]
ustawiane sg domy$lnie na 0 lub 1.

Glorot i Bengio [2010] zaproponowali nowy sposob inicjalizacji wag, majacy przede
wszystkim pomodc przy problemie zanikajacego i eksplodujacego gradientu, okreslony

rownaniem:

W~ N(o, L) (3.32)

nj + M

lub dla rozktadu jednostajnego:

W~U<—\/ 0 \/ 0 ) (3.33)
n; + UZES| n; + Njt1

gdzie n; oznacza liczbe wej$¢ w warstwie j. He i in (2015) zauwazyli jednak, ze

w przypadku neuronéw z nieliniowg funkcja aktywacji ReLU ten typ inicjalizacji nie
jest optymalny. W zamian zaproponowali rozwigzanie, nazywane inicjalizacja He,
w ktorym wariancja wag neurondéw pomnozona jest dodatkowo przez 2, zgodnie

7 rOwnaniem:

W~ N(0, 3) (3.34)

Uz
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3.3.3 Funkcje aktywacji

Jednym z najwazniejszych parametréw kazdej sieci jest funkcja aktywacji, ktorej
wartosci stanowig sygnaly wyjsciowe danego neuronu. Odpowiada ona z to w jaki
sposob neurony sieci przetwarzaja dane wejsciowe. Zdecydowana wiekszos¢ funkeji
aktywacji to funkcje nieliniowe. Rozne warstwy sieci moga posiada¢ rozne funkcje
aktywacji. Przyktadowo, w warstwie wyjsciowej sieci typ funkcji zazwyczaj
uzalezniony jest od tego w jakiej formie dane maja by¢ przekazane na wyjsciu sieci
(czyli np. od tego co prognozujemy). W warstwach ukrytych najczesciej wybierane sa
funkcje nieliniowe, takie jak ReLU (ang. Rectified Linear Unit), funkcja sigmoidalna
czy funkcja tangensu hiperbolicznego.

Tabela 3.1 oraz rysunek 3.16 przedstawiaja wzory i przebieg podstawowych funkcji
aktywacji, najczesciej uzywanych w uczeniu gltebokim. Doktadniejszy przeglad funkcji
aktywacji znalez¢ mozna w pracach Nwankpa i in. [2018], oraz w Szandata [2021].

Jak wspomniano, duze znaczenie ma takze wybér prawidlowej funkcji aktywacji
dla neuronow wyjsciowych. Jej forma odpowiada w tym przypadku za doktadng
posta¢ danych jaka otrzymamy na wyjsciu sieci. Przyktadowo dla typowych
problemow regresyjnych, uzywa sie najczesciej liniowej funkcji aktywacyjnej, ktora
nie wprowadza juz zadnych transformacji do otrzymanego wyniku. W problemach
klasyfikacyjnych uzywana jest najczeSciej funkcja softmar (w przypadkach kiedy
zwracane jest prawdopodobienstwo przynaleznosci do konkretnej klasy) lub
sigmoidalna (w przypadkach gdy wyniki nie sa rozktadem prawdopodobiefistwa i nie
musza sie sumowaé do 1). W zaleznosci od potrzeb moga tu tez byé stosowane inne
funkcje, jak np. funkcja ReLU w przypadku gdy ujemne wartosci chcemy zastapi¢

zeremnl.
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Tabela 3.1: Podstawowe funkcje aktywacji.

Funkcja aktywacji  Wzoér

Linear flz)==x
Sigmoid flx) =0(z) = =
Tanh f(z) = tanh(z) = £
0, dlaz<0.
ReLU f(z) =
x, dlax>0.
Softma (@) = -
< -
Zszl ers

Uwaga: K oznacza liczbe klas klasyfikatora, e®i i e® to funkcje wyktadnicze wektoréw wejsciowego

50-

25-

0.0 -

=1 -

i wyjsSciowego

Linear Sigmoid
10-
05 -
0.0 -
0 5 =5 0 5
Tanh RelLU

4 -

2 -

0 -

0 5 = 0 5

Rysunek 3.15: Przebieg funkcji aktywacji.

Zrédlo: opracowanie wlasne
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3.3.4 Pozostalte hiperparametry

Wybor i ilo§¢ hiperparametrow, ktérych wartosci nalezy ustali¢ zalezy w duzej
mierze od specyfikacji problemu oraz wybranej architektury sieci. Ponizej
przedstawione zostaly pozostate hiperparametry, ktorych optymalizacje podjeto takze
W czeScl empirycznej pracy.

Funkcja straty rozumiana jako hiperparametr, jest wybrang funkcja
optymalizowana przez sie¢. Najbardziej typowe funkcje straty wykorzystywane
w sieciach uczenia glebokiego to MSE oraz funkcja entropii krzyzowej (ang.
cross-entropy), z ktérych wybrane doktadniej opisane zostaly w rozdz. 2.7 Dobor
odpowiedniej funkcji straty stanowi jeden z podstawowych krokow podczas
konstruowania sieci, dlatego nalezy zwrdci¢ szczegdlng uwage na  wybdr
odpowiedniego typu funkcji. Niektore problemy wymagaja takze modyfikacji lub
stworzenia wlasnych funkcji straty w celu zoptymalizowania dziatania sieci
w kontekscie danego problemu (zob. Michankéw i in. [2022]).

Innym waznym elementem jest wspdlczynnik uczenia (ang. lerning rate), ktéry
odpowiada za tempo uczenia si¢ sieci (zob. Plagianakos i in. [2001], Liu i in. [2021]).
Parametr ten kontroluje, w jaki sposéb wagi neuronéw zmieniane sa przez algorytm
uczenia gradientowego podczas optymalizacji funkcji straty (zob. wzér 3.19 ). Mniejsza
wartos$¢ tego parametru powoduje wydtuzenie procesu trenowania, jednak ustalenie tej
wartosci zbyt nisko moze skutkowaé¢ zakonczeniem trenowania w minimum lokalnym
lub punkcie siodtowym (ang. saddle point). Z kolei ustawienie zbyt wysokiej wartosci

moze doprowadzi¢ do pominiecia minimum globalnego (zob. rys. ).

Jw) [\ PR IR ;)

(a) (b) (c)

Rysunek 3.16: Optymalizacja funkcji straty w zaleznosci o wartosci wspolczynnika uczenia.
Uwaga: Figura (a) przedstawia sytuacje, w ktérej warto$é jest zbyt niska, figura (b): warto$é
wspOlezynnika jest optymalna, figura (c): warto$¢ wspdlczynnika jest zbyt duza. Zrédlo:

Opracowanie wlasne, na podstawie Jordan [2018].

"Funkcja entropii krzyzowej wykorzystywana jest przede wszystkim w problemach

klasyfikacyjnych.
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Parametr batch size okresla ilo$¢ danych (rozmiar partii wsadowej), ktore brane
sa pod uwage podczas kolejnych przej$é przez dane zbioru uczacego sieci (epok)
podczas fazy uczenia. Optymalna wielko$¢ tego hiperparametru zalezy przede
wszystkim od architektury dostepnego sprzetu komputerowego, moze jednak takze
wplywaé¢ na zdolnosci generalizacyjne modelu (zob. Goodfellow i in. [2016]). W
sieciach bezstanowych sieciach LSTM, poprzez zmiane wartosci tego hiperparametru
mozna kontrolowa¢ dhugos¢ pamieci dtugoterminowe;j.

W modelowaniu danych sekwencyjnych ustalana jest takze dtugo$é sekwencji
(okres$lana rowniez jako dlugosé wektora wejsciowego, sample, instance lub feature
vector) czyli przyktadowo liczba obserwacji ktére brane sa pod uwage przy
dokonywaniu pojedynczej prognozy (zob. Chollet i Allaire [2018]). Poszczegdlne
partie wsadowe danych ztozone sg z okreslonej liczby takich sekwencji. Diugosé
sekwencji ustalana jest indywidualnie, w zaleznosci od specyfikacji danego problemu.

Dodatkowo, poszczegélne typy sieci maja swoje wlasne specjalistyczne
hiperparametry, ktore trzeba ustali¢ przed procesem uczenia. Przyktadowo w sieciach
konwolucyjnych bardzo istotng role odgrywaja takie parametry jak liczba filtréw i ich
rozmiar. Parametry szczegélowe dla tych typéw sieci doktadniej opisane sg
w punktach dotyczacych poszczegolnych architektur sieci: 3.1.2 1 3.1.3 oraz
w podrozdziale 5.3.

3.3.5 Automatyzacja procesu dostrajania

Proces dostrajania  hiperparametrow mozna czesciowo zautomatyzowac,
korzystajac z rozwigzan algorytmicznych. Jednym z popularnych narzedzi jest
KerasTuner, zaproponowany przez O’Malleya i in. [2019]. Narzedzie to pozwala na
zautomatyzowanie wyboru najlepszych wartosci dla poszczegdlnych hiperparametrow
lub ich kombinacji. Wyszukiwanie wartosci dokonywane moze by¢ losowo (poprzez
sprawdzenie wszystkich wartosci i kombinacje parametrow) lub w  sposob
algorytmiczny, np. przy pomocy algorytmu Hyperband (Li i in. [2018]). Algorytm ten
dziata w spos6b turniejowy, testujac duza liczbe zestawoéw hiperparametrow na kilku
poczatkowych epokach, przenoszac nastepnie do kolejnego etapu tylko najlepiej
spisujace sie kombinacje lub hiperparametry. Takie podejscie pozawala na znaczne
skrocenie czasu potrzebnego na znalezienie optymalnych ustawien wartosci

hiperparametrow.
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3.4 Sieci uczenia glebokiego w prognozowaniu

szeregow czasowych

Ponizej, na podstawie wybranych publikacji oméwiono badania, ktorych autorzy
wykorzystywali podstawowe typy sieci neuronowych, w szczegdlnosci sieci
rekurencyjnych i konwolucyjnych, w modelowaniu szeregéw czasowych instrumentow
finansowych.

Chen i in. [2015] zaproponowali model wykorzystujacy sieci LSTM do
prognozowania stop zwrotu spétek notowanych na gietdach SSE (ang. Shanghai Stock
Fzchange) i SZSE (ang. Shenzhen Stock Exchange), na danych z lat od 1990 do 2015
roku. Badania wykazaly, ze metody z wykorzystujace sieci LSTM przynosity znaczaco
lepsze rezultaty w poréwnaniu z predykcja losowa. W podobnych badaniach, rowniez
z wykorzystaniem sieci LSTM, Zhang i in. [2018b] stworzyli model wieloczynnikowy,
shuzacy do prognozowania stop zwrotu indeksu gietdowego CSI300. Model zostat
nastepnie wykorzystany do podejmowania decyzji klasyfikacyjnych, dotyczacych
wyboru poszczegbdlnych akcji podczas tworzenia strategii inwestycyjnej. Rezultaty
badan na danych spoza préby wskazywaly na trafno$é¢ predykeji nieznacznie powyzej
50%.

Fischer i Krauss [2018] wykorzystali modele uczenia glebokiego bazujace na
sieciach LSTM do prognozowania kierunku zmian cen akcji spotek indeksu S&P 500,
stosujac w tym celu dane dotyczace dziennych zwrotow z lat od 1992 r. do 2015 r.
Przeprowadzono takze analize poréwnawcza z modelami wykorzystujacymi regresje
logistyczna, sieciami DNN (ang. Deep Neural Networks i las losowy (ang. random
forest). Wyniki badaii wykazaly, ze sieci LSTM osiagaja najlepsze wyniki sposréd
badanych narzedzi.

Chong i in. [2017] zbadali mozliwosci predykcyjne algorytméw stworzonych na
podstawie rekurencyjnych sieci uczenia glebokiego. Jako modelowany zbiér danych
uzyte zostaly pieciominutowe obserwacje 38 spoétek koreanskiej gietdy KOSPI,
w postaci logarytmicznych stop zwrotu, pochodzace z okresu od stycznia 2010 r. do
grudnia 2014 r. Badania wykazaly, ze wykorzystanie metod uczenia glebokiego
przyczynito si¢ do poprawienia mozliwosci predykcyjnych badanych modeli.

Sieci uczenia gtebokiego LSTM wykorzystane zostaly takze do stworzenia strategii
opartej na sentymencie rynkowym w pracy Jiahong Li i in. [2017]. Badacze
wykorzystali naiwny klasyfikator bayesowski w celu oceny nastroju inwestoréw na
podstawie tekstow pobranych ze Zrodet internetowych. Wyniki nastepnie potaczone
zostaly z danymi gieldowymi, pochodzacymi z notowan spoétek indeksu CSI300,

i uzyte jako dane wejsciowe w modelu wykorzystujacym sie¢ LSTM. Zaproponowany
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przez badaczy model dawal wyniki trafnosci predykeji znaczaco lepsze niz pozostate
testowane przez autoréw metody, takie jak modele bazujace na maszynach wektoréw
nosnych.

Dixon i in. [2017] z powodzeniem wykorzystali glebokie sieci neuronowe DNN do
budowy strategii algorytmicznego handlu towarami i kontraktami walutowymi. W
badaniach wykorzystane zostaly dane dotyczace 43 roéznych towaréw i walut z lat
1991 do 2014. Uzyskane wyniki wykazaly, ze wykorzystanie sieci gtebokich moze
znaczaco poprawic¢ efektywnosé strategii inwestycyjnych.

Di Persio i Honchar [2016] poréwnali modele predykeyjne oparte na réznych typach
sieci neuronowych w prognozowaniu zmian kierunkowych indeksu gietdowego S&P 500.
Zbadane zostalty klasyczne sieci MLP (ang. Multi-layer Perceptron) a takze sieci uczenia
gtebokiego CNN oraz LSTM. Sposréd porownywanych typéw sieci nieznacznie lepsze
rezultaty uzyskaty sieci konwolucyjne. Badacze zwracaja takze uwage na bardzo dobre
wyniki uzyskiwane przez modele taczace kilka typow sieci (ang. ensemble models).

Hansson [2017] wykorzystal modele bazujace na sieciach LSTM do poréwnania
mozliwosci  predykcyjnych sieci tego typu na rynkach o réznej efektywnosci.
Wykorzystal do tego celu dane z lat od 2009 r. do 2017 r. pochodzace z indeksow
gieldowych USA (S&P500), Brazylii (Bovespa) oraz Szwecji (OMX). Rezultaty,
przedstawione w badaniu wykazaty, ze sieci LSTM charakteryzuja sie¢ trafnoscia na
poziomie 51-52% przy prognozowaniu kierunku zmian i najlepiej spisywaly sie
w prognozowaniu rynkéw mniej efektywnych (OMX).

Cao i Wang [2019] analizowali modele bazujace na sieciach CNN stuzacych do
predykcji warto$ci pieciu indeksow gietdowych. Zaproponowali takze autorskie
rozwigzanie w postaci hybrydowego modelu CNN-SVM oraz przeprowadzili badania
wplywu zmiany wartosci poszczegdlnych hiperparametréw na uzyskiwane rezultaty.
Badania wykazaty, ze modele CNN-SVM oraz CNN cechuja sie wyzsza trafnoscia
prognoz w poréwnaniu z modelami SVM i BP (ang. back-propagation).

Kijewski i Slepaczuk [2020] wykorzystali modele bazujace na sieciach LSTM do
prognozowania cen indeksu S&P 500 z okresu od 2000 r. do 2020 r. Uzyskane wyniki
poréwnali z modelami ARIMA oraz klasycznymi strategiami inwestycyjnymi. W
badaniach przeprowadzona zostata takze dokladna analiza wrazliwosci, w celu
zbadania wplywu zmian poszczegdlnych parametréw modeli (w tym hiperparametréw
sieci LSTM) na uzyskiwane przez nie prognozy.

W przedstawionym w powyzszym podrozdziale zestawieniu badan, zauwazyc
mozna, ze sieci uczenia glebokiego wykazuja wysoka efektywno$¢ podczas
rozwigzywania problemoéw zwigzanych z predykcja stop zwrotoéw réznych aktywow

finansowych. Szczegélnie czesto wykorzystywane sa w  tym celu sieci sieci
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rekurencyjne LSTM, a takze sieci konwolucyjne. Te dwa rodzaje sieci postuza jako

gtowne sktadowe modeli hybrydowych, ktére oméwione zostang w kolejnym rozdziale.
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Rozdziat 4

Predykcyjne modele hybrydowe
laczace metody ekonometryczne

i techniki uczenia glebokiego

Autorskie rozwigzania zaproponowane w ramach tej pracy opierajg sie przede
wszystkich na potaczeniu metod ekonometrycznych z sieciami uczenia glebokiego, co
zdaniem autora przyczyni¢ sie¢ moze do poprawy prognoz uzyskiwanych
z wykorzystaniem tych narzedzi. W ramach tego rozdzialu, przeanalizowane zostaty
wybrane modele hybrydowe proponowane w literaturze, a nastepnie przedstawione
propozycje autorskich modeli hybrydowych stuzacych do uzyskiwania punktowych
prognoz zmienno$ci, a takze sieciowe modele umozliwiajace prognozowanie

parametrow catych rozktadow prawdopodobienstwa przysztych stop zwrotu.

4.1 Przeglad i analiza mozliwosci predykcyjnych
modeli hybrydowych

W pierwszej kolejnosci przedstawione zostaly wybrane publikacje dotyczace badan
nad modelami hybrydowymi, wykorzystywanymi do punktowego prognozowania
zmiennosci. Prace te analizowane sa zaréwno pod katem struktur proponowanych
modeli, jak i uzyskanych z ich wykorzystaniem wynikéw.

Monfared i Enke [2014] wykorzystali modele klasy GARCH w potaczeniu
z sieciami neuronowymi do prognozowania zmiennosci indeksu gietdowego NASDAQ
Composite. Jako dane wejsciowe uzyte zostaly prognozy zmiennosci dziesieciu
indekséw (dotyczacych poszczegblnych sektoréw gospodarki, wchodzacych w sktad
NASDAQ), uzyskane przez —model GJR-GARCH. Dane w  postaci
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dziesieciowymiarowego wektora przekazane zostaly kolejno do sieci FFBP (ang. Feed
Forward with Back Propagation), GR (ang. Generalized Regression) oraz RBF (ang.
Radial Basis Function). Dane Zrédtowe, pochodzace z okresu od 1997 do 2011 roku,
podzielone zostaly na cztery okresy testowe, w ramach ktoérych oceniane byty
poszczegbdlne modele. Do ocen prognoz wykorzystana zostata miara MSE. Z posrod
badanych typéw modeli, najlepsze rezultaty w trzech okresach testowych (1997-2000,
2002-2003 i 2005-2008) uzyskal model wykorzystujacy sie¢ RBF. W ostatnim okresie,
2010-2011, najlepiej spisywat sie model wykorzystujacy sie¢ GR. Ogdlnie, we
wszystkich  okresach modele hybrydowe dawaly lepsze wyniki niz model
GJR-GARCH, przy czym modele te najlepsze wyniki uzyskiwaly w okresach
charakteryzujacych sie wysoka zmiennoscia.

W badaniach nad modelami hybrydowymi, Kim i Won [2018] jako wartosci
wejsciowych do sieci LSTM oraz sieci DFN (ang. Deep Feedforward Network) uzyli
oszacowan poszczegélnych parametréw modeli GARCH, EGARCH oraz EWMA
(oznaczanych dalej kolejno jako G,E,W). Dodatkowo na wejsciu do sieci wykorzystane
zostaly takze logarytmiczne stopy zwrotu indeksu KOSPI, stopy procentowe, oraz
ceny surowcow zlota i ropy. Stworzone zostaly w ten sposéb modele hybrydowe
G/E/W - DFN/LSTM. Proponowane przez autoréw modele wykorzystane zostaty do
prognozowania zmiennosci  koreanskiego indeksu gietdowego KOSPI  200.
Jednookresowe prognozy zmiennosci uzyskiwane byly na podstawie sekwencji
wejsciowej o dtugosci 22 dni. Stosujac miary MAE, MSE, HMAE i HMSE badacze
wykazali, ze najlepsze wyniki uzyskal model GEW-LSTM, taczacy sieci LSTM
jednoczesnie z trzema modelami: GARCH, EGARCH oraz EWMA. W kolejnej czesci
badan modele przeanalizowane zostaly takze pod katem réznych dhugosci sekwencji
wejsciowych (7, 15 i 22 dni) oraz dlugosci prognoz (1, 14, 21 dni). Warto$é btedu
malata wraz z wydluzaniem diugosci sekwencji wejSciowej i rosta przy wydhuzaniu
okresu prognozowanego.

Podobne badania, dotyczace prognozowania zmiennosci cen surowca miedzi,
przeprowadzili Hu i in. [2020]. W tym celu Autorzy stworzyli modele hybrydowe
taczace klasyczne sieci neuronowe, sieci rekurencyjne oraz model GARCH(1,1).
Sposrod sieci rekurencyjnych zbadane zostaty sieci LSTM oraz dwukierunkowe sieci
BLSTM (ang. Bidirectional LSTM). Te ostatnie charakteryzuja sie wykorzystaniem
dodatkowej warstwy wstecznej, ktora przetwarza informacje w przeciwnym kierunku.
Jako dane wejsciowe wykorzystane zostaly 21 wskazniki przedstawiajace ceny
podstawowych metali, wybrane kursy walut indeksy gietdowe i futures, oraz wskaznik
inflacji, z lat 2008 do 2018. Dane te wraz z prognozami zmiennosci uzyskanymi przy

pomocy modelu GARCH, stuzyly jako sygnaly wejéciowe do sieci LSTM-ANN. Do
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sieci przekazywane byly dane roczne (252 dni), a prognozowana byla zmiennosé na
okres 10-dniowy oraz 40-dniowy. W badaniach poréwnane zostaly wyniki szeSciu
typow modeli: ANN, LSTM-ANN, BLSTM-ANN, GARCH-ANN,
GARCH-LSTM-ANN, oraz GARCH-BLSTM-ANN. Do oceny jakosci prognoz
wykorzystane zostaly w tym przypadku miary MSE, MAE, RMSE i MAPE. Na
podstawie wynikow badan Autorzy stwierdzili, ze zastosowanie modelu GARCH
w warstwie wejsSciowej sieci znacznie poprawia prognozy modelu w pordéwnaniu
z modelami sktadajacymi sie wytacznie z sieci neuronowych. Zauwazono takze, ze
zastosowanie sieci LSTM oraz BLSTM przynosi lepsze wyniki w porownaniu
z klasycznymi sieciami ANN. Z posrod wszystkich badanych modeli, najlepsze wyniki
uzyskal model GARCH-LSTM-ANN.

Kristjanpoller i Herndndez [2017] zastosowali podobne podejécie w badaniach
dotyczacych prognozowania zmiennosci cen metali szlachetnych. W strukturze
badanych przez nich modeli hybrydowych, jako dane wejsciowe wykorzystane zostaty
prognozy uzyskane przez modele ARCH, GARCH, NARCH, TARCH oraz APARCH.
Prognozy te, wraz z innymi zmiennymi wejsciowymi, uzyte zostaty jako wejscia do
sieci ANN(l,n), gdzie | oznacza ilos¢ warstw sieci, za§ n to liczba neuronéw
w poszczegbdlnych warstwach. Badania przeprowadzone byty z wykorzystaniem
danych z okresu od 1999 roku do 2014 roku. Jako dodatkowe zmienne objasniajace
wykorzystane zostalty: stopy zwrotu z indekséw SZSE, FTSE i SBSE, kursy walut
USD-EUR, USD-YEN oraz ceny ropy. Jako funkcja straty uzyta zostala miara
HMSE, natomiast do testowania efektywnosci modeli — miara MCS (ang. Model
Confidence Set). Analizujac przedstawione przez Autoréw wyniki, mozna zauwazy¢,
ze oceny bledow prognoz ulegaly poprawie w zaleznosci od ilosci warstw
zastosowanych w sieci ANN — najlepsze rezultaty uzyskiwaly sieci o architekturze
sktadajacej si¢ z 3-6 warstw. Na jakos¢ prognoz wpltywal takze dobdér odpowiednie]
podklasy modelu GARCH oraz ilosci dodatkowych zmiennych uzytych jako sygnaty
wejsciowe do sieci.

Liu i So [2020] wykorzystali modele hybrydowe do prognozowania zmiennosci cen
indeksu S&P500. Badacze skupili sie na modelu wykorzystujacym prognozy
uzyskanych przez model GARCH oraz sie¢ LSTM. Celem badan bylo przede
wszystkim znalezienie optymalnej architektury sieci. Jako dane wykorzystane zostaty
dzienne stopy zwrotu z lat 2000-2020, natomiast do oceny trafnosci prognoz
zastosowana zostala miara MAE. W badaniach przetestowane zostaly poszczegdlne
architektury sieci: LSTM(32), LSTM(32)+dense(16), LSTM(32)+dense(16-8),
LSTM(32)+Dense(16-8-4), LSTM(32)+Dense(32-16-8),
LSTM(32)4Dense(64-32-16-8), gdzie w nawiasach podane zostaly liczby neuronéw na
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poszczegbdlnych  warstwach. Sposréd  testowanych —architektur najlepsze wyniki
uzyskata sie¢ LSTM(32)+Dense(32-16-8). Autorzy zwrécili takze uwage na fakt, ze
sieci o wickszej liczbie warstw, charakteryzujace sie wicksza liczba parametrow, sa
bardziej podatne na przeuczenie.

Na podstawie opisanych powyzej struktur modeli hybrydowych, mozna
wnioskowaé¢, ze w proponowanych w literaturze modelach hybrydowych
wykorzystywanych do prognozowania zmiennosci sposrod specyfikacji modeli GARCH
zwykle wybierane sa modele asymetryczne, takie jak EGARCH oraz GJR-GARCH.
Prognozy wykorzystane z uzyciem tych modeli sg nastepnie wykorzystywane jako
sygnaty wejsciowe w sieciach neuronowych w celu uzyskania ostatecznych prognoz
zmiennosci. Przedstawione wyniki badan pokazuja, ze modele hybrydowe mozna
z powodzeniem wykorzystywa¢ do prognozowania zmienno$ci instrumentow
finansowych, a uzyskane w ten sposéb prognozy najczesciej sa lepsze w pordéwnaniu
z wynikami klasycznych modeli GARCH.

W tym miejscu odnies¢ mozna sie takze do literatury dotyczacej modeli
wykorzystujacych sieci uczenia gtebokiego w prognozowaniu parametrow rozktadu
prawdopodobienstwa. W tym zakresie wskaza¢ nalezy przede wszystkim prace Chen i
in. [2020] oraz monografie 2020. Poniewaz publikacje te nie dotycza jednak
prognozowania finansowych szeregéw czasowych, prezentowane w nich wyniki nie
beda tutaj doktadnie omawiane. Zaznaczy¢ jednak nalezy, ze przedstawione w nich
koncepcje stanowig pewne podstawy, na ktorych zaproponowane zostaly autorskie

rozwiazania sieciowych modeli probabilistycznych, oméwione w punkcie 4.2.2.

4.2 Propozycja nowych modeli

Bazujac na przedstawionych w powyzszym podrozdziale rozwazaniach, mozna
stwierdzi¢, ze sieci uczenia glebokiego, zaréwno te z grupy sieci rekurencyjnych, jak
i konwolucyjnych, mozna z powodzeniem stosowaé¢ jako dodatkowe uzupetnienie
modeli zmiennosci, takich jak modele klasy GARCH, w prognozowaniu zmiennosci
oraz przy szacowaniu ryzyka. Na tej podstawie, w dalszej czesci pracy przedstawione
zostaly propozycje rozwigzan, laczacych metody ekonometryczne oraz sieci
neuronowe w modele hybrydowe.

Gléwna zaleta modeli hybrydowych wykorzystujacych sieci uczenia gtebokiego
jest przede wszystkim ich elastycznosé. Sieci pozwalaja na stosowanie jako zmiennych
wejsciowych dowolnych danych, w tym przypadku wygastych prognoz zmiennosci
uzyskanych przez dowolne modele i estymatory. Duze mozliwosci daje takze wybor

odpowiedniej wartosci pozadanej sieci. Taka elastyczno$é¢ sprawia, ze tworzy¢ mozna
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w zasadzie dowolne potaczenia metod statystycznych Iub ekonometrycznych
z modelami sieciowymi. W podobny sposéb mozna tutaj wykorzysta¢ takze prognozy
uzyskane przez inne modele zmiennosci, takie jak modele SV, oraz przeprowadzi¢
analize wielowymiarowa. Dodatkowo, wiekszo$é¢ prezentowanych w literaturze badan
wskazuje na zauwazalng poprawe prognoz zmiennosci w przypadku modeli
hybrydowych.

Do stabosci modeli prezentowanych w  publikacjach  przedstawionych
w podrozdziale 4.1 zaliczy¢ mozna: wykorzystywanie tylko jednej specyfikacji
GARCH, porownanie z zmienno$cia historyczna jako estymatorem zmiennosci,
skupianie sie¢ wylacznie na jednym typie rozktadu warunkowego (czesto nawet nie
wspominano jaki rozklad zostal wybrany), badanie zmiennosci tylko na jednym
szeregu, nie stosowanie ruchomego okna. Dodatkowo, w zasadzie w zadnych sposrod
wymienionych badan dotyczacych modelowania finansowych szeregdéw czasowych nie
probowano prognozowaé (zmiennych w czasie) parametréw catych rozkladéow
warunkowych.

W ponizszych punktach zaprezentowane zostaly autorskie rozwiazania,
a w szczegblnosci modele oparte na architekturze ARMA-GARCH-LSTM,
wykorzystywane do punktowych prognoz zmiennosci, oraz modele NN-D stosowane

do przede wszystkim do prognozowania probabilistycznego. !

4.2.1 Hybrydowy model punktowych prognoz zmiennoSsci

Pierwszy sposrod proponowanych modeli hybrydowych stuzy do uzyskiwania
jednookresowych punktowych prognoz zmiennosci. Sktada sie on =z trzech
zasadniczych komponentéw, wykorzystujacych kolejno metody ekonometryczne, sieci
uczenia glebokiego oraz estymator zmiennosci GKYZ.

W pierwszej czesci modelu wykorzystywane sa struktury ARMA-GARCH do
uzyskania jednookresowych prognoz zmiennosci. Opodznienia czesci AR oraz MA w tej
strukturze ustalane sa na podstawie kryteriéw informacyjnych AIC oraz BIC (zob.
punkt 2.4.2) dla kazdego z badanych aktywéw finansowych. Z kolei do modelowania
warunkowej wariancji wykorzystywane sa nastepujace specyfikacje: GARCH(1,1),
EGARCH(1,1), GJR-GARCH(1,1) oraz APARCH(1,1) o zadanych rozktadach

warunkowych: normalnym, t-Studenta i skosSnym t-Studenta (zob. tabela 4.1).

1Cho¢ ich struktura umozliwia takze prognozowanie punktowe.
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Tabela 4.1: Wybrane specyfikacje modeli klasy GARCH i oraz uzyte typy rozkladéw warunkowych.

Specyfikacje modelowe Rozktady warunkowe

GARCH (1,1)
EGARCH (1,1)
GJR-GARCH (1,1)
APARCH (1,1)

Zrédlo: Opracowanie wlasne.

normalny
t-Studenta
Skosny t-Studenta

W drugiej czesci modelu, prognozy uzyskane przy pomocy wymienionych powyzej
modeli wykorzystane sa jako dane wejSciowe do rekurencyjnej sieci LSTM.
Zastosowanie komponentu sieciowego ma za zadanie poprawe prognoz zmiennosci
poprzez modelowanie ewentualnych dodatkowych zalezno$ci nieliniowych. Z kolei na
wyjsciu sieci, w celu oceny stopnia zgodnosci generowanych prognoz z wartosciami
pozadanymi, stosowany jest jeden z estymatorow bazujacych na zakresie cen —
estymator Garmana-Klassa zmodyfikowany o skoki miedzy cenami otwarcia
i zamkniecia (zob. punkt 2.3.2 oraz Yang i Zhang [2000]). Struktura proponowanego

modelu przedstawiona zostata na rysunku 4.1.
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Rysunek 4.1: Schemat modelu hybrydowego ARMA-GARCH-LSTM.

Uwaga: 0{,, oznacza wygaste prognozy zmiennosci, uzyskane z wykorzystaniem modelu

ARMA-GARCH, Ufﬂ prognoze zmiennosci z modelu hybrydowego, natomiast UE&YZ jest wartoscia

pozadana, czyli zmienno$cia uzyskana przy pomocy estymatora GKYZ.

Zrédlo: Opracowanie wlasne.

Specyfikacje modelu sieciowego (struktura sieci i wartodci poszczegdlnych
hiperparametréw) oraz informacje dotyczace danych wejsciowych (wybrane aktywa
finansowe oraz sposéb podziatu danych wejsciowych) zostaly doktadnie przedstawione
w podrozdziatach 5.3 oraz 5.5.

Zaproponowana konstrukcja modelu hybrydowego umozliwia wykorzystanie
roznych specyfikacji modeli klasy GARCH, takze o réznych typach rozkltadéw
warunkowych. Elastycznos¢ takiej architektury umozliwia takze stosowanie innych
typéw modeli zmiennosci (jak przyktadowo modele SV). Dodatkowo, poprzez zmiane
warto$ci pozadanych sieci mozliwe jest takze uzycie dowolnego estymatora
zmiennosci, do ktérego komponent sieciowy modelu jest uczony. Mozliwa jest takze
zmiana typu wykorzystywanej sieci neuronowej, przyktadowo na jednowymiarows sie¢
konwolucyjng lub rekurencyja sie¢ GRU.

Poniewaz, jak przedstawiono w poprzednim podrozdziale, sama koncepcja
taczenia modeli GARCH z sieciami neuronowymi nie jest nowa, nalezy wskazac
elementy, ktére w proponowanym podejsciu zostaty usprawnione. Pierwsza rzecza, na

ktéra warto zwroci¢ uwage w dotychczas publikowanych badaniach jest fakt, ze jako
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estymator shizacy do wskazania wartosci pozadanych sieci najczescie]
wykorzystywany jest estymator bazujacy na zmiennosci historycznej, HV (zob. np.
Kim i Won [2018], Kristjanpoller i Minutolo [2018]). W przypadku proponowanego
w niniejszej dysertacji modelu hybrydowego korzystamy z estymatora GKYZ -
znacznie efektywniejszego w stosunku do oszacowan HV. Decyzja o uzyciu tego
estymatora podyktowana jest przede wszystkim tym, ze jest on stosunkowo prosty
w konstrukeji, a przy tym nie zaktada statosci zmiennosci w czasie (jak ma to miejsce
w przypadku estymatora HV). Nie wymaga tez stosowania danych o czestotliwosci
wyzszej niz dzienna (tak jak estymatory zmiennosci zrealizowanej, RV), dzigki czemu
jest mniej narazony na efekty mikrostruktury rynku. Latwy dostep do historycznych
notowan o czestotliwosci dziennej pozwala takze na testowanie wsteczne modeli na
relatywnie dtugim okresie czasu i dla duzej liczby aktywéw. Fiszeder [2020] podkresla
takze, ze estymatory bazujace na zakresie cen coraz czesciej stosowane sg jako miara
stuzaca do oceny modeli zmiennosci.

Kolejna zmiana dotyczy danych wejsciowych uzytych w komponencie sieciowym.
Zamiast stosowania dodatkowych zmiennych wejéciowych do sieci, takich jak np.
oceny poszczegblnych parametréw modelu GARCH (jak w pracy Kim i Won [2018)),
rozwazone zostaly prognozy uzyskane z réznych specyfikacji modeli GARCH
wykorzystujacych dodatkowo rozne typy warunkowych rozktadow
prawdopodobienstwa, co zdaniem autora w wiekszy sposob moze przyczynié¢ sie do
poprawy uzyskiwanych prognoz. W niektérych badaniach (zob. np. Hu i in. [2020]),
jako dane wejsciowe do sieci uzywane byty réwniez dane z estymatoréw zmiennoSci.
W tym przypadku jednak zdecydowano sie na uzycie estymatora tylko jako wartosci
pozadanych sieci, nie wykorzystujac go jako zmiennej wejsciowej. W ten sposob
wyniki uzyskane za pomoca modeli hybrydowych mozna bezposrednio poréwnac
z wynikami otrzymanymi w modelach GARCH, ktore stuzyty jako dane wejsciowe do
sieci, aby sprawdzi¢, czy element sieciowy faktycznie poprawia jako$¢ uzyskanych
prognoz?.

Proponowany model hybrydowy, poprzez wprowadzenie wskazanych powyzej
modyfikacji, powinien lepiej uwzglednia¢ specyficzne wtasnosci danych finansowych,
co w rezultacie moze przyczynic¢ sie¢ do poprawy uzyskiwanych z jego wykorzystaniem
prognoz. Wyniki punktowych prognoz zmiennosci uzyskane przez poszczegdlne
specyfikacje model hybrydowego przedstawione zostaly w punkcie 5.5.1, natomiast

wyniki dotyczace prognoz ryzyka w punkcie 5.5.2. Analiza poréwnawcza modeli

2We wspomnianych badaniach sprawdzana byla sytuacja odwrotna, mianowicie sprawdzano, czy
dodanie prognoz uzyskanych przy pomocy modeli GARCH jako danych wejsciowych do sieci wplynie

pozytywnie na prognozy modelu sieciowego.
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hybrydowych z wybranymi specyfikacjami modeli klasy GARCH przedstawiona

zostata w punkcie 6.1.2.

4.2.2 Model prognoz probabilistycznych

Jako drugi typ modelu zaproponowany zostal model stuzacy do predykcji
probabilistycznych.  Pozwala ~on  na  prognozowanie  catych  rozktadow
prawdopodobienstwa przysztych stop zwrotu, poprzez modelowanie poszczegdlnych
parametrow zadanego typu rozkladu. Dzigki temu wyniki uzyskane przez taki model
mozna bezposrednio wykorzystaé np. w prognozowaniu ryzyka kapitatowego, bez
koniecznosci wykorzystywania dodatkowych parametréw (sredniej, liczby stopni
swobody czy skosnosci) z modeli GARCH, jak mialo to miejsce w przypadku modeli
hybrydowych, omawianych ~w  poprzednim punkcie. Specyfikacja  modelu
wykorzystujaca wylacznie zadang sie¢ neuronowa do uzyskania prognoz calego
rozktadu prawdopodobienstwa pozwala wiec na lepsza (bardziej bezposrednia) ocene
mozliwosci predykcyjnych modeli opartych wylacznie na sieciach neuronowych.
Ponizej  przedstawiony  zostal  sposéb  konstrukcji = sieciowego = modelu
probabilistycznego, wychodzac od zatozen ekonometrycznych.

Niech x; oznacza wektor danych wejsciowych do sieci, zawierajacy przeszte
informacje o stopach zwrotu 1 oszacowania zmiennosci (zob. rysunek 4.2),
wykorzystywany do modelowania biezacej wartosci r,. Proponowany model mozna

zapisa¢ za pomoca nastepujacych rownan:

T = () + €, (4.1)
er = o(x1)2, (z|ze) ~ D (n()), (4.2)
ol = o?(1y), (4.3)

gdzie D oznacza zadany z gory typ rozktadu prawdopodobienistwa o parametrach n(x;):

fD(Zt;l’t) = fé? (zt;(), l,v(xt)), gdy D = St (4_4)
Jest (2430, 1, (@), E(22) ), gy D = st

Funkcje pu(x;), o*(x:), v(zy) oraz &(x) sa W j-mierzalne, czyli sa pewnymi
funkcjami tylko i wytacznie przesztosci, na ktore natozone sg restrykcje w postaci:

o%(x) > 0, v(z) > 0, E(xy) > 0. Zaleznosci zadane tymi funkcjami nie sa definiowane
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w zaden formalny sposéb, co Swiadczy o wysokim poziomie ogdlnosci proponowanego
modelu.

Réwnania 4.1-4.3 definiuja (wysoce) nieliniowy model klasy ARMA-GARCH,
w ktérym dodatkowo zmienne w czasie sa parametry v, oraz &. Ze wzgledu na taka
specyfikacje, do wyznaczenia parametréw poszczegblnych rozkladéw konieczne jest
uzycie sieci neuronowe;j.

Parametry modelu sieciowego, w, wyznacza¢ mozna poprzez minimalizacje wartosci
przeciwnej do logarytmu funkcji wiarygodnosci (ang. Negative Log-Likelihood - NLL,
zob. Duerr i in. [2020]), w postaci:

NLL(w Z In fp (re;w). (4.5)
Zgodnie z powyzszym, w wyniku minimalizacji funkcji NLL, otrzymujemy:
w = argmingaNLL(w). (4.6)

Latwo pokazaé, ze postaci funkcji NLL dla poszczegdlnych rozwazanych typow
rozkladu prawdopodobienstwa (o funkcjach gestosci zadanych wzorami 2.40, 2.42 oraz

2.44), sa nastepujace:

— przy zatozeniu D = N :

n n 2
NLL(w) = = 111(27T + - Zln o; — Z (4.7)
213 t=1 201%
— przy zalozeniu D = St :
s (T 1y
NLL(w)=—->)_In ” + = In(ym)
t=1 F(?) 2 t=1
: ’ (4.8)
1 & v+ 1 T — [t
+ =Y Ino? + In{1+-—7F—1,
2 ; ! ; 2 ( vo} )
— przy zatozeniu D = sSt :
NLL(w + > Inoy
; (ft +& ) z:: (4.9)

—In [ fse(€2: 0, 1, ) H (=20) + fou(& 250, 1, 00) Hy (20) .

Wartosci parametréw w sa w istocie estymowane metoda najwieksze]

108



wiarygodnosci (zob. Duerr i in. [2020]), jednak z uwagi na bardzo ogdlna postaé
modelu, nie daja si¢ udowodni¢ wtasnosci estymatora. Podobnie, nie daja sie¢
wyprowadzi¢ ~ warunki Scistej czy  kowariancyjnej stacjonarnosci  procesu
zdefiniowanego za pomoca réownan (4.1 - 4.1). Z uwagi na wysoce nieliniowa postaé¢
modelu, estymacja” jego parametréw (uczenie sieci) przeprowadzana moze by¢ tylko
za pomoca sieci neuronowych.

W modelu probabilistycznym prognozy jednookresowe przyjmuja nastepujaca

postac:
(1) . 2 dv D= N
In (Tt+1aﬂt+1,0t+1)a gay U =
p(ren [V w) = féi)(rt+1;ut+1>o-§+1’ vit1), gdy D = St (4.10)

1
fs(s)t(TtH; ftt1, Opits Vet1, Se1), gdy D = sSt

Typ sieci w modelu probabilistycznym nie musi by¢ z gory okreslony, mozna
skorzysta¢ z dowolnego typu sieci dostosowanego do pracy z danymi w postaci
finansowych szeregéow czasowych. W ramach niniejszej rozprawy zastosowane zostaty
w tym wypadku jednowymiarowe sieci konwolucyjne (CNN) lub sieci rekurencyjne
typu LSTM.

Zadaniem modelu NN-D  jest prognozowanie calych rozktadow
prawdopodobiefistwa (o okreslonym z géry typie) poprzez prognozowanie wartosci
parametrow tych rozktadéw. Za pomoca opisanych powyzej funkcji straty jestesmy
w stanie prognozowa¢ wartosci parametrow w chwili ¢ + 1, dla wybranych rozktadéw
(normalnego, t-Studenta i sko$nego t-Studenta).? Dla rozkladu normalnego
prognozowane sg dwa parametry: u; oraz ;. Dla rozktadu t-Studenta dodatkowo
prognozowana jest wartos¢ parametru 1, oznaczajacego liczbe stopni swobody,
natomiast dla skosnego rozktadu t-Studenta dodatkowym, czwartym parametrem jest
& odpowiedzialny za modelowanie skosnoéci tego rozktadu. Aby uzyska¢ takie wyniki,
na wyjsciu sieci okreslona musi by¢ takze odpowiednia ilo$¢ neuronéw: dwa dla
rozkladu normalnego (poniewaz prognozowane sa wartosci dwoch parametréw), trzy
dla rozktadu t-Studenta, i cztery neurony dla skosnego rozkladu t-Studenta.
Struktura modelu, dla jednowymiarowej sieci konwolucyjnej, prognozujacego cztery

parametry skosnego rozktadu T-studenta przedstawiona zostata na rysunku 4.2.

3W nazwie modelu NN oznaczaé bedzie sie¢ neuronows, w tym przypadku sie¢ CNN lub LSTM,

za$ D oznaczaé bedzie typ konkretny rozktadu.
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Rysunek 4.2: Model probabilistyczny CNN-SSTD, z czterema neuronami wyjsciowymi zwracajacymi
wartoéci parametrow skosnego rozktadu t-Studenta.

Zrédlo: Opracowanie wlasne.

Zwroémy uwage, ze w hybrydowym modelu stosowanym do punktowego
prognozowania zmiennosci (zob. punkt 4.2.1), jako dane wejsciowe do sieci stuzyty
prognozy uzyskane za pomoca specyfikacji modeli GARCH. Z kolei w przypadku
modelu probabilistycznego, na wejsciu sieci, obok szeregu stop zwrotu, wykorzystane
zostaly oszacowania zmiennos$ci uzyskane z wykorzystaniem estymatora GKYZ.
Wynika to przede wszystkim z faktu, ze w przypadku modelu stosowanego do
prognozowania punktowego wartosci pozadane sieci musialy odpowiadac¢ ustalonemu
Jfaktycznemu” poziomowi zmiennosci, w tym przypadku byty to dane z estymatora.
W przypadku modelu probabilistycznego takie podejscie nie jest konieczne — jako
warto$ci pozadane sieci wykorzystywane sg jedynie zrealizowane stopy zwrotu, przez
co dane z estymatora moga by¢ wykorzystane takze na wejsciu sieci. Oczywiscie, ze
wzgledu na elastycznosé sieci, estymator mozna byto takze wykorzysta¢ na wejsciu
sieci w modelu punktowym, a prognozy uzyskane za pomoca modeli GARCH jako
wejscia w modelu probabilistycznym, jednak spowodowalo by to powstanie bardzo
duzej liczby podklas modelu do oceny w badaniach empirycznych.

Do podstawowych zalet zaproponowanego tu modelu NN-D zaliczy¢ nalezy przede
wszystkim mozliwos¢ prognozowania calego zadanego rozktadu prawdopodobienstwa

poprzez prognozowanie parametréw tego rozkladu, wyltacznie przy uzyciu sieci
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neuronowych. Co prawda podejscie to nie jest nowe, jednak stosowane byto
najczesciej do prognozowania parametréw rozkladu normalnego (jak w przypadku
pracy Duerr i in. [2020], w ktérej autorzy prezentuja podobna koncepcje na
przykladzie danych o charakterze medycznym, lub Chen i in. [2020], gdzie
wykorzystano dane sprzedazowe). Proponowany model skonstruowany zostat z mysla
o dodatkowych typach rozktadu, czegsto wykorzystywanych w modelowaniu
finansowym, takich jak rozktad t-Studenta i skosny rozktad t-Studenta. W tym celu
wyznaczone zostaly postaci funkcji straty (NLL) dla wspomnianych rozktadow. O ile
wsréd gotowych narzedzi programistycznych dostepne sg pakiety umozliwiajace
prognozowanie parametréow rozktadu normalnego i t-Studenta (zob. Dillon i in.
[2017]), to wyznaczenie i implementacja funkcji NLL dla skosnego rozkladu
t-Studenta jest elementem nowosci. Niewiele jest tez badan wykorzystujacych
podejscie sieciowe do prognozowania rozktadéw prawdopodobienstwa dla finansowych
szeregbw czasowych. Takze na tym gruncie proponowany model jest rozwigzaniem
nowatorskim.

Wykorzystanie w modelu komponentu sieci neuronowej pozwala na modelowanie
wysoce nieliniowych zaleznosci. Dodatkowo, umozliwia takze elastyczne szacowanie
i prognozowanie zmiennych w czasie parametréow liczby stopni swobody, v, oraz
sko$nosci, £. Takie rozwigzanie moze przyczyni¢ sie do poprawy jakosci prognoz
wartosci tych parametréw, w stosunku do oszacowan uzyskanych przy pomocy modeli
kasy GARCH z warunkowym rozkladem prawdopodobienstwa, gdzie wartosci tych
parametrow sg state w czasie.

Prognozy uzyskane z wykorzystaniem probabilistycznych modeli sieciowych mozna
takze wykorzysta¢ w celu oszacowania poziomdéw wartosci zagrozonej oraz
szacowanego niedoboru, analogicznie do tego jak zostato to opisane z podrozdziale
2.6. W tym kontekscie, zaleta podejscia sieciowego, w stosunku do przedstawionych
w punkcie 4.2.1 modeli hybrydowych ARMA-GARCH-LSTM, jest niezalezno$c¢
modelu od wynikéw uzyskanych przez modele GARCH. Poniewaz rezultatem prognoz
sg parametry catego rozktad prawdopodobienstwa, a nie tylko punktowe oceny
zmiennosci, podczas szacowania VaR oraz ES nie jest koniecznie korzystanie
z prognoz wartosci oczekiwanej (oraz ewentualnie liczby stopni swobody i skosnosci),
uzyskanych wezedniej przy pomocy modeli klasy GARCH.

Zaznaczy¢ nalezy takze, ze struktura opisywanych w tym punkcie modeli, pozwala
réwniez na uzyskanie prognoz punktowych stép zwrotu (ry4q) i zmiennodci (o41)¢)
jednak nie bedzie to przedmiotem rozwazan w niniejszej pracy.

Minusem przedstawionej powyzej struktury modelu jest koniecznos¢ zalozenia

danego typu rozktadu warunkowego. Poniewaz rozkltad nie jest znany, lepszym
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podejsciem byloby takie, ktére nie wymagaloby zakladania z gory typu rozktadu.
Takie rozwigzanie dopuszczaja przyktadowo modele umozliwiajace prognozowanie
poszczegdlnych kwantyli rozktadu (zob. Chen i in. [2020]). Naturalnym wydaje sie
takze zastosowanie w tym miejscu sieci bayesowskich (zob. podrozdzial 3.1.4), jednak
wykracza to poza tematyke poruszang w tej pracy.

Modele prognoz probabilistycznych ocenione zostaly przy pomocy miernikéw
prognoz rozktadow prawdopodobienstwa, opisanych w punkcie 2.5.4, natomiast
wyniki empiryczne zaprezentowano w punkcie 5.6.1. Wyniki dotyczace szacowania
ryzyka, uzyskane przez modele prognoz probabilistycznych, przedstawione zostaty
w punkcie 5.6.2, natomiast poréwnanie wynikéw modeli prognoz probabilistycznych
w zestawieniu z modelami punktowymi i GARCH pod wzgledem szacowania ryzyka

przedstawione zostato w punkcie 6.1.2.
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Rozdziat 5

Empiryczna ewaluacja modeli

predykcyjnych

Szeroko zakrojone badania empiryczne stanowia istotny element niniejsze;
rozprawy, pozwalajacy na dokladng ocene mozliwosci predykcyjnych analizowanych
modeli. Szczegbélowa prezentacja rezultatéw badan przedstawiona zostata
W ponizszym rozdziale, zas w rozdziale 6 przeprowadzona zostata analiza
poréwnawcza poszczegdlnych specyfikacji modelowych. Wyniki oméwione zostaty

takze w odniesieniu do celéw i hipotez badawczych.

5.1 Charakterystyka analizowanych zbioréw

danych

Podstawe badan empirycznych przeprowadzonych w niniejszej pracy stanowia
dane dotyczace wybranych indeksow gieldowych, reprezentujacych rynki o réznych
stopniach rozwoju gospodarczego. Podziat na rynki rozwinigte i wschodzace dokonany
zostal na podstawie klasyfikacji MSCI (ang. Morgan Stanley Capital International
zob. MSCI [2021]). W wyborze poszczegblnych kierowano sie takze potozeniem
geopolitycznym. Spoéréod rynkéw rozwinietych wybrane zostalty indeksy gietdowe:
S&P 500 (Stany Zjednoczone Ameryki), DAX (Niemcy) oraz NIKKEI 225 (Japonia).
Natomiast z rynkéw wschodzacych wybrane zostaly indeksy: Bovespa (Brazylia),
WIG (Polska), oraz KOSPI (Korea Potudniowa). W badaniach wykorzystane zostaty
dzienne notowania poszczegolnych indeksoéw, z okresu od 3 stycznia 2000 roku do 31
grudnia 2021 roku, pochodzace z serwisu finansowego Stooq (zob. stooq.com).
Wykresy dziennych notowan wspomnianych indeksow gietdowych przedstawione

zostaly na rysunku 5.1.
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Rysunek 5.1: Dzienne notowania wybranych indekséw gieldowych w okresie od 3.01.2000 do konca
31.12.2021 roku.

Zrédlo: Opracowanie wlasne.

Na wykresach daje si¢ zauwazy¢ trend wzrostowy dla notowan wszystkich
indekséw, ale takze duze spadki notowan w latach 2008 (zwiazane z globalnym
kryzysem finansowych) oraz w roku 2020 (w zwigzku z poczatkiem pandemii
COVID-19), przy czym zauwazyé mozna, ze zalamanie notowan trwalo znacznie
dhuzej w przypadku kryzysu globalnego, co szczegdlnie widoczne jest na przyktadzie
indeksu NIKKEI.

Wartos$ci indekséw przeksztatcone zostaly do postaci logarytmicznych stép
zwrotu, wyrazonych w punktach procentowych i w takiej postaci wykorzystywane
byty jako dane wejsciowe do poszczegdlnych modeli. Ksztattowanie sie szeregdéw stop
zwrotu przedstawione zostalo na rysunku 5.2. W zaprezentowanych na rysunku
szeregach zwr6ci¢c mozna uwage na wystepowanie obserwacji odstajacych
(nietypowych) zauwazy¢ mozna takze zgrupowania zmiennosci, widoczne szczegdlnie
w okresach kryzysowych. Okresy o zwickszonej zmiennosci lepiej widoczne sa na

rysunku 5.3, przedstawiajacym kwadraty stop zwrotu.
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Rysunek 5.2: Logarytmiczne stopy zwrotu wybranych indekséw gieldowych, wyrazone w punktach

procentowych.

Zrédlo: Opracowanie wlasne.
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Rysunek 5.3: Kwadraty stop zwrotu wybranych indeksow gietdowych.

Zrédto: Opracowanie wiasne.

Wspomniane powyzej okresy o podwyzszonej zmiennosci w latach 2008-2009 oraz
2020-2021 zauwazy¢ mozna na wszystkich wykresach, przy czym najnizsze wahania
w okresie 2008-2009 zanotowal indeks WIG. W przypadku indeksu KOSPI, zauwazy¢
mozna takze okres duzej zmiennosci w latach 2000-2004, zwiazany prawdopodobnie
z azjatyckim kryzysem finansowym. Z kolei zatamanie rynkéw zwiazane z poczatkiem
pandemii w 2020 roku charakteryzuje si¢ bardzo duzymi wahaniami wystepujacymi
w krotkim okresie czasu. W tym przypadku, rynki azjatyckie (NIKKEI oraz KOSPI)

wykazuja nizsze wahania niz dla pozostatych indekséw.
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Rysunek 5.4 przedstawia rozklady empiryczne stép zwrotu poszczegdlnych
indeksow, z dopasowanym rozktadem normalnym. Na wykresach mozna zauwazy¢, ze

rozkltady empiryczne charakteryzuja sie wystepowaniem ilosci odstajacych oraz

znacznie wiekszg koncentracja wokét sredniej.
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Rysunek 5.4: Rozklady wybranych instrumentéw finansowych z naniesionym rozkladem normalnym.

Zrédlo: Opracowanie wlasne.

Doktadny opis statystyczny danych przedstawiony =zostal w tabeli 5.1,
przedstawionej ponizej. Zaprezentowane w niej charakterystyki opisowe rozwazanych
szeregbw czasowych potwierdzajg wtasciwosci zaobserwowane na podstawie analizy
wykresowej. Dla wszystkich szeregdw wartosci sredniej zblizone sg do zera, natomiast
wartosci minimalne oraz maksymalne sg na poziomie 10-13%, co wskazuje na istnieje
wartosci znaczaco odstajacych od $éredniej. Ujemny wspotczynnik skosnosci wskazuje
z kolei na lewostronna asymetrie rozktadu. Wysoki wspotezynnik kurtozy swiadczy
natomiast o leptokurtycznosci i grubych ogonach rozktadéw, zas wysokie wartosci
wspotezynnikéw zmiennosci wskazuja na ogodlnie wysoki poziom zmiennosci badanych

1

Szeregow. Na tej podstawie mozna stwierdzi¢, ze rozwazane szeregi czasowe

przejawiaja typowe whasnosci stép zwrotu (zob. punkt 2.2.3).

1'Wspélezynnik zmiennoéci obliczono jako iloraz odchylenia standardowego i $redniej, bez mnozenia

wyniki przez czynnik 100.
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Tabela 5.1: Opis statystyczny danych.

Charakterystyka S&P N225 DAX WIG KOSPI  IBOV

Tlogé obs. 5283 5148 5329 5256 5163 5196
Srednia 0,0179  0,0071  0,0133  0,0209  0,0173  0,0375
Odch. std. 1,2554  1,4805  1,4909  1,2651  1,4938  1,8124
Wsp. zmien. 70,1340 209,7887 112,0077 60,5311 86,3468 48,3306
Min 12,7652 -12,1110 -13,0549 -13,5265 -12,8047 -15,9938
Maks 10,9572 13,2346 10,7975  6,0834 11,2844 13,6782
Skognoéé 10,3931 -0,3736  -0,1643 -0,5923 -0,5710  -0,3732
Kurtoza 10,9462  6,3532 57466 58565  7,0621  6,4722

Zrédto: Opracowanie wlasne.

Zaprezentowane powyzej charakterystyki opisowe rozwazanych —szeregdéw
czasowych potwierdzaja wlasciwo$ci zaobserwowane na podstawie analizy
wykresowej. Dla wszystkich szeregdw wartosci sredniej zblizone sg do zera, natomiast
warto$ci minimalne oraz maksymalne sg na poziomie 10-13%, co wskazuje na istnieje
wartosci znaczaco odstajacych od $éredniej. Ujemny wspoélczynnik skosnosci wskazuje
z kolei na lewostronna asymetrie rozktadu. Wysoki wspotezynnik kurtozy swiadczy
natomiast o leptokurtycznosci i grubych ogonach rozktadéw, zas wysokie wartosci
wspotczynnikow zmiennosci wskazuja na ogoélnie wysoki poziom zmiennosci badanych
szeregbw. 2 Na tej podstawie mozna stwierdzié, ze rozwazane szeregi czasowe
przejawiaja typowe whasnosci stoép zwrotu (zob. punkt 2.2.3).

W kolejnym kroku analizie poddane zostang funkcje ACF oraz PACF dla stop
zwrotu oraz ich kwadratéw. Wykresy tych funkcji dla stép zwrotu badanych indeksow
przedstawione zostaly kolejno na rysunkach 5.5 i . Liczba opdznien ograniczona
zostala w tym przypadku do dziesieciu, natomiast poziom istotnosci przekroczen
ustalony zostal na 5%.

Analizujac funkcje ACF mozna przede wszystkim zaobserwowaé istotne pierwsze
opdznienia dla indeksow S&P 500 oraz WIG. Dodatkowo, w przypadku indeksu S&P
500 mozna zauwazy¢ nieznaczne zwiekszenie istotnosci przy opo6znieniach rzedéw 6, 7,
8 oraz 9, podobnie dla indeksu DAX na piatym opdéznieniu i dla indeksu BOVESPA

na opo6znieniach rzedéw 1, 3, 6 oraz 9.

2Wsp6lezynnik zmiennoéci obliczono jako iloraz odchylenia standardowego i éredniej, bez mnozenia

wyniki przez czynnik 100.
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Rysunek 5.5: ACF dla stép zwrotu poszczegdlnych indekséw.

Zrédlo: Opracowanie wlasne.

W sposob bardzo zblizony do wykreséw ACF, prezentuja sie¢ takze przebiegi

funkeji autokorelacji czastkowych (PACF, zob. rys. 5.6). Wedlug tradycyjnego
podejécia Boxa i Jenkinsa do ustalenia rzedéw opédznien modeli ARMA(k,m) na

podstawie wykresow ACF i PACF wydaje sie, ze do opisu stop zwrotu indeksow S&P

500 oraz WIG nalezetoby ustalic £ = 1,m = 0, zas dla pozostatych indeksow
k=m=0.
S&P 500 NIKKEI 225 DA
010 010 010
0.05 T 0.05 0.05
! . - ! ? ! .
000 I * T l I 000 I T T3 S 000 5 I. I 1
-0.05 -0.05 4 0054
-0.10 -0.10 H -0.10
T T T T T T T T T T T T T T T
o 2 4 6 8 0 o 2 4 6 8 10 o 2 4 6 8 0
WIG KOSPI BOVESPA
010 o 010 o 010 o
0.05 o 0.05 A 0.05
0.00 T S I ! I I e 0.00 ! ) —— I I . 0.00 I 3 L l . ] r
-0.05 -0.05 4 0054
-0.10 1 010 -0.104
T T T T T T T T T T T T T T T
1] 2 4 [ 8 10 1] 2 4 6 8 0 1] 2 4 [ 8 0

Rysunek 5.6: PACF dla st6p zwrotu poszczegélnych indekséw.

Zrédlo: Opracowanie wlasne.

Przebiegi funkcji ACF i PACF przeanalizowa¢ mozna takze dla kwadratow oraz
wartosci bezwzglednych stop zwrotu. Wykresy dla kwadratow przedstawione zostaty

na rysunkach 5.7 oraz 5.8. Liczba opdznien w tym przypadku ustalona zostata na 50.
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Rysunek 5.7: ACF dla kwadratéw stép zwrotu.

Zrédlo: Opracowanie wlasne.

Przebiegi ACF dla kwadratéw stép zwrotu wskazuja na istotne, stopniowo
wygasajace autokorelacje. W przypadku indeksow S&P 500, NIKKEI oraz BOVESPA
poczatkowo wyzsza istotnos¢ opdznien wygasa w okolicach 20-30 opdznienia. Dla
indeksow DAX, WIG oraz KOSPI poczatkowa istotno$¢ opdznien jest nizszy,
a wygasanie znacznie wolniejsze. Niemniej jednak, dla wszystkich badanych indeksow
zaobserwowa¢ mozna silne, powolnie wygasajace autokorelacje dla kwadratow stép
zwrotu, co moze $wiadczy¢ o pewnej persystencji zmienno$ci.

7 kolei na podstawie funkcji PACF dla kwadratéow stop zwrotu, zaprezentowanej
ponizej, zaobserwowa¢ mozna znacznie szybsze wygasanie istotnosci opodznien
w przypadku indeksow S&P 500, NIKKEI oraz BOVESPA w okolicach pigtego
op6znienia, natomiast dla indekséw DAX, WIG oraz KOSPI w okolicach 8-10
opdznienia, co potwierdza wystepowanie autokorelacji dla tych szeregow.

Funkcje ACF oraz PACF dodatkowo przeanalizowane zostaly dla wartosci
bezwzglednych stop zwrotu oraz dla oszacowan zmiennosci uzyskanych
z wykorzystaniem estymatora GKYZ. Wyniki zamieszczone zostaly w Aneksie
(kolejno na rysunkach A.1, A.2 oraz A.31 A.4). W przypadku wartosci bezwzglednych
oraz estymatora GKYZ wyniki sg bardzo zblizone do oméwionych powyzej wynikéw
dla kwadratéw stép zwrotu, z tym wyjatkiem, ze wygasanie w przypadku funkcji

ACF jest nieco wolniejsze.
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Rysunek 5.8: PACF dla kwadratéw stép zwrotu.

Zrédlo: Opracowanie wlasne.

W kolejnym kroku zbadano korelacje pomiedzy szeregami stop zwrotu badanych
indekséw. W pierwszej kolejnosci, na rysunku 5.9 wyniki zaprezentowane zostaty
w postaci wykreséw punktowych dla par poszczegolnych aktywow.

Wartosci wspotezynnikow korelacji Pearsona, rowniez dla par poszczegdlnych
indekséw, zawarto w tabeli 5.2. Analizujac przedstawione wyniki, mozna przede
wszystkim zauwazy¢, ze wszystkie pary charakteryzuja sie korelacja dodatnig.
Indeksy S&P 500 i BOVESPA, oraz S&P 500 i DAX wykazuja najsilniejsza korelacje
(wspétezynniki na poziomie odpowiednio 0,6186 oraz 0,6137). Indeksy NIKKEI
i KOSPI wykazuja dodatnig korelacje na poziomie 0,5787, natomiast indeksy WIG
oraz DAX na poziomie 0,5343. Takie wartosci wspotezynnikéw wskazujg na korelacje
zauwazalng, jednak nie szczegélnie silng. Zaleznosci pomiedzy tymi parami indeksow

mozna zaobserwowaé takze na przedstawionych wykresach.
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Rysunek 5.9: Wykresy punktowe dla par poszczegdlnych indekséw.

Zrédlo: Opracowanie wlasne.

Tabela 5.2: Wartoéci wspélczynnikéw korelacji Pearsona

S&P  N225 DAX WIG KOSPI IBOV
S&P 1,0000 0,1490 0,6137 0,3748 0,1828 0,6186
N225 0,1490 1,0000 0,2826 0,3099 0,5787 0,1643
DAX 0,6137 10,2826 11,0000 0,5343 0,3108 0,4708
WIG 0,3748 0,3099 0,5343 1,0000 0,3592 0,3675
KOSPI 10,1828 0,5787 0,3108 0,3592 1,0000 0,2125
IBOV  0,6186 0,1643 0,4708 0,3675 0,2125 1,0000

Zrédto: Opracowanie wiasne.
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Analizujac przedstawione wyniki, mozna przede wszystkim zauwazy¢, ze wszystkie
pary charakteryzuja sie korelacjg dodatnig. Indeksy S&P 500 i BOVESPA, oraz S&P
500 i DAX wykazuja najsilniejsza korelacje (wspétezynniki na poziomie odpowiednio
0,6186 oraz 0,6137). Indeksy NIKKEI i KOSPI wykazuja dodatnia korelacje na
poziomie 0,5787, natomiast indeksy WIG oraz DAX na poziomie 0,5343. Takie
wartosci wspotezynnikow wskazujg na korelacje zauwazalng, jednak nie szczegdlnie
silng. Zaleznosci pomiedzy tymi parami indekséw mozna zaobserwowaé takze na
przedstawionych wykresach.

Na tej podstawie zauwazy¢ mozna, ze silng korelacja charakteryzuja sie indeksy
krajéow pochodzacych z tego samego obszaru geograficznego (S&P 500 i BOVESPA,
DAX i WIG, NIKKEI i KOSPI). Mozna zatem wnioskowaé, ze duzy wplyw na
korelacje pomiedzy indeksami poszczegdlnych krajow ma ich potozenie geopolityczne,
natomiast w mniejszym stopniu klasyfikacja rynkow ze wzgledu na rozwdj
gospodarczy — w tym wypadku co prawda silng korelacje wykazujg indeksy S&P 500
i DAX, jednak niska korelacja charakteryzuja sie indeksy S&P 500 i NIKKEI (wartosé
wspolezynnika 0,1490) oraz DAX i NIKKEI (0,2826). Niska korelacja (na poziomie
0,2 - 0,36) wystepuje takze w przypadkach par indekséw z rynkéw wschodzacych.

5.2 Budowa oprogramowania i algorytmoéw
testujacych

W celu budowy oprogramowania wykorzystanego przy implementacji metod
ekonometrycznych i sieci uczenia glebokiego wykorzystane zostaly jezyki Python
w wersji 3.7.10 oraz R w wersji 4.1.0, wraz z dostepnymi wybranymi pakietami oraz
bibliotekami.

W $rodowisku Python wykorzystane zostaly przede wszystkim biblioteki:

— TensorFlow (wersje 2.5-2.8) oraz Tensorflow Probability (wersja 0.16.0) -

podstawowe biblioteki implementujace mechanizmy uczenia gtebokiego,

— Keras (wersja 2.4) - wysokopoziomowe API (ang. Application Programming
Interface) dla bibliotek TensorFlow,

— KerasTuner - biblioteka stosowana do dostrajania hiperparametréw sieci,
— Numpy oraz Pandas - biblioteki wykorzystywane do przetwarzania danych,

— Statsmodels oraz SciPy - biblioteki wykorzystywane do modelowania i obliczen

statystycznych,
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— Matplotlib oraz Seaborn - biblioteki wykorzystywane do opracowania wykresow.

Z kolei w srodowisku programistycznym R wykorzystane zostaty biblioteki:

rugarch - biblioteka umozliwiajaca estymacje i prognozowanie z wykorzystaniem
jednowymiarowych modeli ARMA-GARCH,

tidyverse oraz xts - biblioteki wykorzystywane do przetwarzania danych?,

— TTR oraz FinTS - blibioteki stosowane do pracy z danymi finansowymi

— tensorflow oraz keras - pakiety umozliwiajace korzystanie z tych bibliotek

w §rodowisku R (wymagaja srodowiska Python),

— scroingRules oraz scoringutils - pakiety umozliwiajace ocene trafnosci prognoz

probabilistycznych.
Obliczenia wykonywane byly na komputerze wyposazonym w podzespoty:

— procesor: AMD Ryzen 7 3700X 3,6GHz,

— pamie¢: 16GB RAM,

karta graficzna: NVIDIA GeForce RTX 2060, wyposazona w rdzenie tensorowe.

Taka konfiguracja maszyny umozliwiala stosunkowo szybkie wykonywanie obliczen,
bez konieczno$ci wprowadzania ograniczen dotyczgcych danych wejéciowych
w sieciach neuronowych (np. wielkosci partii wsadowej). Rdzenie tensorowe
umozliwialy dodatkowo wykorzystanie procesora graficznego do przyspieszenia
obliczen w procesie uczenia sieci. Czas obliczen dla modeli sieciowych dla pelnego
zbioru danych (ok. 5000 obserwacji) wynosil w granicach od 5-30 minut, w zaleznosci
od struktury sieci, wartosci hiperparametréw oraz liczby epok. W przypadku modeli
ARMA-GARCH czas potrzebny na estymacj¢ oraz prognozowanie wynosit okoto 5
minut dla pojedynczej specyfikacji modelu.

W  ramach badan przygotowane zostaly autorskie kody, w ktérych
zaimplementowano wyzej wymienione biblioteki w celu rozwiazania zadanych
problemow badawczych oraz prezentacji wynikow. Zaprogramowane zostalty narzedzia
umozliwiajace uczenie, estymacje oraz prognozowanie przy pomocy sieci uczenia
gtebokiego modeli ekonometrycznych oraz modeli hybrydowych.

W kontekscie prognozowania punktowego stop zwrotu, zaproponowano autorskie

algorytmy testujace modele sieci neuronowych, umozliwiajace podzial danych na okna

3Tidyverse jest zbiorem bibliotek (zob. tidyverse.org)
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treningowe, walidacyjne oraz testowe (z wykorzystaniem okna rolowanego), oraz oceng
uzyskanych prognoz w ramach testu wstecznego, przy pomocy miernikéw trafnosci
prognoz. Algorytmy te stuzyly takze do budowy prostych strategii inwestycyjnych,
bazujacych na uzyskanych prognozach, oraz ich ocene z wykorzystaniem miernikow
oceny strategii.

Zaimplementowane zostaty takze narzedzia umozliwiajace budowe i wykorzystanie
modeli hybrydowych ARMA-GARCH-LSTM, w celu uzyskania punktowych prognoz
zmiennosci. Algorytmy te umozliwialy estymacje i prognozowanie z wykorzystaniem
12 specyfikacji modeli ARMA-GARCH, potaczenie ich w 12 kolejnych modelach
hybrydowych oraz ocen¢ prognoz uzyskanych za pomocag tych modeli
z wykorzystaniem miernikéw oceny prognoz, a takze w kontekscie szacowania
wartosci zagrozonej i oczekiwanego niedoboru.

Nastepnie zaprogramowane zostaly zaproponowane przez autora algorytmy
testujace dla modeli prognoz probabilistycznych NN-D opartych na sieciach uczenia
gtebokiego. Jako dodatek do algorytméw opisanych powyzej (stuzacych do uczenia
sieci, oceny prognoz z wykorzystaniem odpowiednich miar oraz oceny prognoz
ryzyka), w  celu  umozliwienia  poprawnego  prognozowania  rozktadéw
prawdopodobiefistwa zaimplementowane zostalty takze funkcje straty (zob. wzory 4.7,
4.8, 4.9), umozliwiajace prognozowanie parametréw rozkladéw normalnego,
t-Studenta oraz skosnego rozktadu t-Studenta.

W celu usprawnienia procesu dostrajania hiperparametrow, przygotowane zostaly
autorskie kody umozliwiajace czeSciowa automatyzacje tego procesu (z
wykorzystaniem gotowych bibliotek). Dodatkowo przygotowane zostaly kody
umozliwiajace zaprezentowanie wynikow prowadzonych badan w formie wykresow
graficznych. Opisane powyzej algorytmy i narzedzia tworzone byty w duzej mierze od
podstaw, z mysla o ich skalowalnosci oraz mozliwosci podzniejszego wykorzystania

w kolejnych badaniach.

5.3 Optymalizacja hiperparametrow modeli
sieciowych

Kluczowym aspektem podczas projektowania architektury kazdej sieci neuronowe;j
jest odpowiedni dobér hiperparametréow. Proces dostrajania hiperparametréow moze
mie¢ duze znaczenie na wyniki uzyskiwane przez sie¢, dlatego warto poswieci¢ mu
duzo uwagi podczas przygotowywania struktury sieci. Najczesciej stosowane sa dwa
podejscia: heurystyczne, w ktérym dobor poszezegdlnych parametrow sieci odbywa sie

na podstawie wartosci podanych w badaniach opublikowanych w literaturze naukowej,
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lub poprzez proces dostrajania poszczegélnych hiperparametrow (ang. hiperparameters
tuning).

Dobor hiperparametrow poprzez ich dostrajanie jest procesem czasochtonnym,
gltownie ze wzgledu na ilo$¢ hiperparametrow oraz zakres wartosci, ktore moga one
przyjmowaé¢. Pomocne w tym procesie moga okaza¢ si¢ zautomatyzowane algorytmy
pozwalajace na dobdr optymalnych wartosci w sposéb znacznie szybszy niz
manualnie. Do podstawowych narzedzi stosowanych w tym celu nalezy biblioteka
KerasTuner (zob. rozdzial 3). Jednym z proponowanych w zakresie tego narzedzia
algorytmow, jest tzw. algorytm  hyperband. Sposéb dzialania algorytmu
w szczegolnosci dobrze nadaje sie do sytuacji, w ktérych zoptymalizowane musza by¢
liczne konfiguracje warto$ci hiperparametréw. Dziala on na zasadzie turniejowej —
warto$ci parametréw sprawdzane sa w zestawach (ang. brackets), z ktérych na
niewielkiej liczbie epok testowane sg optymalne warto$ci hiperparametrow. Wartosci
te przekazywane sa do kolejnego etapu, w ktéorym dostrajanie jest powtarzane dla
wigkszej ilosci epok. Proces ten mozna powtarza¢ dla dowolnego zestawu
hiperparametréw (nie tylko jednego), co pozwala na jednoczesne sprawdzenie w jaki
sposob pary (lub wigksze ilosci) hiperparametréw wplywaja na poprawienie wynikow
uzyskiwanych przez siec.

Poniewaz nawet z pozoru niewielkie zmiany w wartosciach moga znaczaco
przyczynié¢ sie do poprawy lub pogorszenia wynikéw, warto sprawdzi¢ wptyw zmian
wartosci dla mozliwie szerokiego zakresu hiperparametréw. Sprawdzanie zmian
warto$ci powinno odbywac jedynie na czesci dostepnych danych uczacych, a takze bez
sprawdzania zmian na zbiorze testowym, aby unikngé¢ problemu wychodzenia
w przysztos¢ (ang. look ahead bias). 7 tego wzgledu, w przypadku stosowania metod
walidacji krzyzowej (takich jak schemat rolowany lub rekursywny), zmian dokonywaé
nalezy jedynie na pojedynczym wybranym oknie. Ze wzgledu na to, ze jest to proces
czasochtonny, wielu badaczy pomija go stosujac wartosci parametrow wybrane
heurystycznie. W tych badaniach zdecydowano sie jednak na przeprowadzenie bardzo
doktadnego dostrajania, w celu uzyskania mozliwie najlepszych wynikéw. Proces ten
byt jednym z najbardziej czasochtonnych zadan praktycznych wykonanych w ramach
przedstawionych w tu badan. Proces dostrajania hiperparametrow przeprowadzony
zostal po czeSci ,recznie” (poprzez samodzielne zmiany wartosci poszcezegdlnych
parametréw w kodzie), a czeSciowo z wykorzystaniem narzedzia KerasTuner. Tabela
5.3 przedstawia zestawienie dostrajanych parametrow, przedzialy testowanych
warto$ci, wartosci wybrane jako optymalne, oraz sposéb wyboru tych wartosci.
Dostrajanie  hiperparametréow wykonano w pierwszej kolejnosci dla  sieci

wykorzystywanych do uzyskania punktowych prognoz stép zwrotu. Wartosci uzyskane
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w tym procesie stanowily punkt wyjsciowy takze dla modeli hybrydowych i modeli
prognozowania probabilistycznego, jednak wobec zmiany struktury modelu (i

prognozowanych danych), wymagaly dalszych usprawnien.

Tabela 5.3: Dostrajanie hiperparametréw dla sieci wykorzystywanych w prognozowaniu punktowym

stép zwrotu.

Hiperparametr Wartosci testowane Wartoé¢ wybrana  Narzedzie
[lo$¢ warstw ukrytych 1-5 3 Recznie
Ilo$¢ neuronéw w warstwie 8-700 512/256/128 KerasTuner
Dropout 0-0,5 0,0002 KerasTuner
Regularyzacja o 0-0,5 0,00001 KerasTuner
Optymalizator Adam/RMSProp/SGD Adam Recznie
Predko$é uczenia 0,0001-0,5 0,0015 KerasTuner
Dhugosé sekwencji 1-200 10 Recznie
Dtugosé okna 252-Ex./21-1008 2016/756 Recznie
Rozmiar partii wsadowej 1-Exp. 756 Recznie
Liczba epok 10-100 200 (MC) Recznie
Kernel size* 1-5 2 Recznie
Liczba filtréw™ 10-512 256 KerasTuner
Pool size* 1-5 2 Recznie

Uwaga: Oproécz optymalizatora Adam przetestowane zostaly takze jego wariacje. Exp. oznacza zbior
okna rozszerzanego, zas MC oznacza zatrzymanie uczenia przy wykorzystaniu punktu kontrolnego
modelu. * - dotyczy sieci CNN.

Zrédlo: Opracowanie wlasne.

Dodatkowe zmiany, ktére wprowadzone zostalty w strukturze sieci LSTM
wykorzystanej w modelu hybrydowym, stuzacym do punktowego prognozowania

zmiennosci:
— liczba neuronéw: 128/512/128 (KerasTuner),
— 15: 0,00002,
— predkos¢ uczenia: 0,005,

— dhugosé sekwencji: 3,

dtugosé zbioréw: Exp.(od 1008)/504,

— rozmiar partii wsadowej: Exp.
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— epoki: 150(MC).

7 kolei w modelu prognozowania probabilistycznego zmienione zostaty nastepujace

hiperparametry architektury sieci LSTM oraz CNN:

— liczba neuronéw: 128/64/32,

12: 0,002,

dropout: 0,02,

— predkos¢ uczenia: 0,002,

— diugosé sekwencji: 3,

— dtugosé zbioréw: Exp.(od 1008)/504,
— rozmiar partii wsadowej: 128,

— epoki: 300(MC).

Warto podkresli¢, ze finalnie wybrane wartosci hiperparametrow moga nie by¢
wartosciami optymalnymi. Wynika to przede wszystkim z faktu, ze zmiany tych
warto$ci sprawdzane powinny by¢é w  roéznych konfiguracjach dla zestawow
hiperparametréw (osobno, parami, tréjkami itd.). Jednak ze wzgledu na duza ilosé
kombinacji i zakresu wartosci, przetestowanie wszystkich kombinacji nie bytoby
mozliwe w ramach tych badan. Problem ten czeSciowo rozwigzuje stosowanie
wspomnianego algorytmu KerasTuner, ktory sprawdza mozliwie duza ilo$é
poszczegblnych kombinacji, jednak nawet jego wykorzystanie do analizy wszystkich
kombinacji nie bytoby czasowo mozliwe. Poniewaz wyniki uzyskane przez sieci,
przedstawione w ponizszych podrozdziatach, sa w duzym stopniu zalezne od wartosci
hiperparametrow, nalezy zalozy¢, ze moga one nie by¢ jednoznacznie optymalne

i istnieje mozliwosé¢ ich poprawy.

5.4 Prognozowanie punktowe stop zwrotu

W ponizszym podrozdziale przedstawione zostaly wyniki prognoz punktowych
stop zwrotu, uzyskanych przez modele oparte na wybranych typach sieci
neuronowych: klasyczne sieci MLP, oraz sieci uczenia glebokiego typu LSTM oraz
CNN. Wyniki zaprezentowane zostaty dla wszystkich badanych indekséw,

przedstawionych w podrozdziale 5.1, i dotycza ocen trafnosci prognoz punktowych
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z wykorzystaniem poszczegdlnych miernikéw, a takze w kontekscie strategii
inwestycyjnych.

W tej czesci badan jako dane wejsciowe do sieci, a takze jako jej wartosci pozadane,
wykorzystane zostaly dane w postaci dziennych logarytmicznych stop zwrotu, opisane
w podrozdziale 5.1. W przypadku modeli wykorzystujacych jako funkcje straty miernik
MSE, dane zostaly znormalizowane do zakresu [-1; 1], natomiast w przypadku, gdy jako
funkcja straty stosowana byta miara MADL, normalizacja nie byta stosowana, przede
wszystkim ze wzgledu na sposoéb konstrukeji tej miary.*

W  procesie uczenia sieci stosowane byto podejscie walidacji krzyzowej,
z wykorzystaniem okna rolowanego. Dane podzielone zostalty na zbiory uczace, o
dhugoséci 2056 obserwacji (8 lat), z ktérych dodatkowo wydzielane byty zbiory
walidacyjne o dlugosci 665 obserwacji, co stanowi 33% danych w zbiorze uczgcym.
Dtugosé zbioru testowego, i zarazem okna rolowanego wynosita w tym przypadku 756
obserwacji (3 lata). Laczna ilo$¢ prognoz dla pojedynczego indeksu wyniosta okoto
3267 obserwacji, co odpowiada okresowi od 3 stycznia 2008 roku do 31 grudnia 2020
roku. Wartosci poszczegélnych hiperparametréw sieci przedstawione zostaly w tabeli
5.3.5

W pierwszej kolejnosci, w tabeli 5.4, przestawione zostaly wartosci poszczegolnych
metryk (MSE, MAE, MAPE, MADE oraz trafno$¢ procentowa) dla trzech typow sieci,
uczonych z wykorzystaniem miernika MSE jako funkcji straty (zob. punkt 2.5.2).

W wynikach zaprezentowanych w tabeli zauwazy¢ mozna, ze obie sieci uczenia
gtebokiego spisujg si¢ nieznacznie lepiej od klasycznych sieci MLP pod wzgledem
niemalze wszystkich miernikéw trafnosci. Pod wzgledem miernika MSE, ktory
wykorzystywany byt jako funkcja straty, sieci LSTM uzyskaly najlepsze wyniki dla
czterech sposrod szesciu badanych aktywow, co daje najlepszy wynik. Takze pod
wzgledem trafnosci prognoz nieznacznie lepiej spisywaly sie sieci LSTM. Z kolei dla
miary MADL, nieznacznie lepiej spisywaly sie sieci CNN, ktére najnizsze wartosci
uzyskaty dla trzech sposrod badanych indekséw.

Dodatkowo zauwazy¢ mozna, ze wyniki nie sa jednoznaczne. Jedynie w przypadku
miar MSE oraz MAE wyniki sa zblizone (z wyjatkiem indeksu KOSPI), gtéwnie ze
wzgledu na bardzo zblizong konstrukcje tych miernikow. W pozostatych przypadkach
niskie wyniki dla jednego miernika, przyktadowo MSE, nie przekladaja sie na niskie

wyniki miary MADL, czy tez wysoka trafnosé¢ procentowa. Warto mieé ten fakt na

4Dane normalizowane bylby wedlug wzoru r, = a + %, gdzie, w tym przypadku,
a=-1,b=1.

5Tlo$é¢ dostepnych danych dla wybranych aktywéw byla rézna, rézna jest tez iloéé dni sesyjnych
w ciagu roku. Poniewaz uzyte zostaly wszystkie dostepne dane, a dlugosci okien sa state, powstaly

niewielkie r6znice w ilosci prognozowanych obserwacji.
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uwadze podczas wyboru funkcji straty, ktoéra optymalizowana jest podczas procesu
uczenia sieci. Z tego wzgledu, w dalszej czesci badan, sieci uczone beda takze

wykorzystujac jako funkcje straty miare MADL.

Tabela 5.4: Prognozowanie punktowe stép zwrotw: mierniki bledu dla sieci trenowanych

z wykorzystaniem MSE

Indeks MSE MAE MADL TRAFNOSC

Sieci MLP

S&P  1,8384 10,8378 -0,0238  50,902%
NKX 23771 1,0530 0,0141 49,904%
DAX 21450 0,9959 0,0141 51,071%
WIG  1,5936 0,8711 -0,0103  50,586%
KOSPI 15671 0,8180 0,0114  49.539%
BVP 32845 1,2520 0,0036 50,062%

Sieci CNN

S&P  1,7904 0,8269 -0,0527 52,8007%
NKX  2,3747 1,0519 -0,0091  50,766%
DAX  2,1385 0,9910 0,0008 50,558%
WIG  1,5804 0,8656 0,0196 49,506%
KOSPI 1,5630 0,8133 -0,0390  52,430%
BVP 32488 11,2443 -0,0428  50,911%

Sieci LSTM

S&P 1,8046 0,8275 -0,0381  52,372%
NKX  2,3569 1,0465 -0,0275  51,628%
DAX 21725 09882 -0,0327  51,946%
WIG  1,5763 08629 0,2510 50,185%
KOSPI 1,5541 0,8145 0,0177 49,857%
BVP  3,2427 12411 -0,0199  51,006%

Uwaga: Pogrubione zostaly wartosci najnizsze dla miernikéw MSE oraz MADL, oraz wartosci

najwyzsze dla trafnosci.

Zrédlo: Opracowanie wlasne.

Podsumowujac powyzsze rezultaty, sposroéd sieci badanych w kontekscie oceny
punktowej za pomoca wybranych miar trafno$ci prognoz, najlepsze wyniki uzyskaty
sieci LSTM, generujac nieznacznie lepsze wyniki w poréwnaniu z siecia CNN. Sieci

MLP w tym przypadku uzyskaly najstabsze rezultaty. Doktadniejsza analiza
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porownawcza wynikéw uzyskanych przez modele bazujace na poszczegdlnych typach
sieci przedstawiona zostatla w rozdziale 6. Z kolei w ponizszych podrozdziatach
prognozy uzyskane przez poszczegolne sieci ocenione zostang pod katem mozliwosci

ich wykorzystania przy tworzeniu strategii inwestycyjnych.

5.4.1 Wiyniki dla strategii wykorzystujacej sieci MLP

W  pierwszej kolejnosci, w tabeli 5.5, przedstawione zostaly wyniki prognoz
uzyskanych przez sie¢ MLP, w kontekscie strategii inwestycyjnych. W tabeli
zestawione zostaly wyniki dla strategii pasywnej (ang. Buy and Hold - B&H),
strategii opartych na prognozach stop zwrotu uzyskanych przez sieci, gdzie
prognozowany kierunek zmiany oznaczal sygnal kupna lub sprzedazy (ang.
Long-Short - LS), oraz strategii, w ktérej wykorzystane zostaly jedynie sygnaty
kupna, a ujemny kierunek prognozy oznaczal wyjscie z pozycji (ang. Long Only -
LO). % Do oceny efektywnosci strategii inwestycyjnych zastosowano mierniki
przedstawione w punkcie 2.5.3.

Na podstawie zaprezentowanych wynikow mozna zauwazy¢, ze pod wzgledem
skumulowanego zwrotu wynik lepszy od strategii pasywnej udato si¢ uzyskaé¢ jedynie
w przypadku indeksu WIG dla strategii LO, natomiast w pozostatych przypadkach
nie udato si¢ uzyskac lepszych rezultatow. Zauwazy¢ mozna takze, ze strategie LO
cechuja sie mniejsza zmiennoscia (maja mniejsze wartosci miernikéw aSD, MD oraz
MLD). Dzigki temu, w przypadku indeksu S&P 500, wskazniki IR sa wyzsze niz
przypadku strategii pasywnej, mimo nizszego skumulowanego zwrotu (aRC).

Rysunek 5.10 przedstawia zestawianie wizualnego przebiegu poszczegdlnych
strategii dla wszystkich rozwazanych aktywow. Zaobserwowa¢ na nim mozna, ze dla
indekséw S&P 500, WIG oraz BOVESPA, strategie LS i LO przez wiekszo$¢ czasu
utrzymywaly sie na podobnym (lub wyzszym jak przypadku S&P 500) poziomie do
strategi pasywnej, natomiast w przypadku pozostatych indeksow — przynosity straty,
przy czym krzywa kapitalowa dla strategii LO jest w wiekszosci przypadkéw

nieznacznie wyzej niz dla strategii LS.

6Uzycie strategii wykorzystujacej tylko sygnaly kupna znajduje uzasadnienie jedynie w przypadku
aktywow charakteryzujacych sie stalym dlugoterminowym wzrostem, tak jak ma to miejsce

w przypadku wiekszoéci indekséw gietdowych.
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Tabela 5.5: Prognozowanie punktowe stép zwrotu: wyniki strategii dla sieci MLP trenowanych na
MSE

Strategia aRC aSD MD MLD IR* [IR** IR***

Indeks S&P500

B&H 774 21,12 5258 430 037 005 0
LS 413 21,13 35,18 3,04 020 002 0
LO 6,98 1560 2491 1,17 045 0,12 0,01

Indeks NIKKEI 225

B&H 6,62 24,33 51,31 4,78 0,27 0,04 0

LS -5,92 24,34 68,52 9,00 -0,24 -0,02 0

LO 1,42 1846 41,01 3,63 0,08 0,00
Indeks DAX

B&H 4,34 2297 54,6 543 0,19 0,02 0

LS -5,65 2298 73,8 12,28 -0,25 -0,02 0

LO 0,35 17,36 35,57 6,46 0,02 0,00
Indeks WIG

B&H 1,74 19,74 5762 3,13 0,09 0 0

LS 0,99 19,74 4321 9,29 0,05 0

LO 2,15 15,36 47,38 2,90 0,14 0,01

Indeks KOSPI

B&H 3,86 19,67 50,30 5,88 0,20 0,02 0
LS -4,32 19,67 56,63 12,37 -0,22 -0,02 0
LO 0,38 15,75 43,78 5,08 0,02 0,00

Indeks BOVESPA

B&H 494 2847 59,96 9,15 017 001 0
LS 443 2847 6626 5,12 -0,16 -0,01
LO 1,96 2124 51,03 575 0,09 0,00

Zrédlo: Opracowanie wlasne.
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Rysunek 5.10: Krzywe kapitalowe dla sieci MLP trenowanych na MSE.

Zrédlo: Opracowanie wlasne.

5.4.2 Wiyniki dla strategii wykorzystujacej sieci CNN

W tej czeSci przedstawione zostaly  wyniki  strategii = zbudowanych
z wykorzystaniem prognoz uzyskanych przy pomocy sieci CNN. Wskazniki oceny
strategii inwestycyjnych przedstawione =zostaly w tabeli 5.6. Oznaczenia
poszczegdlnych strategii oraz wykorzystanych mierniki sg analogiczne do tych
przedstawionych w poprzednim podrozdziale, dotyczacym wynikéw uzyskanych
z wykorzystaniem sieci MLP.

W przypadku sieci CNN, analizujac wskaznik skumulowanego zwrotu aRC, wyniki
lepsze niz strategia pasywna udato sie uzyska¢ dla trzech indekséw: S&P 500, KOSPI
oraz BOVESPA (zaréwno dla strategii LS oraz LO). W pozostalych przypadkach
warto$ci skumulowanego zwrotu byty nizsze, dodatkowo, w przypadku indeksu WIG,

strategie bazujace na modelu sieciowym przynosity straty, podobnie jak w przypadku
strategii LS dla indeksu DAX.
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Tabela 5.6: Prognozowanie punktowe stép zwrotu: wyniki strategii dla sieci CNN trenowanych na
MSE

Strategia aRC aSD MD MLD IR* IR** [R***

Indeks S&P500

B&H 774 21,12 52,58 4,30 0,37 0,05 0,00
LS 13,01 21,11 2852 4,08 0,62 028 0,01
LO 10,95 18,34 2934 1,1 060 022 0,02

Indeks NIKKEI 225

B&H 6,62 24,33 51,31 4,78 0,27 0,04 0

LS 0,15 24,34 6091 875 0,01 0,00

LO 4,48 19,30 39,31 2,74 0,23 0,03
Indeks DAX

B&H 4,34 2297 54,6 543 0,19 0,02 0

LS -1.47 2298 60,87 8,10 -0,06 0,00

LO 2,26 18,92 4348 540 0,12 0,01
Indeks WIG

B&H 1,74 19,74 57,62 3,13 0,09 0 0

LS -6,29 19,74 66,18 12,83 -0,32 -0,03 0

LO -1,55 15,01 43,61 9,20 -0,10 0

Indeks KOSPI

B&H 3,86 19,67 50,30 588 020 0,02 0
LS 9,20 19,66 3944 248 047 0,11
LO 6,99 17,16 43,13 1,85 041 0,07

Indeks BOVESPA

B&H 494 2847 5996 9,15 0,17 001 0
LS 8,56 28,46 4796 2,52 0,30 0,05
LO 811 2352 5284 6,03 034 0,05

Zrédlo: Opracowanie wlasne.

Dla indekséw na ktorych strategie przynosity zyski wigksze od strategii pasywnej
(S&P 500, KOSPI, BOVESPA), nieznacznie lepiej spisywaly sie strategie LS. Dla
pozostalych trzech indekséw lepsze wyniki uzyskano stosujac strategie LO. Takze

w przypadku tego modelu, zauwazy¢ mozna, ze strategia LO cechuje sie nizszymi
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wskaznikami zmiennosci, w szczegdlnosci odchylenia standardowego (aSD) oraz
maksymalnej dtugosci straty (MLD), cho¢ w tym wypadku nie zawsze przektada sie
to na wyzsze wartosci wskaznikow IR, co moze by¢ spowodowane wiekszymi
wartosciami wskaznika maksymalnego obsuniecia kapitatu (MD).

Wizualizacja wynikow w postaci krzywej kapitalowej, w zestawieniu dla wszystkich

aktywow, zaprezentowana zostata na rysunku 5.11.
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Rysunek 5.11: Krzywe kapitalowe dla sieci CNN trenowanych na MSE.

Zrédlo: Opracowanie wlasne.

W przypadku indekséw S&P 500 oraz BOVESPA, krzywe kapitatowe strategii LS
i LO majg zblizona trajektorie do strategii pasywnej, przy czym ich poziom jest
nieznacznie wyzszy, a silniejszy wzrost zaobserwowaé¢ mozna w roku 2020 (po
zalamaniu zwiazanym z poczatkiem pandemii COVID-19). Dla indeksu KOSPI
krzywe kapitatowe strategii LS i LO przewyzszaja strategie pasywna niemal w catym
testowanym okresie, natomiast w przypadku indeksow NIKKEI, DAX i WIG
zatamanie tych strategii nastepuje w okolicach lat 2012-2014.

5.4.3 Wiyniki dla strategii wykorzystujacej sieci LSTM

W kolejnym kroku sporzadzone zostaly strategie bazujace na prognozach
otrzymanych z modelu wykorzystujacego sieci LSTM. Oceny strategii uzyskane przy
pomocy tego modelu przedstawione zostaty w tabeli 5.7, z zachowaniem tych samych

oznaczen poszczegdlnych strategii oraz miernikéw.
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Tabela 5.7: Prognozowanie punktowe stop zwrotu: wyniki strategii dla sieci LSTM trenowanych na
MSE

Strategia aRC aSD MD MLD IR* [IR** IR***

Indeks S&P500

B&H 774 21,12 5258 430 037 005 0
LS 9,07 21,12 3450 2,75 043 0,11
LO 8,92 18,70 34,03 3,05 048 0,13

Indeks NIKKEI 225

B&H 6,62 24,33 51,31 4,78 0,27 0,04 0

LS 5,68 24,34 4265 4,28 0,23 0,03

LO 6,89 21,28 42,76 4,56 0,32 0,05
Indeks DAX

B&H 4,34 2297 54,60 543 0,19 0,02 0

LS 7,04 2297 47,11 292 0,31 0,05

LO 6,47 19,49 39,89 293 0,33 0,05
Indeks WIG

B&H 1,74 19,74 5762 3,13 0,09 0 0

LS -1,83 19,74 49,59 929 -0,09 0

LO 0,50 16,67 42,64 290 0,03

Indeks KOSPI

B&H 3,86 19,67 50,30 5.8% 0,20 002 0
LS 520 19,67 5529 1244 -026 -0,02 0
LO 041 17,68 43,12 883 -0,02 0,00

Indeks BOVESPA

B&H 494 2847 59,96 9,15 0,17 001 0
LS 2,87 2847 4837 340 0,10 0,01
LO 507 2424 5248 456 021 0,02

Zrédlo: Opracowanie wlasne.

Dla sieci LSTM, lepsze wartosci wskaznika skumulowanego zwrotu (aRC),
w stosunku do strategii pasywnej, model uzyskat dla czterech indekséw: S&P 500
(strategie LS oraz LO), NIKKEI 225 (strategia LO), DAX (strategie LS oraz LO)
a takze BOVESPA (strategia LO). W przypadku indeksu KOSPI obie strategie
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przynioslty straty (ujemna warto$¢ wskaznika aRC), podobnie jak strategia LS dla
indeksu WIG. Takze w przypadku tego modelu, dla wiekszoéci aktywow zauwazyc
mozna, ze strategie LO cechuja sie mniejszym ryzykiem (nizsze wartosci miernikdw
aSD, MD), oraz, co za tym idzie, wickszymi wartosciami wspoétczynnikéw IR — dla
indekséw S&P 500 oraz DAX wskazniki IR dla strategii LO sa wyzsze w stosunku do
strategii LS, mimo nizszego skumulowanego zwrotu.

Wizualizacja wynikéw uzyskanych przy pomocy modelu LSTM dla wszystkich

aktywow przedstawiona zostata na rysunku 5.12.

S&P 500 NIKKEI 225

30000

3000 A
20000
2000 A

1000 4 10000 4

2008 010 2012 w14 016 018 2020 2008 2010 2012 014 016 018 2020

Data Data
wiG
30000 1
] B&H
00001 |sTMLs
20000 - LSTM LO Wf‘ w.' :
r
40000 1 o 5
10000 1
T T T T T T T 20000 b T T T T T T T
008 w10 2012 214 2016 2018 2020 008 010 2012 014 2016 018 2020
Data Data
KOSPI BOVESPA

2500 B&H 125000 1

— LSTMLS
100000
2000 + LSTM LO

1500 | NMMWWMMWIF 75000 -

50000

1000 4

25000

T T T T T T T T T T T T T T
2008 2010 2012 2014 2016 2018 2020 2008 2010 2012 2014 2016 2018 2020
Data Data

Rysunek 5.12: Krzywe kapitalowe dla sieci LSTM trenowanych na MSE.

Zrédlo: Opracowanie wlasne.

W przypadku sieci LSTM krzywe kapitatowe strategii LS oraz LO majg bardzo
zblizony przebieg do strategii pasywnej. Pewne réznice zaobserwowaé¢ mozna dla
indeksu DAX, gdzie krzywe charakteryzuja si¢ wyzszym poziomem od strategii
pasywnej, przy czym nieco lepsze wyniki uzyskuje strategia LS. Dla indeksu KOSPI
sytuacja jest odwrotna — krzywe kapitatowe strategii LS i LO maja nizszy poziom niz
krzywa strategii pasywnej, a poziom krzywej LS jest w tym przypadku nizszy.

Podsumowujac wyniki dla wszystkich rozwazanych modeli, zauwazy¢ nalezy, ze sieci
LSTM uzyskaly lepsze wyniki niz strategia pasywna dla czterech aktywow, a wiec
najlepiej sposroéd analizowanych do tej pory modeli. Strategie bazujace na prognozach
uzyskanych przez model wykorzystujacy sie¢ CNN, w stosunku do strategii pasywnej
uzyskaty lepsze wyniki dla trzech aktywow, natomiast w przypadku sieci MLP jedynie
dla indeksu WIG strategia LO uzyskata lepszy wynik niz strategia pasywna.

Poréownujac wyniki strategii LS i LO, dla sieci MLP strategia LO uzyskata lepsze
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wyniki od strategii LS we wszystkich przypadkach. Dla sieci CNN I LSTM wyniki
uzyskane przez obie strategie sa zblizone, natomiast strategia LO charakteryzuje sie
znacznie nizszymi wartosciami wskaznikéw aSD, MD oraz MLD, a co za tym idzie,
najczedciej takze lepszymi wskaznikami IR. Swiadczy to o nizszym poziomie zmiennosci
strategii LO, co moze by¢ spowodowane mniejszym marginesem btedu, ktéry uzyskiwac
moze strategia bazujaca jedynie na sygnatach kupna.

Sieci LSTM, ze wzgledu na to, ze do tej pory przynosity najlepsze rezultaty,
dodatkowo wykorzystane zostaly do budowy modelu, w ktérym sie¢ uczona jest przy
uzyciu funkcji straty minimalizujacej miare MADL (zob. rozdzial 2 oraz Michankéw i
in. [2022]). Wyniki dla tego modelu zaprezentowane zostaly w tabeli 5.8.

Dla sieci LSTM trenowanych na z wykorzystnaiem funkcji straty MADL, lepsze
wyniki udato sie uzyskaé¢ dla indeksow S&P 500, DAX oraz BOVESPA, przy czym
wyniki dla WIG i KOSPI byty zblizone do strategii pasywnej, w szczegdlnosci dla
strategii LO. W przypadku indeksu KOSPI strategia LS przyniosta strate, uzyskujac
warto$¢ wskaznika skumulowanego zwrotu (aRC) na poziomie -6,73 oraz dodatnia
warto$¢ miary MADL wynoszaca 0,0199. Zaobserwowaé¢ mozna takze, ze réwniez
w tym przypadku wyniki dla strategii LO cechowaly si¢ znacznie mniejszym ryzykiem
w przypadku wszystkich indeksow, oraz wigkszymi wartosciami IR. Wizualizacja
wynikéw dla tego modelu w postaci krzywej kapitatowej przedstawiona zostala na
rysunku 5.13.

Na podstawie analizy przebiegu krzywych kapitatowych dla strategii LS i LO,
zauwazyC¢ mozna, ze ich przebieg w wigkszosci przypadkéw nie odbiegat znacznie od
strategii pasywnej. Wyjatki stanowia tutaj: strategia LS dla indeksu DAX, gdzie
w latach 2012-2015 zaobserwowa¢ mozna znaczny wzrost, a nastepnie powrét do
poprzedniego poziomu, oraz strategia LS dla indeksu KOSPI, dla ktorej odnotowano
wyrazny spadek w latach 2010-2012.

Dla modelu sieci LSTM trenowanej z funkcja straty w postaci MADL, strategie LO
cechuja sie znacznie lepszymi wynikami i znacznie mniejsza zmiennoscig niz strategie
LS, ktore sa bardziej niestabilne. Ze wzgledu na niskie wskazniki ekspozycji na ryzyko
i wigksze wartosci IR, mozna zatozy¢, ze uzasadnione byltoby zastosowanie dzwigni dla
tego modelu, co przyczynito by sie do poprawy wynikow pod wzgledem zwrotow dla

poszczegblnych aktywow.
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Tabela 5.8: Prognozowanie punktowe stop zwrotu: wyniki strategii dla sieci LSTM trenowanych na
MADL

Strategia aRC aSD MD MLD IR* IR** IR*** MADL

Indeks S&P500

B&H 774 21,12 5258 4,30 0,37 005 0,00
LS 423 21,13 3890 596 020 002 0  -0,03534
LO 9,26 1569 29,69 1,55 059 0,18 0,01  -0,0402

Indeks NIKKEI 225

B&H 6,62 24,33 51,31 4,78 0,27 0,04 0

LS 0,29 24,34 50,26 11,81 0,01 0,00 0 -0,0152

LO 3,27 1581 30,00 4,43 0,21 0,02 0 -0,0175
Indeks DAX

B&H 4,34 2297 54,6 543 0,19 0,02 0

LS 8,06 2297 5747 811 0,35 0,05 0 -0,0391

LO 531 17,79 3845 459 0,30 0,04 0 -0,0267
Indeks WIG

B&H 1,74 19,74 5762 3,13 0,09 0 0

LS 0,00 19,74 4891 7,24 0,00 0 0 -0,00084

LO 1,14 12,80 38,85 7,09 0,09 0 0 -0,00739

Indeks KOSPI

B&H 3,86 19,67 50,30 5.8% 0,20 002 0
LS 6,73 19,67 7557 11,87 -0,34 -0,03 0 0,0199
LO 329 14,55 3897 462 023 002 0  -0,0170

Indeks BOVESPA

B&H 494 2847 59,96 9,15 0,17 001 0
LS 1,32 2847 57,92 645 0,05 000 0  -0,0202
LO 708 22,18 4408 7,80 032 005 0  -0,0367

Zrédlo: Opracowanie wlasne.
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Rysunek 5.13: Krzywe kapitatlowe dla sieci LSTM trenowanych na MADL.

Zrédlo: Opracowanie wlasne.

Testowanie modelu LSTM w czasie rzeczywistym

Przedstawione do tej pory wyniki dotyczyly testow wstecznych oceniajacych
skutecznos¢ poszczegdlnych modeli na danych z wybranych indekséw gietdowych. W
celu uzupelienia oceny stosowanych narzedzi przeprowadzona zostala takze
ewaluacja na danych pozyskiwanych w czasie rzeczywistym. W tym przypadku ocenie
poddany zostal model LSTM minimalizujacy funkcje MADL, stosowany do budowy
strategii bazujacej tylko na sygnatach kupna. Badanie przeprowadzone zostalo na
danych pochodzacych z funduszu inwestycyjnego SPDR S&6P 500 trust - SPY,
bazujacego na indeksie S&P 500. Okres testowy dotyczyt w tym wypadku dni
pomiedzy 10 stycznia 2021 r. a 31 marca 2022 r. Model uczony byt na danych
z okresu od 8 stycznia 2014 r. do 9 stycznia 2022 r. (2016 obserwacji). Struktura sieci,
warto$ci hiperparametréow oraz podzial sposdb wydzielenia danych do zbioru
uczacego pozostal bez zmian w stosunku do opisywanego powyzej. Zmianie ulegt
natomiast sposob ewaluacji modelu. Zamiast oceny modelu na zbiorze testowym,
model wykorzystany zostal do prognozowania wartosci oczekiwanej stopy zwrotu na
koniec kazdego dnia sesyjnego, bazujac na danych z ostatnich 10 dni sesyjnych.
Wygenerowane na tej podstawie sygnaly shuzyty do otwarcia pozycji dlugich (jezeli
prognozowana stopa zwrotu byla dodatnia) lub zamkniecia pozycji (jezeli
prognozowana stopa zwrotu byla ujemna lub zerowa). Model nie byl reestymowany

w okresie testowym, a ewaluacja modelu nastgpita po zakonczeniu badania. Uzyskane
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wyniki przedstawione zostaty w tabeli 5.9 oraz na rysunku 5.14.
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Rysunek 5.14: Krzywe kapitalowe dla sieci LSTM trenowanych na MADL — probieranie danych
W czasie rzeczywistym.

Zrédlo: Opracowanie wlasne.

Tabela 5.9: Prognozowanie punktowe stop zwrotu: wyniki strategii dla sieci LSTM trenowanych na

MADL — pobieranie danych w czasie rzeczywistym.

Strategia aRC asSD MD MLD IR* IR** TR+ MADL
SPY

B&H 5,09 (-1,15) 22,22 (5,02) 11,63 (2,63) 0,21 (0,04) -0,23 (0,05) -0,10 (0,02) -0,02 (0,004)

LS 11,97(-2,70) 22,21 (5,02) 10,75 (2,43) 0,19 (0,04) -0,54 (-0,12) -0,6(-0,13)  -0,38(-0,08)  0,06701

LO 9,86 (2,23) 11,95 (2,70) 4,05 (0,91) 0,13 (0,02) 0,83 (0,18) 2,01 (0,45) 156 (0,35)  -0,00962

Uwaga: Wspdlezynniki podane sa w skali rocznej (252 dni), za$ w nawiasach — w skali 57 dni.

Zrédlo: Opracowanie wlasne.

Analizujac wyniki badan przeprowadzonych na danych pobieranych w czasie
rzeczywistym mozna zauwazy¢, ze najlepsze wyniki uzyskata strategia bazujaca tylko
na pozycjach dtugich, ktora jako jedyna przynosita w tym wypadku zyski.
Charakteryzowala sie takze znacznie lepszymi wskaznikami aSD, MD, MLD oraz IR
w stosunku do strategii pasywnej. Obserwujac krzywa kapitalowa przedstawiong na
rysunku 5.14 zaobserwowal mozna, ze strategia ta przez wiekszo$¢ czasu miata
pozycje zamknieta, gléwnie w okresach charakteryzujacych sie duzymi spadkami, co
zabezpieczalo przed duzymi obsunieciami kapitatu. Otwarcie pozycji dlugiej
w koncowym okresie, pozwolito na wzbicie sie ponad poziom zerowy, przez co finalnie

wynik strategii byt dobry.

5.5 Prognozowanie zmiennosci i ryzyka

W ponizszym podrozdziale zaprezentowane zostang wyniki uzyskane przez modele

punktowych prognoz zmiennosci stép zwrotu, rozumianej jako warunkowe odchylenie
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standardowe. W tym zakresie rozwazone zostaly modele ekonometryczne klasy
ARMA-GARCH, =z wybranymi specyfikacjami struktury GARCH (GARCH,
EGARCH, GJR-GARCH oraz APARCH) i réznymi typami rozkladu warunkowego
(rozktad normalny, t-Studenta oraz skosny rozktad t-Studenta), a takze modele
hybrydowe, taczace wymienione specyfikacje z rekurencyjnymi sieciami LSTM.

W badaniach dotyczacych prognozowania zmiennosci, jako podstawowe dane
wykorzystane zostaly procentowe logarytmiczne stopy zwrotu. Na ich podstawie
dokonano estymacji pozioméw zmiennosci z wykorzystaniem estymatora GKYZ (zob.
punkt 2.3.2) a takze estymacji i prognoz w ramach wspomnianych modeli
ARMA-GARCH. Prognozy zmiennosci uzyskane przy pomocy tych modeli poshuzyty,
wraz z wartosciami bezwzglednymi stép zwrotu, jako dane wejéciowe do komponentu
sieciowego w modelach hybrydowych. Struktura tych modeli opisana zostata szerzej
w punkcie 4.2.1.

Modele ARMA-GARCH estymowane byty w ramach schematu rolowanego o
dtugoséci okna réwnej 504 obserwacji (2 lata). Diugosé szeregu, ktory nastepnie
przekazany byt jako dane wejsciowe do sieci ustalona zostala na 3495 obserwacji (w
przyblizeniu 14 lat).”. Komponent sieciowy modelu hybrydowego uczony byt
7z wykorzystaniem okna rozszerzanego® (zob. rys. 3.14). Poczatkowa dlugo$é¢ zbioru
uczacego wynosita 1008 obserwacji (4 lata), natomiast dlugo$é zbioru testowego
wynosita 504 obserwacje, i o taka diugos¢ powiekszany byl takze zbiér uczacy
w kazdej iteracji. Z danych w zbiorze uczacym wydzielane dodatkowo byty zbiory
walidacyjne, stanowigce 33% danych dostepnych w zbiorze uczgcym.

Dla rozwazanych danych przeprowadzone zostaly analizy wskazujace optymalne
wartodci opdznien struktury autoregresyjnej dla modeli ARMA-GARCH. W tym celu
wykorzystano kryterium informacyjne Schwarza (BIC). Dla dwéch indekséw: S&P500
oraz BOVESPA optymalne warto$ci wyniosty (1,0), natomiast dla pozostalych
indekséw wartosci te wyniosty (0,0). ?

Struktura i wartosci poszczegdlnych hiperparametrow sieci LSTM w modelu
hybrydowych ustalona =zostala w wyniku procesu dostrajana hiperparametrow,

ktérego wyniki zaprezentowane zostaly w podrozdziale (5.3). Model uczony byt

"W przypadku modeli hybrydowych iloéé obserwacji byla taka sama dla wszystkich badanych
aktywow, co umozliwito bezposrednie poréwnanie liczby przekroczen wartoéci zagrozonej. Zakres dat
natomiast moégl sie w tym przypadku nieznacznie réznié, ze wzgledu na rozne ilodci dni sesyjnych

w ciagu roku.
8Badania wstepne wykazaly w tym zakresie, Ze zastosowanie okna rozszerzanego przyniosto w tym

wypadku lepsze rezultaty niz podejscie oparte na schemacie rolowanym.
W dalszej czesci dla poprawienia czytelnosci przedrostek ARMA w nazwach modeli bedzie

najczesciej pomijany.
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z wykorzystaniem funkcji straty minimalizujacej miernik btedu MSE.

5.5.1 Ocena trafnosci prognoz punkowych zmiennosci

W pierwszej kolejnosci zaprezentowane zostalo zestawienie poszczegdlnych
badanych modeli, pod wzgledem zgodnosci prognoz z poziomem zmiennosci
uzyskanym przy pomocy estymatora GKYZ, z wykorzystaniem miernika oceny
prognoz MSE. Wyniki przedstawione zostaty w tabeli 5.10. Tabela zwiera wyniki
zaréwno dla poszczegdlnych specyfikacji modeli GARCH z réznymi badanymi typami
rozktadow warunkowych, jak i modeli hybrydowych wykorzystujacych te specyfikacje

w polaczeniu z sieciami LSTM (zob. rozdziat 4).

Tabela 5.10: Oceny trafnoéci prognoz zmiennosci — wartosci MSE.

Indeks/Model ~ G(N)  G(N)}-LSTM  G(STD)  G(STD)-LSTM  G(SSTD)  G(SSTD)-LSTM

S&P 0,3285 0,3281 0,3251 0,3240 0,3353 0,3315
NIKKEI 0,7190 0,6296 0,7156 0,6413 0,7232 0,6445
DAX 1,0697 0,7849 1,0517 0,7771 1,0753 0,7910
WIG 0,5017 0,4807 0,4898 0,4648 0,4919 0,4899
KOSPI 0,7378 0,5530 0,7188 0,5574 0,7388 0,5594
BOVESPA 0,7934 0,6666 0,7988 0,6707 0,8114 0,6784

E(N)  E(N)}-LSTM  E(STD)  E(STD)-LSTM  E(SSTD)  E(SSTD)-LSTM

S&P 0,3576 0,3519 0,3517 0,3449 0,3633 0,3605
NIKKEI 0,7293 0,6421 0,7186 0,6293 0,7181 0,6454
DAX 1,2148 0,8233 1,1960 0,8740 1,1949 0,8505
WIG 0,5110 0,4883 0,5081 0,468 0,5032 0,4993
KOSPI 0,7896 0,5862 0,7751 0,5751 0,7710 0,5626
BOVESPA 0,8487 0,6504 0,8181 0,6579 0,8024 0,6735

GJR(N) GJR(N)-LSTM GJR(STD) GJR(STD)-LSTM GJR(SSTD) GJR(SSTD)-LSTM

S&P 0,3026 0,2915 0,3012 0,2809 0,3063 0,2946
NIKKEI 0,7043 0,6496 0,6901 0,6344 0,6962 0,6277
DAX 1,0180 0,7593 0,9778 0,7556 0,9763 0,7446
WIG 0,4802 0,4320 0,4727 0,4331 0,4729606 0,4336
KOSPI 0,7034 0,5403 0,6913 0,5533 0,7065 0,5603
BOVESPA 0,7888 0,6736 0,7942 0,6760 0,8232 0,6914

AP(N) AP(N)-LSTM  AP(STD) AP(STD)-LSTM  AP(SSTD)  AP(SSTD)-LSTM

S&P 0,3423 0,3345 0,3242661 0,3180 0,3265 0,3162
NIKKEI 0,7258 0,6386 0,7014102 0,6341 0,7013 0,6347
DAX 1,0802 0,7755 1,03333 0,7596 1,0486 0,7690
WIG 0,4952 0,4778 0,4825994 0,4723 0,5063 0,4659
KOSPI 0,7496 0,5318 0,7233 0,5512 0,7324 0,5664
BOVESPA 0,3060 0,6740 0,3054 0,6695 0,3800 0,7010

Uwaga: W tabeli zastosowane zostaly nastepujace oznaczenia: G — GARCH, E - EGARCH, GJR —
GJR-GARCH, AP - APARCH, N - rozktad normalny, STD — rozklad t-Studenta, SSTD - sko$ny
rozktad t-Studenta. Pogrubione zostaly najnizsze wartosci miernika MSE dla poszczegélnych
indekséw.

Zrédlo: Opracowanie wlasne.
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Na podstawie zaprezentowanych wynikéw zauwazy¢ mozna, ze modele hybrydowe,
w porownaniu z ,czystymi” modelami klasy GARCH, przyczynilty sie do poprawy
prognoz zmiennosci w stosunku do estymatora GKYZ w zasadzie w kazdym
przypadku. W  tym  zestawieniu  najlepsze = wyniki  uzyskaly = modele
GJR-GARCH-LSTM, ktére uzyskaly najnizsze wartosci miernika MSE dla czterech
aktywow: S&P 500 (z rozktadem normalnym), NIKKEI 225 (z rozkladem
t-Studenta), DAX (ze sko$nym rozkladem t-Studenta) oraz WIG (z rozkladem
t-Studenta). Dla indeksu KOSPI najlepszy wynik uzyskal model APARCH-LSTM
z rozkladem normalnym, a dla BOVESPA — model EGARCH-LSTM, réwniez
z rozktadem normalnym. Wyniki te pokrywaja si¢ zatem z opublikowanymi do tej
pory badaniami (zob. 4.1), ktére wykazywaly, ze taczenie modeli klasy GARCH
z sieciami neuronowymi przyczynia sie do poprawy punktowych prognoz zmiennosci
(przy danej metodzie oceny zmiennosci oraz przy wybranej funkcji straty).

Poréwnujac przekrojowo wyniki pod katem wykorzystanych specyfikacji modeli
GARCH, najnizsze wartosci wspotczynnika MSE uzyskaly modele wykorzystujace
specyfikacje GJR-GARCH, dla zdecydowanej wigkszosci badanych typow rozktadow
oraz indeksow. Jesli za$ chodzi o badane typy rozktadéw, mozna zauwazy¢, ze modele
wykorzystujace rozktad t-Studenta oraz sko$ny rozklad t-Studenta wykazuja nizsze
wartosci miernika MSE niz modele wykorzystujace rozktad normalny.

Wizualne przedstawienie prognoz zmiennosci dla wszystkich szesciu aktywow
zaprezentowane zostato na rysunku 5.15. Wybrane zostaly tutaj modele hybrydowe,
ktore uzyskalty najlepsze wyniki dla poszczegdlnych aktywow, wraz z odpowiednimi
specyfikacjami bazowych modeli GARCH o tym samym rozktadzie.

Analiza graficzna pokazuje, ze modele hybrydowe (oznaczone czerwonym kolorem)
nieznacznie lepiej dopasowywaly poziom (Srednia) prognoz zmienno$ci do danych
uzyskanych z wykorzystaniem estymatora (kolor szary), w stosunku do (nieznacznie
zanizonych) oszacowan zmiennosci uzyskanych w modelach GARCH (kolor zielony).
Najwieksza réznica w poziomach zmiennosci wystepuje w przypadku indeksu
NIKKEI 225; nieco mniejsza, cho¢ wcigz widoczna, w przypadku indeksow KOSPI
oraz DAX. Pozostale indeksy sa pod tym wzgledem bardziej zblizone. Na wykresach
zaobserwowa¢ mozna takze, ze oszacowania zmienno$ci uzyskane za pomoca
estymatora GKYZ odznaczaja sie¢ wigksza wahliwoscia oraz wystepowaniem
gwaltownych skokéw zmiennosci (co wynika z faktu, ze zmiennosé ta szacowania jest
dla kazdego z dni osobno, bez uwzglednienia persystencji zmiennosci jak ma to
miejsce w przypadku modeli GARCH czy stosowania technik wygtadzania, jak

w przypadku estymatora zmiennosci historycznej).
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Rysunek 5.15: Prognozy zmienno$ci dla poszczegdlnych aktywow.

Zrédlo: Opracowanie wlasne.

Tabela 5.11: Wspdlezynniki korelacji Pearsona pomiedzy najlepszymi specyfikacjami modeli GARCH
i GARCH-LSTM dla poszczegdlnych aktywow

Index Specyfikacje Wsp. korelacji
GJR(STD)

S&P 500 0,9519
GJR(STD)-LSTM
GJR(SSTD)

NIKKEI 225 0,9064
GJR(SSTD)-LSTM
GJR(SSTD)

DAX 0,9517
GJR(SSTD)-LSTM
GJR(N)

WIG 0,9444
GJR(N)-LSTM
AP(N)

KOSPI 0,9301
AP(N)-LSTM
E(N)

BOVESPA 0,9058
E(N)-LSTM

Zrédlo: Opracowanie wlasne.

Tabela 5.11 prezentuje wspotczynniki korelacji pomiedzy oszacowaniami

zmiennosci uzyskanymi dla najlepszych specyfikacji modelowych. Zauwazy¢ w niej
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mozna, ze najwyzsze wartoSci wspotczynnika korelacji wystepuja w przypadku
indeksow S&P 500 oraz DAX, za$ najnizsze dla indeksow BOVESPA i NIKKEI 225,
co odpowiada takze r6éznicg w wartosciach oceny prognoz z wykorzystaniem miernika

MSE, przedstawionych w tabeli 5.10.

5.5.2 Ocena trafnosSci prognoz ryzyka uzyskanych przy
pomocy modeli hybrydowych

Aby lepiej oceni¢ badane modele, punktowe prognozy zmiennosci uzyskane za
pomocg modeli GARCH oraz modeli hybrydowych zastosowane zostaty takze do
pomiaru ryzyka kapitalowego 2z wykorzystaniem wartosci zagrozonej oraz
oczekiwanego niedoboru. Warto$¢ zagrozona szacowna byta dla pozycji diugiej,
z wykorzystaniem wzoru 2.83 (zob. punkt 2.6.1). W przypadku modeli hybrydowych,
oceny parametrow g, (oraz ewentualnie parametréw v i &) pochodzity z wartosci
oszacowanych przez modele ARMA-GARCH, natomiast warto$ci parametru o
zastapione zostaly przez prognozy zmiennosci uzyskane z wykorzystaniem podejscia
hybrydowego. Tego typu zabieg jest uzasadniony z tego wzgledu, ze to wtasnie
prognozy zmiennos$ci maja najwickszy wplyw na oszacowany poziom wartosci
zagrozonej, natomiast prognozy warto$ci oczekiwanej oraz parametry rozktadu
odgrywaja w tym przypadku znacznie mniejsza role!®. Wartosci oczekiwanego
niedoboru obliczane byly analogicznie, na podstawie wzoru 2.90 (zob. punkt 2.6.2).

W pierwszej kolejnosci, w tabeli 5.12 przedstawione zostaly wyniki procentowych
przekroczen VaR dla poszczegdlnych modeli, w zestawieniu dla wszystkich aktywow,

dla 5% 1 1% poziomu tolerancji.

10Wyniki bazujace na podejéciu, w ktérym wszystkie te parametry pochodza z sieciowych modeli

prognozowania probabilistycznego przedstawione zostaly w kolejnym podrozdziale.
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Tabela 5.12: Procentowe udzialy przekroczen oszacowan VaR(0,05)/VaR(0,01) w modelach ARMA-
GARCH i hybrydowych ARMA-GARCH-LSTM

Indeks/Model ~ G(N) G(N)-LSTM G(STD) G(STD)-LSTM  G(SSTD)  G(SSTD)-LSTM
S&P 6,35/2,73 4,34/1,65 7/1,81 5,11%/1,13 6,35/1,49 4,22/0,97*
NKX 547%/2.33  3,22/1,05% 6,15/1,81 3,62/0,72* 5,39% /1,49 3,1/0,44
DAX 7/2,61 2.73/0,68* 7.4/1,61 3,14/0,36 6,88/1,49 2,69/0,28
WIG 5,71/1,85 3,94/1,13* 6,03/1,33* 4,3%/0,84% 5,67/1,17% 3,62/0,76*
KOSPI 6,71/2,53 2,57/0,64 7,24/1,89 3,18/0,44 6,27/1,45% 2,37/0,2
BVP 5,35%/1,45%  273/0,72%  5,83%/1,17* 2,77/0,52 5,51%/1,21% 2,69/0,64*
E(N) E(N)-LSTM E(STD) E(STD)-LSTM  E(SSTD)  E(SSTD)-LSTM
S&P 6,55/2,57 4,42/1,45 7,2/1,85 4,74/1,33 6,23/0,88* 3,94/0,88
NKX 5,59%/2,13 2,85/0,8* 5,95%/1,73 3,34/0,52 5,43%/1,13* 3,06/0,4
DAX 6,39/2,29 2,69/0,72% 6,88/2,05 3,1/0,6% 6,03/1,53 2,41/0,36
WIG 6,03/1,97 3,34/1,13* 6,35/1,65 3,98/0,97* 5,79%/1,25% 3,46/0,64*
KOSPI 6,88/2,73 2,65/0,68* 7,16/2,05 2,98/0,6* 6,35/1,17* 2,13/0,32
BVP 523%/1,69  241/0,56%  4,95%/0,76* 3,02/0,44 4,78%/0,64% 3,1/0,48
GIR(N)  GJR(N)-LSTM GJR(STD) GJR(STD)-LSTM GJR(SSTD) GJR(SSTD)-LSTM
S&P 5,99% /2,37 3,94/1,21 6,88/1,49% 4,5%/0,97 5,63%/1,05% 3,22/0,48
NKX 5,63%/2,33  3,06/0,84* 5,83%/1,73 3,42/0,68* 5,39%/1,49* 2,98/0,44
DAX 6,51/2,25 2,49/0,76* 6,88/1,65 2,69/0,48 6,07/1,33* 2,41/0,4
WIG 547%/1,81  3,58/1,09% 5,91/1,20% 3,94/0,84* 5,39%/1,21% 3,5/0,64*
KOSPI 6,63/2,29 2,45/0,76* 7,04/1,.85 2,69/0,52 6,23/1,21% 2,45/0.4
BVP 5,15%/145%  2,65/0,56%  543%/1,01% 2,69/0,52 5,71%/1,13* 2,77/0.4
AP(N)  AP(N)-LSTM  AP(STD)  AP(STD)-LSTM  AP(SSTD)  AP(SSTD)-LSTM
S&P 6,67/2,85 4,46% /1,65 7,08/1,65 4,62/1,17 5,95/1,09% 3,98/0,72%
NKX 543%/2,01  2,98/0,92%  5,63%/1,57 3,26/0,56 4,91%/1,09% 3,02/0,44
DAX 6,51/2,37 2,53/0,84* 7,04/1,89 2,69/0,52 6,07/1,57 2.29/0,4
WIG VaR 571%/1,93  3,82/1,17* 5,83/1,33* 3,86/0,92* 5,47%/1,25% 3,42/0,8*
KOSPI VaR  6,92/2,65 2,9/0,8* 7,2/1,85 2,98/0,52 6,15/1,25* 2,61/0,4
BVP VaR 579%/1,65  2,69/0,64%  575%/1,.25% 3,18/0,48 5,55%/1,33* 3,26/0,6%

Uwaga: Pogrubione zostaly wyniki najbardziej zblizone do przyjetego poziomu tolerancji,

podkreslone te, ktére uzyskaly takze poprawny wynik testu Kupca, za$ gwiazdka oznaczone zostaly

te, ktére uzyskaly poprawny wynik testu Christoffersena. Oczekiwana liczba przekroczen wynosi
124/24, ilo$é¢ prognoz 2487.

Zrédlo: Opracowanie wlasne.

Analizujac wyniki przedstawione w powyzszej tabeli, pod wzgledem procentowego

udziatu przekroczen VaR najlepsze wyniki

uzyskat

model

APARCH-LSTM

z rozktadem normalnym, ktéry dla 1% poziomu tolerancji najlepsze rezultaty uzyskat
dla trzech indeksow: NIKKEI 225 (0,92%), DAX (0,84%) oraz KOSPI (0,8%). Z kolei
model APARCH ze sko$nym rozkladem t-Studenta najlepiej spisywal sie¢ na 5%
poziomie tolerancji dla indekséw NIKKEI 225 (4,91%) oraz KOSPI (6,15%). Ogoélnie
zauwazyC mozna, ze modele wykorzystujace specyfikacje APARCH spisywaly sie

w tym zestawieniu najlepiej. Wyniki iloéci procentowych przekroczen VaR sugeruja
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dodatkowo, ze nieznacznie lepiej spisuja sie modele wykorzystujace rozktady
t-Studenta i sko$ny t-Studenta (w pieciu przypadkach dla kazdego rozkladu) niz
modele wykorzystujace rozklad normalny (w trzech przypadkach). Dodatkowa tabela,
A.1, przedstawiajaca liczbe przekroczen poziomu VaR zamieszczona zostata
w Aneksie.

Wstepne poréwnanie wynikoéw uzyskanych przez modele hybrydowe z modelami
klasy GARCH wskazuje pod wzgledem wartosci najblizszych przyjetym poziomom
tolerancji (wartosci pogrubione), pokazuje, ze modele hybrydowe lepiej prognozuja
warto$é zagrozong dla 1% poziomu tolerancji, za$ ,czyste” modele GARCH — dla
poziomu 5%. Szczegdlowa analiza poréwnawcza wybranych specyfikacji modelowych
przedstawiona zostanie w rozdziale 6.

Przekroczenia VaR dla poszczegdlnych modeli przeanalizowane zostaty dodatkowo
z wykorzystaniem testu Kupca, badajacego poprawnosé ilosci przekroczen poziomu
VaR w stosunku do przyjetego poziomu tolerancji, oraz testu Christoffersena,
sprawdzajacego dodatkowo niezaleznosé przekroczen w czasie (zob. punkt 2.6.3).
Prawidtowe wyniki dla tych testéw zaznaczone zostaly w tabeli 5.12 odpowiednio
podkresleniem oraz gwiazdka. Analizujagc wyniki w tym kontekscie przede wszystkim
zauwazy¢ zauwazy¢ mozna, ze dla 1% poziomu tolerancji najlepsze wyniki
przekrojowo uzyskaly modele hybrydowe wykorzystujace specyfikacje GARCH
z rozktadem normalnym. Bardzo dobre wyniki, dla obu pozioméw tolerancji, uzyskaty
takze ,czyste” modele klasy GARCH ze skosnym rozktadem t-Studenta.

Wymniki oszacowan ryzyka w kolejnym kroku poddane zostaty analizie wykresowe;j.
Na rysunkach 5.16 i 5.17 przedstawione =zostaly oszacowania VaR oraz ich
przekroczenia dla modeli najlepiej spisujacych sie pod wzgledem liczby przekroczen
dla danego indeksu, zaréwno dla poziomu tolerancji 1%, jak i 5%.

Na prezentowanych wykresach, zielonym kolorem zaznaczony jest prognozowany
poziom VaR dla 5% poziomu tolerancji, natomiast kolorem czerwonym — dla 1%
poziomu tolerancji. Punktowo zaznaczone zostaly natomiast przekroczenia VaR. Dla
wszystkich badanych aktywow zauwazy¢ mozna pojawiajace sie na wykresach
zgrupowania przekroczen, widoczne dla obu pozioméw tolerancji. Zgrupowania te
widoczne sg zarowno w okresach podwyzszonej, jak i niskiej zmiennosci. Takie wyniki

sugerowa¢ by mogty, ze przekroczenia nie sg niezalezne w czasie.
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Rysunek 5.16: Prognozy wartosci zagrozonej dla indekséw S&P 500, NIKKEI oraz DAX, uzyskane za
pomoca wybranych modeli klasy GARCH oraz modeli hybrydowych GARCH-LSTM.

Zrédlo: Opracowanie wlasne.
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Rysunek 5.17: Prognozy wartosci zagrozonej dla indekséw WIG, KOSPI oraz BOVESPA, uzyskane

2014 2016

Data
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za pomoca wybranych modeli klasy GARCH oraz modeli hybrydowych GARCH-LSTM.

Zrédlo: Opracowanie wlasne.

Szczegdtowe wyniki da wszystkich analizowanych modeli przedstawione zostaly
w tabelach A.2 - A.25, zamieszczonych w Aneksie. Tabele te zawieraja informacje
dotyczace ocen prognoz zmiennoéci za pomoca miar MSE, MAE, HMSE i R?, wyniki
testu Diebolda-Mariano na istotnos¢ roznic trafnosci prognoz, ilosci przekroczen VaR,
wyniki testow Kupca oraz Christoffersena dla obu przyjetych pozioméw tolerancji,

oraz wyniki testu McNeila i Fraya (zob. punkt 2.6.3) dotyczace poprawnosci prognoz
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oczekiwanego niedoboru. Ogodlnie, zaprezentowane we wspomnianych tabelach wyniki
charakteryzuja si¢ duzym rozrzutem. 7Z tego wzgledu, szczegélowej analizie
poréwnawczej przedstawionej w punkcie 6.1.2, poddane zostaly wyniki uzyskane

przez najlepsze specyfikacje modelowe.

5.6 Prognozowanie rozkladéw prawdopodobienstw

W ponizszym podrozdziale zaprezentowane zostang wyniki uzyskane
z wykorzystaniem sieciowych modeli prognoz probabilistycznych, opisanych
w punkcie 4.2.2. Analizie poddane zostaly modele bazujace na jednowymiarowych
sieciach  CNN oraz sieciach rekurencyjnych LSTM. Struktura i hiperparametry
zastosowanych sieci przedstawione zostaly doktadniej w podrozdziale 5.3. Modele
wykorzystane zostaly do prognozowania parametréw wybranych rozkladow
warunkowych: rozktadu normalnego, t-Studenta oraz sko$nego rozktadu t-Studenta.
W pierwszej kolejnosci zaprezentowane zostang oceny wykorzystujace kryteria oceny
prognoz probabilistycznych: LPS, CRPS oraz PIT (zob. punkt 2.5.4). W dalszej
czesci modele te ocenione zostaly w kontekscie szacowania ryzyka kapitalowego za
pomoca wartosci zagrozonej.

Szczegbdtowe wyniki, dla wszystkich badanych modeli i instrumentéw finansowych,

dodatkowo przedstawione zostaly w Aneksie, w tabelach A.27 - A.38.

5.6.1 Ocena trafnosci prognoz probabilistycznych

W tabeli 5.13 przedstawiono uzyskane wartosci miernikow LSP oraz CRPS, a takze
wartosci p-value testu Andersona-Darlinga jednostajnosci rozkladu PIT (zob. punkt
2.5.4), ktorego hipoteza zerowa zaktada, ze rozktad skalibrowany jest prawidtowo.

Na podstawie przedstawionych w tabeli wynikow, mozna zauwazy¢, ze dla
wiekszosci aktywow najlepsze wyniki uzyskaly sieci LSTM dla sko$nego rozktadu
t-Studenta. W przypadku miernika LPS, dla indekséw DAX, WIG oraz BOVESPA
lepsze wyniki uzyskaty sieci LSTM z rozktadem t-Studenta, natomiast pod wzgledem
miernika CRPS sieci LSTM 2z rozktadem normalnym w przypadku indeksu
BOVESPA.
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Tabela 5.13: Oceny prognoz uzyskanych za pomoca sieciowych modeli prognozowania
probabilistycznego

Kryterium/Model CNN-N CNN-STD CNN-SSTD LSTM-N LSTM-STD LSTM-SSTD
Indeks S&P 500

LPS 1,2820 1,2416 1,2220 1,2632 1,2104 1,1933

CRPS 0,5229 0,5248 0,5197 0,5146 0,5137 0,5094

PIT p-value 2,41e-07  1,55e-05 0,1144 2,41e-07 0,0057 0,0309
Indeks NIKKEI

LPS 1,6136 1,5990 1,5865 1,6124 1,5870 1,5854

CRPS 0,6914 0,6995 0,6963 0,6892 0,6894 0,6874

PIT p-value 2,41e-07  4,41e-05 0,0476 2,41e-07 2,41e-07 2,41e-07

Indeks DAX

LPS 1,5800 1,5598 1,5708 1,5540 1,5178 1,5229

CRPS 0,6804 0,6892 0,6901 0,6651 0,6663 0,6645

PIT p-value 2,41e-07  2,41e-07 2,41e-07 2,41e-07 2,41e-07 0,3536

Indeks WIG

LPS 1,4520 1,3925 1,4055 1,4265 1,3400 1,3475

CRPS 0,0616 0,50703 0,5716 0,5605 0,5553 0,5553

PIT p-value 2,41e-07  2,41e-07 2,41e-07 2,41e-07 0,0023 0,0087
Indeks KOSPI

LPS 1,3349 1,3147 1,3172 1,3240 1,2961 1,2847

CRPS 0,5285 0,5297 0,5302 0,5246 0,5201 0,5165

PIT p-value 2,41e-07  2,41e-07 2,41e-07 2,41e-07 4,70e-07 5,08e-06

Indeks BOVESPA

LPS 1,7740 1,7829 1,7875 1,7776 1,7751 1,7851

CRPS 0,8268 0,8369 0,8349 0,8222 0,8269 0,8335

PIT p-value 2,41e-07  0,1866 0,0069 2,41e-07 0,0038 0,0056

Uwaga: W tabeli pogrubione zostaly najnizsze wartosci kryteriéw LPS oraz CRPS oraz najwyzsze

Analizujac  wyniki

wartoéci p-value dla testu Andersona-Darlinga.

poprawnosci

Zrédlo: Opracowanie wlasne.

kalibracji

rozktadu,

zauwazyC mozna, ze

w zdecydowanej wiekszosci przypadkow wartosci p-value byly niskie, co wskazuje na

niepoprawnga kalibracje. W przypadku indeksu S&P 500, jedynie sieci CNN ze

skosnym rozktadem t-Studenta uzyskaly poprawny wynik testu. Model ten uzyskat

najlepszy wynik pod tym wzgledem takze w przypadku indeksu NIKKEI, wartos¢

p-value byta w tym przypadku nieznacznie nizsza niz 0,1. Dla indeksu DAX
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poprawny wartos¢ p-value wyzszg niz 0,1 uzyskal model bazujacy na sieciach LSTM
ze skosnym rozktadem t-Studenta. Model ten uzyskal tez najwyzsza warto$¢ p-value
w przypadku indekséw WIG oraz KOSPI, w dalszym ciggu wartos¢ ta jest nizsza niz
0,01, co sugeruje niedostateczng kalibracje rozktadéw prognozy. Dla indeksu
BOVESPA najlepszy i zarazem poprawny wynik testu uzyskaly sieci CNN
z rozktadem t-Studenta.

Na rysunku 5.18 przedstawione zostaly rozklady wartosci PIT, dla trzech
wybranych specyfikacji modelowych: LSTM-SSTD, LSTM-N oraz CNN-N, dotyczace
indeksu DAX.

LSTM-SSTD LSTM-N CNN-N

0,100
0,075
0,050

0,025

Rysunek 5.18: Wykres rozktadéw wartosci PIT, indeks DAX.

Zrédlo: Opracowanie wlasne.

Obserwujac wykresy przedstawione na powyzszym rysunku mozna zauwazy¢, ze
model LSTM-SSTD, ktéry uzyskatl najlepszy wynik testu Andersona-Darlinga,
charakteryzuje si¢ najlepszym poziomem dopasowania — wykres wartosci PIT jest
najbardziej zblizony do rozkladu jednostajnego. W przypadku modelu LSTM-N
zaobserwowaé¢ mozna nadmierne rozproszenie wartosci prognozowanych — relatywnie
mato obserwacji, w stosunku do tendencji centralnej, realizuje si¢ w ogonach
rozktadoéw predyktywnych. Natomiast dla modelu CNN-N zaobserwowaé mozna, ze
zbyt duza ilo$¢ obserwacji realizuje sic w goérnych kwantylach rozktadow, co moze
swiadezy¢ o tym, ze rozktady predykatywne byly w tym przypadku systematycznie

zanizone.

5.6.2 Ocena trafnosci prognoz ryzyka uzyskanych przy

pomocy modeli prognozowania probabilistycznego
Wyniki uzyskane przez sieciowe modele prognozowania probabilistycznego
poddane zostaly analizie takze w kontekscie szacowania ryzyka kapitalowego. W

pierwszej kolejnosci przedstawione zostaly wyniki procentowego udziatu przekroczen

VaR dla wszystkich badanych indekséw gietdowych. Zestawienie wynikoéw
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przedstawiono w tabeli 5.14.

Tabela 5.14: Procentowe udzialy przekroczen oszacowan VaR(0,05)/VaR(0,01) w modelach

prognozowania probabilistycznego.

Indeks/Model CNN-N CNN-STD CNN-SSTD

S&P 4,50/1,56*  4,58/0,92*  5,30/0,88*
NKX 4,30%/1,48  4,02%/0,92%  3,53/0,40
DAX 6,35/2,53  5,42%/1,12%  4,14*/0,80*
WIG 507/1,97  4,58%/1,12  3,69/0,80*
KOSPI 570/2,09  3,86/056%  2,29/0,32
BVP 5,38%/1,20%  3,98/0,72%  2,61/0,28

LSTM-N LSTM-STD LSTM-SSTD

S&P 4,86*/1,97  534/1,01%  4,50/0,84*
NKX 4,46%/1,88  4,58%/1,01%  3,81/0,64
DAX 587/1,97  6,59/1,16%  5,66/0,88*
WIG 482/1,84  4,95/120  4,26/0,76*
KOSPI 5,42%/1,93  4,46%/0,84%  3,37/0,44
BVP 5,18%/1,24%  3,65/0,68%  2,41/0,32

Uwaga: Pogrubione zostaly wyniki najbardziej zblizone do przyjetego poziomu tolerancji,
podkreslone te, ktére uzyskaly takze poprawny wynik testu Kupca, za$ gwiazdka oznaczone zostaly
te, ktére uzyskaly poprawny wynik testu Christoffersena. Oczekiwana liczba przekroczen wynosi
124/24, ilo$é prognoz 2487.

Zrédlo: Opracowanie wlasne.

Analizujac przedstawione w powyzszej tabeli wyniki, mozna stwierdzi¢, ze dla
indeksu S&P 500 najlepsze wyniki pod wzgledem ilosci przekroczen (wartosci
pogrubione) uzyskaty sieci LSTM, przy czym dla 5% poziomu tolerancji byt to model
z rozkladem normalnym, natomiast dla poziomu 1% — model z rozkladem
t-Studenta. W przypadku indeksu NIKKEI, dla obu poziomoéw tolerancji najlepsze
wyniki uzyskaty sieci LSTM z rozktadem t-Studenta. Z kolei w przypadku indeksu
DAX dla 5% poziomu tolerancji najlepszy wynik uzyskaly sieci CNN z rozkladem
t-Studenta, natomiast dla poziomu 1% byly to sieci LSTM ze sko$nym rozkladem
T-studenta oraz, ponownie, sieci CNN z rozktadem t-Studenta. Dla indeksu WIG, dla
5% poziomu tolerancji najlepiej spisywal siec model wykorzystujgce sieci LSTM
z rozkladem t-Studenta, za$ dla 1% poziomu tolerancji sieci CNN z rozkladem
t-Studenta. Dla indekséw KOSPI oraz BOVESPA, dla 5% poziomu tolerancji

najlepsze wyniki uzyskal model LSTM 2z rozkladem normalnym, natomiast dla
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poziomu 1% odpowiednio model LSTM 2z rozkladem t-Studenta oraz CNN
z rozkladem normalnym.

Podsumowujac wyniki dotyczace procentowych udzialéw przekroczen VaR mozna
wskazac, ze sieci LSTM przynosity nieco lepsze rezultaty, uzyskujac najlepsze wyniki
w dziewieciu na dwanascie przypadkow, natomiast sieci CNN — w czterech. W
przypadku poréwnania badanych rozktadow prawdopodobienstwa mozna stwierdzié,
ze modele oparte na rozktadzie t-Studenta uzyskaly najlepsze rezultaty w o$miu
przypadkach, rozktadzie normalnym w czterech przypadkach, zas oparte na skosnym
rozkltadzie t-Studenta w jednym przypadku.

Odnoszac sie do rezultatéw testéw Kupca i Christoffersena (dla ktérych poprawne
wyniki oznaczone zostaly odpowiednio podkredleniem oraz gwiazdka), zauwazy¢
mozna, ze sieciowe modele prognozowania probabilistycznego ogdlnie przynosza dobre
rezultaty. Uwage zwracajg przede wszystkim dobre rezultaty modelu LSTM
z rozkladem normalnym dla 5% poziomu tolerancji oraz modeli LSTM i CNN
z rozktadem t-Studenta dla 1% poziomu tolerancji. Ogolnie najlepsze wyniki pod
katem liczby przkroczen oraz poprawnych wynikéw testow wstecznych uzyskat dla
obu pozioméw tolerancji uzyskal model LSTM z rozktadem t-Studenta.

W kolejnej czesci wyniki uzyskane przez najlepsze modele poddane zostaly analizie
graficznej. 1! Rysunki 5.19 i 5.20 przedstawiaja wykresy prognozowanych pozioméw
wartosci zagrozonej dla poszczegdlnych indeksow (oznaczone linig ciggla) oraz momenty
przekroczen tych poziomoéow, zaznaczone punktowo.

Analogicznie do wykreséw przedstawiajacych oszacowania VaR dla modeli
hybrydowych, zielonym kolorem oznaczone zostaly prognozy dla przyjetego 5%
poziomu tolerancji, a kolorem czerwonym dla poziomu 1%. Takze w tym wypadku
zauwazyC¢ mozna, ze przekroczenia prognozowanego poziomu VaR sa zgrupowane
i maja miejsce najczesciej w okresach wysokiej zmiennosci, co — podobnie, jak
w przypadku modeli hybrydowych — $wiadczy¢ mogto by o tym ze przekroczenia te
nie sa niezalezne. Doktadne wyniki testu Kupca i testu Christoffersena dla VaR oraz
testu McNeila i Freya dla ES przedstawione zostaly w tabelach A.27 - A.38
zamieszczonych w  Aneksie. Poréwnanie wynikow uzyskanych przez modele
prognozowania probabilistycznego z modelami hybrydowymi m.in. pod wzgledem
procentowego udziatu przekroczen VaR przedstawione zostalo w punkcie 6.1.3 gdzie

zestawiono najlepsze specyfikacje modelowe.

W przypadku indeksu WIG, sieci CNN z rozkladem t-Studenta i LSTM ze skoénym rozktadem
t-Studenta uzyskatly bardzo zblizone wyniki. W analizie graficznej przedstawiono wyniki tylko dla sieci

CNN, poniewaz model ten uzyskal lepsze wyniki testow wstecznych.
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Rysunek 5.19: Prognozy wartoéci zagrozonej z wykorzystaniem modeli prognozowania

probabilistycznego dla indeksow S&P 500, NIKKEI oraz DAX.

Zrédlo: Opracowanie wlasne.
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Rysunek 5.20: Prognozy wartoéci zagrozonej z wykorzystaniem modeli

probabilistycznego dla indeksow WIG, KOSPI oraz BOVESPA.

Zrédlo: Opracowanie wlasne.
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Rozdzial 6

Szczegdlowa analiza poréwnawcza
wynikéw empirycznych uzyskanych

za pomocg wybranych modeli

6.1 Poréwnanie uzyskanych wynikéw

W' ponizszym podrozdziale dokonana zostata analiza poréwnawcza wynikow
uzyskanych z wykorzystaniem wybranych badanych specyfikacji modelowych — tych,
ktore uzyskaly najlepsze wyniki dla badanych aktywéw w poszczegdlnych
scenariuszach badawczych. Poréwnanie to ma na celu przede wszystkim wskazanie

obszaréw, w ktorych poszczegdlne specyfikacje modelowe sprawdzaja sie najlepiej.

6.1.1 Modele punktowych prognoz stép zwrotu

W pierwszym punkcie poréwnane zostang wybrane modele wykorzystane do
uzyskania punktowych prognoz stép zwrotu, ktore uzyskaly najlepsze wyniki
w  kontek$cie wybranych miar bledu (MSE i MADL) oraz ocen strategii
inwestycyjnych.

W podrozdziale 5.4 omoéwione zostaty wyniki ewaluacji modeli opartych na
sieciach neuronowych za pomoca poszczegélnych metryk btedu (zob. tabela 5.4). Pod
wzgledem procentowej trafnosci prognoz oraz miernika MSE (ktéry wykorzystywany
byl takze jako funkcja straty w procesie uczenia sieci), najlepsze wyniki uzyskaty sieci
LSTM, uzyskujac najnizsze wartosci MSE dla czterech z szesciu badanych indekséw,
i najwyzsze wartosci procentowej trafnosci predykeji dla trzech indekséw. Z kolei sieci
CNN lepsze wyniki uzyskaly biorac pod uwage wartosci bltedu mierzonego przez

funkcje MADL. Najstabiej w tym zestawieniu wypadtly sieci MLP, ktore tylko nieco
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lepszy wynik od pozostatych sieci pod wzgledem funkcji MADL i trafnosci predykeji
uzyskaty dla indeksu WIG.

W kolejnej czesci modele prognoz punktowych stop zwrotu poréwnane beda pod
wzgledem poszcezegdlnych wskaznikow oceny strategii inwestycyjnych, przy czym do
zestawienia wybrane zostang jedynie najlepsze strategie. Tabela 6.1 uwzglednia takze
wyniki modelu wykorzystujacego sie¢c LSTM uczong z wykorzystaniem funkcji straty
zadanej jako MADL. Poréwnanie wynikéw, dla wszystkich badanych aktywéw,
zaprezentowane zostato w tabeli 6.1. W celu okreslenia najlepszych modeli nalezy
zwrocié przede wszystkim uwage na dwa wskazniki: roczny skumulowany zwrot (aRC)
oraz wskazniki informacyjne (IR), gtéwnie ze wzgledu na to, ze wskazniki IR biora
pod uwage takze pozostale wskazniki dotyczace zmiennosci i ryzyka zwigzanego
z danag strategia (aSD, MD oraz MLD).

Poréwnujac wyniki przedstawione w ponizszej tabeli mozna zauwazy¢, ze najlepsze
wyniki w pod wzgledem wskaznika rocznego skumulowanego zwrotu (aRC) uzyskaty
sieci CNN, uzyskujac najwyzsze wartosci tego wskaznika dla trzech indeksow: S&P
500, KOSPI oraz BOVESPA. Sieci LSTM najlepiej wypadty dla indekséw NIKKEI
oraz DAX (wynik ten zostal dodatkowo poprawiony w modelu LSTM trenowanym na
funkcji MADL), natomiast dla indeksu WIG najlepszy wynik uzyskala sie¢ MLP.

Biorac pod uwage wskaznik informacyjny IR*, sieci LSTM uzyskaly najlepsze
wyniki dla indekséw NIKKEI, DAX, oraz BOVESPA, z tym ze w tym przypadku
byty to sieci uzywajace miernika MADL jako funkcji straty. Zblizone wyniki uzyskaty
sieci CNN, ktére najlepiej spisywaly sie na indeksach S&P500 oraz KOSPI. Dla
indeksu WIG najlepszy wynik uzyskata ponownie sie¢c MLP. Modele wykazuja takze
podobne wyniki pod wzgledem miernika IR** — w tym przypadku sieci CNN
dodatkowo uzyskaly wynik na tym samym poziomie (0,05) co sieci LSTM dla indeksu
BOVESPA.

Analizujac wyniki sieci LSTM uczonej z wykorzystaniem miernika MADL jako
funkcji straty mozna zauwazy¢, ze cechuje sie ona bardzo dobrymi wynikami
og6lnymi. Dla wszystkich badanych aktywéw strategie wykorzystujace ten model
przynosity zyski, czesto na poziomie zblizonym do pozostatych badanych sieci.
Modele te cechujg sie takze najlepszymi ogdlnymi wskaznikami aSD oraz MD, co
wskazuje, ze charakteryzuja sie najnizszym ryzykiem, dzieki czemu mozliwe bytoby
zastosowanie w tym przypadku dzwigni w celu uzyskania wiekszych zyskéw. Dobre
wyniki w kontekscie wskaznikéw aSD oraz MD uzyskaly takze modele wykorzystujace
sieci MLP, mimo ze nie przetozylto sie to w tym wypadku na pozostate wskazniki. Z

kolei dla wskaznika MLD, najlepiej spisywaty sie sieci CNN.
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Tabela 6.1: Poréwnanie modeli punktowych prognoz stép zwrotu, pod wzgledem wskaznikéw oceny

strategii inwestycyjnych.

Indeks/Strategia aRC aSD ~ MD MLD IR* IR** [IR***

Sieci MLP (MSE)

S&P500 LO 698 15,69 24,91 1,17 045 012 0,01
NIKKEI LO 1,42 18,46 41,01 3,63 0,08 0,00 0
DAX LO 0,35 17,36 35,57 646 0,02 0,00 0
WIG LO 2,15 1536 4738 2,90 0,14 0,01 0
KOSPI LO 0,38 15,75 43,78 5,08 0,02 0,00 0
BOVESPA LO 1,96 21,24 51,03 5,75 0,09 0,00 0
Sieci CNN (MSE)
S&P500 LS 13,01 21,11 2852 408 0,62 0,28 0,01
S&P500 LO 10,95 18,34 2934 1,1 0,60 0,22 0,02
NIKKEI LO 448 19,30 39,31 2,74 0,23 0,03 0
DAX LO 9926 1892 4348 540 012 001 0
WIG LO -1,65 15,01 43,61 9,20 -0,10 0 0
KOSPI LS 9,20 19,66 3944 248 0,47 0,11 0
BOVESPA LS 856 2846 47,96 2,52 030 0,05 0
Sieci LSTM (MSE)
S&P500 LS 9,07 21,12 34,50 2,75 0,43 0,11 0
S&P500 LO 8,92 18,70 34,03 3,05 0,48 0,13 0
NIKKEI LO 6,89 21,28 4276 456 0,32 0,05 0
DAX LS 7,04% 2297 4711 2,92 031 0,05 0
DAX LO 6,47 1949 3989 293 0,33* 0,05 0
WIG LO 0,50 16,67 42,64 2,90 003 0 0
KOSPI LO -0,41 17,68 43,12 883 -0,02 0,00 0
BOVESPA LO 507 2424 5248 456 021 002 0
Sieci LSTM (MADL)
S&P500 LO 9,26 15,69 29,69 1,55 0,509 0,18 0,01
NIKKEI LO 3,27 15,81 30,00 4,43 0,21 0,02 0
DAX LS 8,06 2297 5747 811 0,35 0,05 0
WIG LO 1,14 12,80 38,85 7,09 0,09 0 0
KOSPI LO 3,29 14,55 38,97 4,62 0,23 0,02 0

BOVESPA LO 7,08 22,18 44,08 780 0,32 0,05 0

Uwaga: Pogrubiono najlepsze rezultaty uzyskane dla okreslonej strategii inwestycyjnej, tj. dla

wskaznikow aRC oraz IR pogrubione zostaly najwyzsze wartosci dla poszczegélnych indekséw, zas
dla wskaznikéw aSD, MD oraz MLD — wartosci najnizsze. Gwiazdka oznaczone zostaly najlepsze
wyniki sposrdd sieci wykorzystujacych MSE jako funkcje straty.

Zrédlo: Opracowanie wlasne.
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Na podstawie wynikow przedstawionych w tabeli 6.1 nie sposdb jednoznacznie
wskazac, ktory typ sieci jest najlepszy pod wzgledem punktowego prognozowania stop
zwrotu. Mozna natomiast zauwazy¢, ze sieci uczenia glebokiego (LSTM oraz CNN)
spisywaty sie lepiej niz klasyczne sieci MLP. Bioragc jednak dodatkowo pod uwage
wyniki miar bltedu (MSE, MAE oraz trafnosci prognoz) z tabeli 5.4 sieci LSTM
mozna wyr6zni¢ jako spisujace sie nieznacznie lepiej od sieci CNN.

Poréwnujac sposoby konturowania strategii inwestycyjnych, nalezy zwréoci¢ uwage,
ze tabeli w znaczniej wiekszo$ci znalazly sie strategie wykorzystujace wytacznie
sygnaty kupna (LO). Wynikaé¢ to moze z faktu, ze w tych strategiach mozliwosé
popelnienia bledu jest ograniczona, jak i z tego, ze badane instrumenty finansowe
w postaci indekséw gietdowych charakteryzuja si¢ trendem wzrostowym, co takze

moze mie¢ pozytywny wpltyw na wyniki strategi bazujacych na pozycjach dtugich.

6.1.2 Modele hybrydowe punktowych prognoz zmiennos$ci

W ponizszym punkcie przedstawione zostaly zestawienia szczegdétowych wynikéw
dla modeli wykorzystanych uprzednio w celu uzyskania punktowych prognoz
zmiennosci - modeli ARMA-GARCH oraz hybrydowych modeli
ARMA-GARCH-LSTM. Sposrod wszystkich rozwazanych specyfikacji modelowych do
porownan wybrane zostaly te, ktore uzyskaly najnizsze wartosci btedu MSE oraz
odpowiednich liczb przekroczen VaR.! Zestawienia przygotowane zostaly w tabelach
osobno dla kazdego z aktywow. W tabelach zawarte zostaly dodatkowo takze mierniki
bledow MAE, HMSE i R? a takze wyniki (wartosci p-value) testéow Kupca
i Christoffersena dla oszacowan wartosci zagrozonej, oraz testu McNeila i Fraya dla
oczekiwanego niedoboru (zob. rozdziat 4). Testy przeprowadzone zostaty zaréwno dla

5%, jak 1 1% poziomu tolerancji.

Indeks S&P 500

W tabeli 6.2 przedstawiono wyniki dla modeli, ktore uzyskaty najlepsze rezultaty
na danych pochodzacych z indeksu S&P 500. Do zestawienia wybrane zostaty modele
GJR-GARCH(SSTD)-LSTM, GARCH(STD)-LSTM oraz GARCH(SSTD)-LSTM.

1Szczegélowe wyniki dla wszystkich badanych specyfikacji modelowych przedstawione zostaty

w tabelach A.2 - A.25 zamieszczonych w Aneksie.
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Tabela 6.2: Zestawienie modeli, indeks S&P 500, najlepsze modele pod wzgledem MSE i iloéci

przekroczen VaR

Mierniki/Model ~ GJR(STD)-LSTM G(STD)-LSTM  G(SSTD)-LSTM

MSE 0,2810 0,3240 0,3315
MAE 0,3632 0,3707 0,3783
HMSE 0,3274 0,3472 0,3768
R? 0,7677 0,5822 0,5668
Przek. VaR 112/24 127/28 105/24
Przek. VaR (%) 4,5/0,97 5,11/1,13 4,22/0,97
Kupiec 5% 0,2481 0,8080 0,0677
Kupiec 1% 0,8600 0,5363 0,8600
Christoff. 5% 0,1259 0,2230 0,0105*
Christoff. 1% 0,0051* 0,0107* 0,0052
ES bootstrap 5% 0,6861 0,5438 0,7727
ES prébkowy 5% 0,7225 0,5342 0,8536
ES bootstrap 1% 0,4358 0,4240 0,6902
ES prébkowy 1% 0,3510 0,4240 0,7638

Uwaga: Pogrubione zostaly najnizsze wartosci MSE, oraz ilo$¢ przekroczen VaR najbardziej zblizona
do przyjetego poziomu tolerancji. * oznaczone zostaly wyniki testéw, w ktérych hipoteza zerowa
zostata odrzucona, mimo akceptowalnej ilodci przekroczen.

Zrédlo: Opracowanie wlasne.

W przypadku indeksu S&P 500, model, ktéry uzyskal najlepsze wyniki pod
wzgledem podstawowej miary btedu MSE, tj. GJR-GARCH(STD)-LSTM, osiagnal
takze najlepsze wyniki dla pozostatych wymienionych miernikéw btedu prognoz. Pod
wzgledem liczby przekroczen VaR dla 1% poziomu tolerancji jest na tym samym
poziomie, co model GARCH(SSTD)-LSTM. Natomiast dla 5% poziomu tolerancji
najlepsze wyniki uzyskal model GARCH(STD)-LSTM. Przedstawione w tabeli
modele maja takze akceptowalne wyniki testéw VaR i ES (wartosci p-value). Wyjatki
stanowig tutaj modele GJR-GARCH(STD)-LSTM oraz GARCH(STD)-LSTM, ktére
uzyskaly niska warto$¢ p-value testu Christoffersena dla 1% poziomu tolerancji, oraz
model GARCH(SSTD)-LSTM takze pod wzgledem testu Christoffersena dla 5%
poziomu tolerancji.

Zauwazy¢ mozna takze, ze dla rozwazanego tu indeksu, w zestawieniu najlepszych
modeli znalazty sie tylko modele hybrydowe, w dwéch przypadkach bazujace na

skosnym rozktadzie t-Studenta, a w jednym — na rozktadzie t-Studenta.
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Indeks NIKKEI 225

Wyniki dla najlepszych modeli dla indeksu NIKKEI 225 przedstawione zostaty
w tabeli 6.3. W zestawieniu uwzgledniono modele GJR-GARCH(SSTD)-LSTM,
APARCH(SSTD) oraz APARCH(N)-LSTM.

Tabela 6.3: Zestawienie modeli, indeks NIKKEI 225, najlepsze modele pod wzgledem MSE i iloéci

przekroczen VaR

Mierniki/Model ~ GJR(SSTD)-LSTM AP(SSTD) AP(N)-LSTM

MSE 0,6277 0,7013 0,6386
MAE 0,5669 0,5645 0,5659
HMSE 4,4495 2,7125 4,6458
R? 0,1699 0,1998 0,1568
Przek. VaR 74/11 122/27 74/23
Przek. VaR (%) 2,98/0,44 4,91/1,09  2,98/0,92
Kupiec 5% 5,89e-07* 0,8283 5,89e-07*
Kupiec 1% 0,0017* 0,6712 0,7027
Christoff. 5% 2.03e-06* 0,8924 2.03e-06*
Christoff. 1% 0,0008* 0,5333 0,4229
ES préobkowy 5% — 0,2384 —
ES prébkowy 5% — 0,1476 —
ES bootstrap 1% — 0,2315 0,0398
ES probkowy 1% - 0,1445 0,0185*

Uwaga: Pogrubione zostaly najnizsze wartosci MSE, oraz ilo$¢ przekroczen VaR najbardziej zblizona
do przyjetego poziomu tolerancji. * oznaczone zostaly wyniki testow, w ktérych hipoteza zerowa
zostala odrzucona, mimo akceptowalnej ilosci przekroczen. W tabeli pominiete zostaly wyniki testu
dotyczacego ES, w przypadku gdy wyniki obu testéw na liczbe przekroczen VaR byly niewladciwe.

Zrédlo: Opracowanie wlasne.

Pod wzgledem miary MSE najlepszy wynik uzyskat model
GJR-GARCH(SSTD)-LSTM. Wynik ten jednak nie przektada sie na dobre rezultaty
pod wzgledem pozostalych kryteriow, zaréwno w odniesieniu do innych miernikow
bledu, jak i prognoz ryzyka, gdzie lepsze wyniki uzyskatly pozostate modele. Liczba
przekroczen VaR w przypadku tego modelu byla znacznie nizsza niz zatozona, co
odbito si¢ takze na wynikach testow.

Pod wzgledem liczby przekroczen VaR dla 5% poziomu tolerancji najlepszy wynik
dla tego indeksu uzyskal model APARCH(SSTD). Wyniki testéw wstecznych dla tego
modelu sa takze we wszystkich wypadkach poprawne. Model ten uzyskal takze

najnizsza warto$¢ miernikéw HMSE, MAE i najnizsza miernika R?, oraz poprawne
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wyniki testu wstecznego McNeila i Fraya (ES), dla obydwu rozwazanych pozioméw
tolerancji. Dla 1% VaR najlepszy wynik uzyskal model APARCH(N)-LSTM. Nie
sprawdzil sie on jednak dla poziomu 5%, gdzie otrzymal wyniki znacznie zanizone.

Takze w przypadku testu wstecznego dla 1% ES wartosci p-value byly zbyt niskie.

Indeks DAX

Dla indeksu DAX szczegbéltowe wyniki przedstawione zostaly w tabeli 6.4,
zestawiajace] w  tym  przypadku = modele = GJR-GARCH(SSTD)-LSTM,
EGARCH(SSTD) oraz APARCH(N)-LSTM.

Tabela 6.4: Zestawienie modeli, indeks DAX, najlepsze modele pod wzgledem MSE i ilosci przekroczen
VaR

Mierniki/Model ~ GJR(SSTD)-LSTM E(SSTD) AP(N)-LSTM

MSE 0,7446 1,1950 0,7755
MAE 0,5396 0,6437 0,5483
HMSE 0,3278 0,1699 0,3300
R? 0,3765 0,2423 0,3679
Przek. VaR 60/10 150/38 63/21
Przek. VaR (%) 2,60/0,48 6,03/1,53  2,53/0,84
Kupiec 5% 5.51e-11% 0,02207%  5.19e-10*
Kupiec 1% 0,0007* 0,01408* 0,4229
Christoff. 5% 4,19e-10% 0,0582 2, 46e-09*
Christoff. 1% 0,0029% 0,0432% 0,6065
ES bootstrap 5% — 0,2602 —
ES probkowy 5% — 0,1686 -
ES bootstrap 1% — — 0,1535
ES prébkowy 1% — — 0,0874

Uwaga: Pogrubione zostaly najnizsze wartosci MSE, oraz ilo$¢ przekroczen VaR najbardziej zblizona
do przyjetego poziomu tolerancji. * oznaczone zostaly wyniki testéw, w ktérych hipoteza zerowa
zostala odrzucona, mimo akceptowalnej ilosci przekroczen. W tabeli pominiete zostaly wyniki testu
dotyczacego ES, w przypadku gdy wyniki obu testow na liczbe przekroczen VaR byly niewladciwe.

Zrédlo: Opracowanie wlasne.

W kontekscie miernikow btedu prognoz najlepsze wyniki uzyskal model
GJR-GARCH(SSTD)-LSTM, z wyjatkiem miary HMSE. Prognozy uzyskane
z wykorzystaniem tego modelu dawaty jednak zdecydowanie zawyzone oszacowania
ryzyka, co skutkuje zbyt niska iloScia przekroczen VaR w stosunku do zatozonej. Dla

5% poziomu tolerancji najlepsze prognozy uzyskal model EGARCH(SSTD), takze
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pod katem testu Christoffersena dla VaR oraz testu McNeila i Freya, cho¢
w przypadku testu Kupca hipoteza zerowa zostata odrzucona . Model ten uzyskat
takze najnizszg warto$¢ dla miernika HMSE. Z kolei dla 1% poziomu tolerancji
najlepszy wynik uzyskal model APARCH(N)-LSTM, uzyskujac takze wysokie
wartosci p-value dla testéw wstecznych zaréwno dla wartosci zagrozonej, jak

i oczekiwanego niedoboru.

Indeks WIG

Zestawienie dla indeksu WIG przedstawione zostato w tabeli 6.5.

Tabela 6.5: Zestawienie modeli, indeks WIG, najlepsze modele pod wzgledem MSE i iloéci przekroczen
VaR

Mierniki/Model ~ GJR(N)-LSTM GJR(SSTD) E(STD)-LSTM

MSE 0,4320 0,4730 0,4868
MAE 0,3878 0,3873 0,4054
HMSE 0,2457 0,1476 0,2541
R? 0,2663 0,2537 0,2004
Przek. VaR 89/27 134/30 99/24
Przek. VaR (%) 3,58/1,09 5,39/1,21 3,08/0,97
Kupiec 5% 0,0006* 0,3803 0,0157*
Kupiec 1% 0,6720 0,3166 0,8600
Christoff. 5% 0,0010%* 0,2588 0,0091
Christoff. 1% 0,6797 0,4198 0,4796*
ES bootstrap 5% — 0,1012 —
ES prébkowy 5% — 0,0376 —
ES bootstrap 1% 0,0010 0,0352 0,1890
ES prébkowy 1% 0,0001°* 0,0088* 0,1107

Uwaga: Pogrubione zostaly najnizsze wartoéci MSE, oraz ilos¢ przekroczen VaR najbardziej zblizona
do przyjetego poziomu tolerancji. * oznaczone zostaly wyniki testéw, w ktérych hipoteza zerowa
zostala odrzucona, mimo akceptowalnej ilosci przekroczen. W tabeli pominiete zostaly wyniki testu
dotyczacego ES, w przypadku gdy wyniki obu testéw na liczbe przekroczen VaR byly niewladciwe.

Zrédlo: Opracowanie wlasne.

W przypadku tego indeksu, jako najlepsze wybrane zostaly modele
GJR-GARCH(N)-LSTM, GJR-GARCH(SSTD) oraz EGARCH(STD)-LSTM.
Pierwszy z tych modeli uzyskal najnizsze wyniki miernikow bledu prognoz,
z wyjatkiem HMSE i MAE. Prognozy poziomu wartosci zagrozonej uzyskane

z wykorzystaniem tego modelu byly zbyt wysokie dla 5% poziomu tolerancji VaR (co

164



skutkuje zbyt niska liczba liczbg przekroczen), natomiast na poziomie 1% byly one
poprawne. W przypadku testu McNeila i Freya dla 1% poziomu tolerancji wyniki
p-value byly bardzo niskie. Model GJR-GARCH(SSTD) uzyskal najlepsze wyniki
jesli chodzi o poziom VaR na poziomie 5%, przy czym dla poziomu 1% tez byly one
poprawne. Wyniki testu dla ES dla tego modelu byly poprawne dla 5% poziomu
tolerancji, ale niskie dla poziomu 1%. Model uzyskal tez najnizsze miary btedu HMSE
oraz MAE. Dla poziomu 1%, zaréwno dla VaR, jak i ES najlepszy wnik uzyskal
model EGARCH(SSTD)-LSTM, jednak zbyt wysoko oszacowal VaR dla 5% poziomu

tolerancji.

Indeks KOSPI

Dla indeksu KOSPI zestawienie przedstawione zostato w tabeli 6.6, zawierajacej

szczegdtowe dane o wynikach modeli APARCH(N)-LSTM oraz APARCH(SSTD).

Tabela 6.6: Zestawienie modeli, indeks KOSPI, najlepsze modele pod wzgledem MSE i iloci

przekroczen VaR

Mierniki/Model ~ AP(N)-LSTM AP(SSTD)

MSE 0,5318 0,7324
MAE 0,4403 0,5024
HMSE 0,2372 0,1407
R? 0,3248 0,3991
Przek. VaR 72/20 153/31
Przek. VaR (%) 29/0,8  6,15/1,25
Kupiec 5% 1,87c-07* 0,0108*
Kupiec 1% 0,3096 0,2342
Christoff. 5% 5,99e-07* 0,0122%*
Christoff. 1% 0,5074 0,3331

ES bootstrap 5% — —
ES probkowy 5% — —
ES bootstrap 1% 0,0377 0,5111
ES probkowy 1% 0,0124* 04713

Uwaga: Pogrubione zostaly najnizsze wartosci MSE, oraz ilo$¢ przekroczen VaR najbardziej zblizona

do przyjetego poziomu tolerancji. * oznaczone zostaly wyniki testéw, w ktérych hipoteza zerowa
zostala odrzucona, mimo akceptowalnej ilosci przekroczen. W tabeli pominiete zostaly wyniki testu
dotyczacego ES, w przypadku gdy wyniki obu testow na liczbe przekroczen VaR byly niewladciwe.

Zrédlo: Opracowanie wlasne.

Pierwszy z tych modeli uzyskat najnizsze miary btedu MSE i MAE oraz najlepszy
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wynik dla liczby przekroczenn VaR na poziomie 1%, poparty takze wynikami testéw
wstecznych. Na poziomie 5% model ten prognozowal jednak zawyzony poziom VaR,
w rezultacie uzyskujac niskie frakcje przekroczen. Takze w tescie McNeila i Freya dla
poziomu 1% model ten uzyskal zbyt niskie wyniki. W tym zestawieniu nieco lepiej
wypadt model APARCH(SSTD), warto zauwazy¢ jednak, ze wartosci p-value dla
testéw wstecznych dla tego modelu sg niskie dla poziomu 5%, co oznacza, ze pomimo
najlepszych prognoz poziomu wartosci zagrozonej sposrod wszystkich testowanych
modeli, poziomy te wcigz sg w tym przypadku zanizone. Dla 1% poziomu tolerancji,

wyniki testow wstecznych VaR i ES dla tego modelu sg natomiast prawidtowe.

Indeks BOVESPA

Dla indeksu BOVESPA, do zestawienia zaprezentowanego w tabeli 6.7, wybrane
zostaly modele EGARCH(N)-LSTM, EGARCH(STD) oraz GJR-GARCH(STD).

Tabela 6.7: Zestawienie modeli, indeks BOVESPA, najlepsze modele pod wzgledem MSE i iloéci

przekroczen VaR

Mierniki/Model ~ E(N)-LSTM  E(STD) GJR(STD)

MSE 0,6504 0,8182 0,7942
MAE 0,5364 0,5532 0,5654
HMSE 0,2506 0,1730 0,1536
R? 0,5072 0,3992 0,4550
Przek. VaR 60/14 123/19  135/25
Przek. VaR (%)  3,58/1,09  4,95/0,76 5,43/1,01
Kupiec 5% 55le-11%* 0,9020 0,3335
Kupiec 1% 0,0170* 0,2171 0,9791
Christoff. 5% 1,05e-10* 0,9226 0,3950
Christoff. 1% 0,0535 0,4033 0,7754
ES bootstrap 5% — 0,7938 0,2229
ES probkowy 5% — 0,8796 0,1365
ES bootstrap 1% 0,0232 0,6882 0,1027
ES prébkowy 1% 0,0108* 0,7377 0,0438*

Uwaga: Pogrubione zostaly najnizsze wartosci MSE, oraz ilo$¢ przekroczen VaR najbardziej zblizona
do przyjetego poziomu tolerancji. * oznaczone zostaly wyniki testéw, w ktérych hipoteza zerowa
zostatla odrzucona, mimo akceptowalnej ilosci przekroczen. W tabeli pominiete zostaly wyniki testu
dotyczacego ES, w przypadku gdy wyniki obu testow na liczbe przekroczen VaR byly niewlasciwe.

Zrédlo: Opracowanie wlasne.

Pierwszy z wymienionych modeli uzyskal najnizsze wyniki miernikow bledu
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z wyjatkiem HMSE, jednak prognozy poziomu wartosci zagrozonej uzyskane przez
ten model byly zawyzone dla 5% poziomu tolerancji. Dla 5% poziomu tolerancji
najlepsze prognozy VaR uzyskal model EGARCH(STD). Takze dla poziomu 1%
model ten prawidtowo prognozowal poziom VaR, jednak lepsze wyniki pod tym
wzgledem uzyskal model GJR-GARCH(STD), uzyskujac takze najnizsza wartosé
HMSE. Oba te modele uzyskaly prawidlowe wyniki testow wstecznych, mozna takze

wnioskowad, ze poprawnie szacuja takze poziom oczekiwanego niedoboru.

Podsumowanie

Na podstawie przedstawionych w tym punkcie rezultatéw, dotyczacych wszystkich
indeksow, mozna wnioskowac, ze modele hybrydowe lepiej spisywaly sie w szacowaniu
ryzyka na 1% poziomie tolerancji. Swiadczy¢ to moze o tym, ze uzyskane za pomoca
tych modeli oszacowania VaR sa zdecydowanie bardziej konserwatywne (prognozowany

jest wyzszy poziom VaR), niz w przypadku modeli klasy GARCH.?

6.1.3 Modele prognozowania probabilistycznego

Ponizszy punkt dotyczy rezultatéw uzyskiwanych przez sieciowe modele
prognozowania probabilistycznego. W pierwszej kolejnosci, poréwnujac wyniki
zaprezentowane w tabelach 5.13 oraz 5.14, nalezy zwréci¢é uwage na fakt, ze dobre
wyniki uzyskane w kontekécie miernikow ocen trafno$ci prognoz nie zawsze
przektadaja sie na poprawne prognozy poziomu wartosci zagrozonej. O ile
w pierwszym przypadku zdecydowanie lepiej spisywaly sie modele LSTM ze sko$nym
rozktadem t-Studenta, to nie znajduje to jednak odzwierciedlenia w wynikach tego
modelu w konteksécie VaR. Podobna sytuacja miata miejsce w przypadku: modeli
hybrydowych (gdzie niskie oceny miernika MSE nie szty w parze z poprawa
oszacowan ryzyka), oraz modeli stosowanych do punktowych prognoz zmiennosci (w
ktorych wyniki strategii inwestycyjnych czesto nie bylty jednoznaczne z niskimi
ocenami dokladnosci prognoz punktowych). Takze w przypadku modeli hybrydowych
i probabilistycznych swiadczy¢ to moze o koniecznosci wprowadzenia innej funkcji

straty, stosowanej w celu poprawy prognoz wartosci zagrozonej.

2Do takich rezultatéw przyczynié sie moégl wysoki poziom ocen zmiennoéci wynikajacych
z estymatora GKYZ.
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Poréwnanie modeli w kontekscie prognozowania rozkladow

prawdopodobienstwa

W tabeli 6.8 przedstawione zostalo poréwnanie wybranych sieciowych modeli
prognozowania probabilistycznego z modelami klasy AR-GARCH. Sposréd badanych
modeli w zestawieniu wykorzystane zostaty specyfikacje wykorzystujace skosny
rozktad t-Studenta — modele sieciowe bazujace na architekturze CNN i LSTM
poréwnane zostaly z modelami GJR-GARCH i APARCH. Do poréwnania prognoz
probabilistycznych  zastosowane zostaly mierniki LPS, CRPS, oraz test
Andersona-Darlinga (p-value) dla poprawnosci kalibracji modelu z wykorzystaniem
kryterium PIT.

Analizujac przedstawione w tabeli wyniki mozna zauwazy¢, ze zestawione w niej
specyfikacje uzyskaly zblizone wyniki. Modele APARCH i GJR-GARCH cechuja sie
czedciej nizszymi wartosciami CRPS — w przypadku modelu APARCH mialo to
miejsce dla indekséw S&P 500, NIKKEI oraz DAX, za$ dla modelu GJR-GARCH
w przypadku indeksow WIG, KOSPI oraz BOVESPA. 7Z kolei modele LSTM
wykazuja nizsze wartosci miernika LPS, co mialo miejsce w przypadku czterech
indeksow: NIKKEI, DAX, WIG oraz BOVESPA. Lepsze wyniki modeli sieciowych
pod wzgledem LPS s3 moga wynika¢ z faktu, ze kryterium to jest zbliozone
w konstrukeji do funkcji straty minimalizowanych przez sieé¢.?

Biorac pod uwage warto$ci p-value testu Andersona-Darlinga, najlepsze wyniki
uzyskaty sieci CNN — mialo to miejsce w przypadku indekséw S&P 500, NIKKEI
i BOVESPA. W przypadku dwoch indekséw — WIG oraz KOSPI, wyniki lepsze od
pozostalych uzyskal model GJR(SSTD). Nalezy jednak zwrdcié uwage na problemy
z osiggnieciem prawidtowej kalibracji prognoz rozkltadéw w przewazajacej liczbie
rozwazanych przypadkéw modeli i instrumentow. Jedynie w szesciu przypadkach

mozemy stwierdzi¢, ze byta ona prawidlowa.

3Podobna sytuacja miala miejsce takze w przypadku modeli hybrydowych, ktére poprawiaty
wyniki oceny prognoz przy pomocy miernika MSE, wykorzystywanego jako funkcja straty komponentu

sieciowego.
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Tabela 6.8: Poréwnanie modeli prognozowania probabilistycznego z modelami klasy AR-GARCH pod

katem oceny trafnosci prognoz

Kryteria/Model CNN-SSTD LSTM-SSTD GJR(SSTD) APARCH(SSTD)

Indeks S&P 500

LPS 1,2220 1,1934 1,2321 1,1700
CRPS 0,5197 0,5095 0,5017 0,5012
PIT p-value 0,0309 1,56e-05 2,41e-07 2,41e-07

Indeks NIKKEI

LPS 1,5865 1,5854 1,5900 1,5921

CRPS 0,6963 0,6874 0,6831 0,6826

PIT p-value 0,0476 2.41e-07 2.41e-07 2.41e-07
Indeks DAX

LPS 1,5708 1,5230 1,5316 1,5364

CRPS 0,6901 0,6646 0,6607 0,6606

PIT p-value 2,41e-07 0,3537 2,41e-07 2,41e-07
Indeks WIG

LPS 1,4055 1,3475 1,3600 1,3582

CRPS 0,5716 0,5554 0,5516 0,5519

PIT p-value 2,41e-07 0,0087 0,7779 2,41e-07

Indeks KOSPI

LPS 1,3172 1,2848 1,2616 1,2643
CRPS 0,5302 0,5165 0,5146 0,5147
PIT p-value 2,41e-07 5,09e-06 0,1953 0,1606

Indeks BOVESPA

LPS 1,7875 1,7851 1,8361 1,7992
CRPS 0,8349 0,8335 0,8229 0,8233
PIT p-value 0,0069 0,0056 2,41e-07 2,41e-07

Uwaga: Porgubione zostaly najnizsze wartosci LPS i CRPS, oraz najwyzsze wartosci p-value.

Zrédlo: Opracowanie wlasne.

Poréwnanie modeli prognozowania probabilistycznego i modeli punktowych

W kolejnym kroku poréwnane zostaly rezultaty uzyskane przez modele

prognozowania probabilistycznego z wynikami grupy modeli hybrydowych oraz
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AR-GARCH, stosowanych do punktowego prognozowania zmiennosci, w kontekscie
szacowania ryzyka. W tym celu, w tabeli 6.9, przedstawiono zestawienie najlepszych
specyfikacji modelowych dla poszczegdlnych aktywow pod katem procentowego

udziatu przekroczen wartosci zagrozone;j.

Tabela 6.9: Poréwnanie modeli prognozowania probabilistycznego z modelami hybrydowymi oraz

GARCH — procentowy udzial przekroczen VaR dla wszystkich aktywow.

Indeks/Model NN-D % Przekr. Model hybrydowy % Przekr.
S&P VaR 5% LSTM-N 4,86 G(STD)-LSTM 5,11
NKX VaR 5% LSTM-STD 4,58 AP(SSTD) 491
DAX VaR 5% CNN-STD 5,42 E(SSTD) 6,03
WIG VaR 5% LSTM-STD 4,95 GJR(SSTD) 5,39
KOSPI VaR 5 LSTM-N 5,42 AP(SSTD) 6,15
BVP VaR 5% LSTM-N 5,18 E(STD) 4,95
S&P VaR 1% LSTM-STD 1,01 G(SSTD)-LSTM/GJR(STD)-LSTM 0,97
NKX VaR 1% LSTM-STD 1,01 AP(N)-LSTM 0,92
DAX VaR 1%  CNN-STD/LSTM-SSTD- 1,12/0,88 AP(N)-LSTM 0,84
WIG VaR 1% CNN-STD 1,12 E(STD)-LSTM 0,97
KOSPI VaR 1% LSTM-STD 0,84 AP(N)-LSTM 0,80
BVP VaR 1% CNN-N 1,20 GJR(STD) 1,01

Zrédlo: Opracowanie wlasne.

Analizujac procentowe udzialy przekroczen VaR, nie mozna jednoznacznie
wskaza¢ grupy modeli, ktére uzyskaly znaczaco lepsze wyniki od pozostatych.
Zarowno modele prognozowania probabilistycznego jak i modele hybrydowe oraz
GARCH uzyskuja zblizone wyniki. Pewne réznice zauwazy¢ mozna w przypadku
indekséw DAX oraz KOSPI przy 5% poziomie tolerancji, gdzie udziat przekroczen dla
modeli odpowiednio EGARCH i APARCH ze sko$nym rozktadem t-Studenta wynosi
powyzej 6%, natomiast w przypadku modeli prognoz probabilistycznych nie
wystepuja tak duze odchylenia. Podobny wniosek mozna wysnu¢ porownujac wyniki
z tabel 5.14 oraz 5.12, omawianych w poprzednim rozdziale. W grupie modeli
hybrydowych i GARCH uzyskane wartosci frakeji przekroczen charakteryzuja sie
wiekszymi odstepstwami od przyjetych pozioméw tolerancji, niz w przypadku grupy

modeli prognozowania probabilistycznego.

6.2 Podsumowanie wynikéw

W ramach tego podrozdziatu ogdlne wyniki prezentowane w rozdziale 5 oraz ich

analiza poréwnawcza przeprowadzona w punkcie 6.1.1 podsumowane zostang
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w odniesieniu do sformutowanych we wstepie pracy poszczegdlnych celéw oraz hipotez

badawczych.

6.2.1 Realizacja celow badawczych

Podsumowujac wyniki przedstawione w poprzednim podrozdziale mozna
wnioskowaé, ze gltowny cel pracy zostal osiagniety. W pracy pokazano, ze modele
bazujace na sieciach uczenia glebokiego mozna z powodzeniem stosowaé
w prognozowaniu finansowych szeregéw czasowych. Modele te wykorzystane zostalty
do uzyskania prognoz na trzech réznych poziomach - punktowych prognoz stép
zwrotu, punktowych prognoz zmiennosci (za pomoca modeli hybrydowych), oraz do
prognozowania calych rozktadéw prawdopodobienstwa. We wszystkich trzech
przypadkach rozwazane modele sieciowe uzyskaly zadowalajace, cho¢ nie bezbtedne
rezultaty.

W kolejnych rozdziatach pracy zrealizowane zostaly takze poszczegdlne cele
czastkowe. Podrozdziat 5.4 oraz punkt 6.1.1 odnosza sie do celéow dotyczacych
efektywno$ci modeli w kontekécie prognoz punktowych stop zwrotu, ich oceny
poprzez zastosowanie uzyskanych prognoz do budowy strategii inwestycyjnych,
a takze sprawdzenia wynikow w zaleznosci od poziomu rozwiniecia badanych rynkow.
Punkt 4.2.1 oraz podrozdzial 5.5 dotycza celéw badawczych zwigzanych z konstrukcja
i ocena modeli hybrydowych stosowanych do uzyskiwania punktowych prognoz
zmiennosci oraz ich ocene w kontekscie szacowania ryzyka kapitatowego. Z kolei
w punkcie 4.2.2 oraz podrozdziale 5.6 zrealizowane zostaly cele zwiazane z budowa
sieciowych modeli prognozowania probabilistycznego. Poréwnanie efektywnosci
modeli ekonometrycznych z modelami wykorzystujacymi sieci uczenia gltebokiego
przedstawione zostalo w punktach 6.1.2 oraz 6.1.3. Realizacja wspomnianych celow
badawczych mozliwa byta poprzez stworzenie autorskich koddéw, co dokladniej

omowione zostato w podrozdziale 5.2.

6.2.2 Odniesienie do hipotez badawczych

W ponizszej czesci pracy zweryfikowane zostang poszczegolne hipotezy badawcze,
ktére sformutowane zostaty na poczatku badan i przedstawione we wstepie do niniejsze;j
dysertacji. W pierwszej kolejnos$ci omoéwione zostang hipotezy szczegdtowe, a nastepnie
hipoteza gtéwna, ktora jest niejako ich podsumowaniem.

Pierwsza z postawionych hipotez szczegdétowych gtosita, ze modele oparte na uczeniu
gtebokim generuja lepsze efekty predykcji w poréwnaniu z modelami wykorzystujacymi

klasyczne metody sztucznej inteligencji, w kontekscie punktowych prognoz stop zwrotu.
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Wyniki przedstawione w podrozdziale 5.4 oraz punkcie6.1.1, na podstawie ktorych
wnioskowa¢ mozna, ze badane typy sieci uczenia glebokiego w postaci rekurencyjnych
sieci LSTM oraz sieci konwolucyjnych istotnie przyniosty lepsze rezultaty predykcji,
w porownaniu z klasycznymi sieciami MLP. Wyniki te nie daja podstaw do odrzucenia
omawianej hipotezy.

Nalezy jednak mie¢ na uwadze, ze rezultaty uzyskane poprzez sieci neuronowe
w duzym stopniu zaleza od struktury sieci oraz ustalonych hiperparametréw,
w zwigzku z czym moga wyniki uzyskane przez poszczegdlne specyfikacje modelowe
moga nie by¢ optymalne. Zauwazy¢ takze nalezy, ze sieci MLP sa tylko jednym
z bardzo licznych narzedzi klasycznego uczenia maszynowego, cechujacych si¢ czesto
roznymi sposobami konstrukcji, nie nalezy wigc, opierajac si¢ na tym jednym
przyktadzie dokonywa¢ nadmiernie szerokiego uogélnienia.

Kolejna z badanych hipotez glosita, ze prognozy punktowe stop zwrotu uzyskane
przez modele sieciowe, mozna wykorzysta¢ do budowy skutecznych strategii
inwestycyjnych. Wyniki przedstawione w podrozdziale 5.4 oraz punkcie 6.1.1
pokazuja, ze budowa strategii inwestycyjnych na podstawie prognoz uzyskanych przez
modele sieciowe jest mozliwa, jednak w wiekszosci przypadkow nie przynosza one
znaczaco lepszych rezultatow od prostej strategii pasywnej. W przypadku sieci LSTM
wykorzystujacych miare MADL do budowy strategii bazujacej na pozycjach dtugich,
mozna stwierdzi¢, ze model ten moze stuzyé¢ jako podstawa w konstrukcji narzedzi
inwestycyjnych, poniewaz ze wzgledu na niski poziom ekspozycji na ryzyko umozliwia
wprowadzenie mechanizmu dzwigni. Poza tym przypadkiem, badane modele nie
wskazuja na mozliwosci poprawy rezultatéow wzgledem strategii pasywnej. Majac
dodatkowo na uwadze, ze w procesie inwestowania nalezy bra¢ pod uwage takze
dodatkowe koszty transakcyjne, na podstawie uzyskanych wynikéw hipoteze ta nalezy
odrzucic.

Na podstawie tych samych wynikéw (zob. podrozdzial 5.4 oraz punkt 6.1.1),
odnies¢ sie mozna takze do hipotezy, gloszacej ze prognozy stoép zwrotu indeksow
notowanych na rynkach wschodzacych daja lepsze wyniki w kontekscie strategii
inwestycyjnych w poréwnaniu z indeksami z rynkoéw rozwinietych. Wyniki te nie
wykazuja znacznych réznic pomiedzy prognozami uzyskanymi na podstawie danych
pochodzacych z rynkéw rozwijajacych sie (reprezentowanych przez indeksy WIG,
KOSPI oraz BOVESPA) w stosunku do rynkéw rozwinietych. W zwigzku z tym,
w tym przypadku postawiong hipoteze takze nalezatoby odrzuci¢.

W kontekscie punktowych prognoz zmiennosci, zbadana zostata hipoteza gloszaca,
ze polaczenie metod ekonometrycznych z metodami uczenia gtebokiego w ramach

modeli hybrydowych przyczynia sie do poprawy efektywnosci prognoz zmiennosci.
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Wyniki  dotyczace  punktowych  predykcji  zmiennosci omodwione  zostaly
w podrozdziale 5.5 oraz punkcie 6.1.2. Na podstawie ocen trafnosci predykcji
wykorzystujacych miare MSE stosowang jako funkcje straty w modelach
hybrydowych, mozna zauwazy¢, ze wyniki uzyskane przez te modele ulegly poprawie
we wszystkich badanych przypadkach, co nie daje podstaw do odrzucenia tej
hipotezy. Jesli jednak doktadniej przyjrze¢ si¢ pozostalym miernikom oceny trafnosci
prognoz, oraz wynikom testow mna istotno$¢ réznic miar bledow prognoz,
przedstawionych w tabelach A.2 - A.25, mozna zauwazy¢, ze rdznice nie zawsze byty
istotne, a pozostate mierniki btedéw niekiedy wskazaly odmienne rezultaty.

Oceny prognoz punktowych, uzyskane przy pomocy typowych miernikéw, okazaty
si¢ niejednoznaczne, niemniej jednak przeprowadzono rowniez badania pod katem
prognozowania pozioméw ryzyka kapitalowego. W tym przypadku hipoteza badawcza
glosita, ze prognozy zmiennosci uzyskane przez modele hybrydowe przyczyniaja sie do
poprawy prognoz ryzyka kapitalowego. W tym kontekscie, bazujac na wynikach
zaprezentowanych w punktach 5.5.2 oraz 6.1.2, mozna zauwazy¢, ze modele
hybrydowe przyczyniaty sie do poprawy wynikow przede wszystkim w przypadku
prognoz wartosci zagrozonej z jednoprocentowym poziomem tolerancji. Natomiast
w przypadku poziomu pigcioprocentowego natomiast dawaly prognozy zawyzone.
Biorac pod uwage najnowsze zalecenia Komitetu Bazylejskiego, w ktorych
preferowany jest jednoprocentowy poziom VaR oraz modele bardziej konserwatywne,
mozna wnioskowaé, ze uzyskane wyniki nie daja podstaw do odrzucenia przyjetej
hipotezy. Dodatkowym atutem analizowanych specyfikacji modelowych (takze tych
dotyczacych prognozowania probabilistycznego) sa zadowalajace wyniki uzyskane
w kontekscie prognoz oczekiwanego niedoboru.

Kolejna sposréd badanych hipotez glosita, ze sieci neuronowe uczenia gltebokiego
mozna  wykorzysta¢ jako narzedzie w  prognozowaniu calych rozktadow
prawdopodobienstwa. W celu zweryfikowania tej hipotezy zaproponowane zostaty
sieciowe modele prognozowania probabilistycznego umozliwiajace prognozowanie
parametrow réznych zadanych typéw rozktadéw predyktywnych, oraz zdefiniowane
zostaly stosowane w nich nowe funkcje straty. Wyniki oméwione w podrozdziale 5.6,
dotyczace oceny jakosci prognoz probabilistycznych oraz szacowania ryzyka
kapitatlowego z wykorzystaniem tych modeli, wskazuja, ze nie ma podstaw do
odrzucenia tej hipotezy.

Sieciowe modele prognoz probabilistycznych wykorzystane zostaly takze w celu
weryfikacji hipotezy gloszacej, ze prognozy probabilistyczne uzyskane przez sieci
uczenia glebokiego przynosza lepsze rezultaty w kontekscie szacowania ryzyka

kapitalowego w poréwnaniu z modelami klasy ARMA-GARCH. W punkcie 6.1.3
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zaprezentowane zostaty wyniki poréwnujace ze sobg skutecznos¢ badanych modeli.
Na ich podstawie mozna wnioskowa¢, ze sieciowe modele prognozowania
probabilistycznego, mimo ze charakteryzujg si¢ nieco mniejszymi odstepstwami
procentowych udzialéw przekroczen od przyjetych pozioméw tolerancji, nie uzyskuja
jednoznacznie lepszych prognoz od modeli punktowych prognoz zmiennosci (zaréwno
modeli hybrydowych, jak ARMA-GARCH). W zwiazku z tym hipoteze ta nalezaloby
odrzuci¢.

7, uwagi na wyniki zwigzane z badaniem poszczegdlnych hipotez szczegdtowych,
mozna wnioskowaé, ze nie ma réwniez podstaw do odrzucenia gtéwnej hipotezy pracy,
gloszacej ze modele predykcyjne oparte na metodach uczenia glebokiego, mozna
efektywnie wykorzystywa¢ do prognozowania finansowych szeregdw czasowych
w postaci logarytmicznych stép zwrotu. Odrzucone zostaty hipotezy dotyczace
budowy strategii inwestycyjnych opartych o modele uczenia gtebokiego oraz o
przewadze  sieciowych  modeli  probabilistycznych  nad  modelami  klasy
ARMA-GARCH. Pozostate zaprezentowane w pracy wyniki swiadczag o tym, ze
badane modele wykorzystujace sieci uczenia gtebokiego dobrze sprawdzaja sie
W prognozowaniu zmiennosci i szacowaniu ryzyka kapitalowego, przede wszystkim

jako narzedzia uzupeliajace w potaczeniu z metodami ekonometrycznymi.

6.3 Zalety i ograniczenia wynikajace ze stosowania

metod uczenia glebokiego

Jak wykazano w pracy, modele bazujace na sieciach uczenia glebokiego moga
stanowi¢ pomocne narzedzie podczas modelowania i prognozowania instrumentow
finansowych. Aby umozliwi¢ pelniejsza ocene tych modeli, nalezy wskazaé¢ zalety
i wady zwigzane z ich zastosowaniem.

Do gtéwnych zalet modeli uczenia glebokiego nalezy ich elastycznosé. Jak
wiadomo, modele te stosowane sa w bardzo szerokim zakresie, z ktérego badanie
szeregbw czasowych jest tylko niewielkim wycinkiem. Ta elastycznos¢ narzedzi
uczenia glebokiego umozliwia prace z po pierwsze, prace z dowolnymi zestawami
danych, a po drugie — znacznie ulatwia taczenie ich z narzedziami bardziej
wyspecjalizowanymi w danej dziedzinie, jak w tym przypadku z modelami
ekonometrycznymi. Tego typu rozwigzania hybrydowe najczesciej przyczyniaja sie do
poprawy uzyskiwanych wynikéw oraz otwierajag nowe mozliwosci badawcze.
Elastycznos¢ ta pozwala takze na stosunkowo prosta mozliwos¢ dostosowania
konstrukcji modelu w zaleznosci od danego problemu badawczego, jak miato to

w przypadku budowy sieciowych modeli prognoz probabilistycznych.

174



Stosowanie modeli opartych na sieciach neuronowych uczenia gtebokiego
umozliwia takze modelowanie danych w postaci zaréwno jednowymiarowej, jak to
miato w przypadku tej pracy, jak i wielowymiarowych, przyktadowo w celu analizy
catego portfela inwestycyjnego. Doboér danych wejsciowych do sieci moze by¢
w zasadzie zupelie dowolny, jesli tylko uznamy, ze dodatkowe zmienne wejsciowe
moga przyczyni¢ sie do poprawy wynikow uzyskiwanych przez model. W wielu
badaniach, m.in. opisanych w podrozdzialach 1.3 oraz 4.1, jako dane wejSciowe
stosowane byto nawet kilkanascie zmiennych, obejmujacych przyktadowo rézne typy
aktywow czy tez oszacowania parametréw modeli. Podobnie, ilo$¢ wektoréw
wyjsciowych sieci zalezy jedynie od ilosci neuronéw w warstwie wyjsciowe]j
i odpowiedniego dopasowania funkcji straty minimalizowanej przez model, co, jak
wspomniano, pozwala takze na modelowanie danych wielowymiarowych. Takze
w przypadku zaproponowanego w tej pracy modelu prognozowania probabilistycznego
wlasno$é ta umozliwita zmiane ilogci prognozowanych parametréw rozktadu.?

Dodatkowo, dzieki stosowaniu w sieciach uczenia glebokiego nieliniowych funkcji
aktywacji oraz wielu warstw ukrytych mozliwe jest wykrywanie skomplikowanych
i czesto wysoce nieliniowych zaleznosci, co pozwala w stosunkowo prosty sposéb
modelowa¢ dane o zréznicowanej strukturze.

Modele bazujace na sieciach uczenia gtebokiego nie sg jednak pozbawione wad.
Jednym z podstawowych probleméw jest odpowiedni dobér hiperparametréw sieci, od
ktorych w duzej mierze zaleze¢ moga uzyskiwane wyniki. Ze wzgledu na duzg liczbe
hiperparametrow i1 mozliwosci dodatkowych zmian w strukturze sieci, jest to
najczesciej proces czasochtonny, co wiecej nie dajacy pewnosci, ze wybrane koncowo
warto$ci sa optymalne. Dodatkowym problemem jest wybér odpowiedniego okna
danych, na ktorych przeprowadzany jest proces dostrajania hiperparametrow. W
przypadku finansowych szeregéw czasowych, wybor jednego wycinka danych w zaden
sposoéb nie gwarantuje nam, ze w przysztosci bedziemy mieli do czynienia z danymi o
podobnej charakterystyce, w zwiazku z czym hiperparametry, ktére moga okazaé sie
optymalne dla tego wycinka, wcale nie muszg sie sprawdzi¢ podczas ewaluacji sieci na
zbiorze testowym lub w trakcie jej eksploatacji.

Podobny problem dotyczy wyboru minimalizowanej w trakcie uczenia sieci funkcji
straty, co réwniez moze mie¢ kluczowy wplyw na wyniki. Ogolnie stosowane
w prognozowaniu finansowych szeregéw czasowych funkcje straty czesto okazuja sie
niewystarczajace w celu rozwigzania takich probleméw jak budowa optymalnych

strategii inwestycyjnych czy szacowanie poziomu ryzyka. Laczy sie to takze czesto

4Parametry te, w okreslonych przypadkach, traktowaé¢ mozna takze jako punktowe prognozy stép

zwrotu oraz zmiennosci, co otwiera nowe mozliwosci implementacyjne proponowanego modelu.
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z koniecznodciag tworzenia nowych postaci funkcji straty, jak mialo to w tym
przypadku miejsce przy podjeciu proby prognozowania probabilistycznego, oraz
omawianej w kontekscie strategii inwestycyjnych funkcji MADL.?

Utrudnieniem, ktére zaobserwowano podczas badan empirycznych dotyczacych
prognozowania  parametréow rozkladu prawdopodobienstwa, byly  problemy
z uzyskaniem zbieznos$ci przez model, szczegdélnie w przypadku prognozowania
parametrow sko$nego rozkladu t-Studenta. Spowodowalo to koniecznosé¢ zmiany
wielkosci paczki wsadowej (na znacznie wigksza niz poczatkowo zalozono) oraz
konieczno$é¢ stosowania schematu rekursywnego, aby zwiekszy¢ ilos¢ dostepnych
danych wejéciowych. Schemat rekursywny musiat by¢ zastosowany takze w przypadku
modeli hybrydowych, wykorzystanych w tej pracy do punktowego prognozowania

zmiennosci, w celu poprawy uzyskiwanych wynikow.

6.4 Proponowane kierunki dalszych prac

badawczych

W ponizszym podrozdziale zaproponowane zostaly dalsze kierunki badan nad
zastosowaniem narzedzi wykorzystujacych sieci uczenia gtebokiego w prognozowaniu
finansowych szeregbéw czasowych.

Analizy zaprezentowane w tej pracy dotyczyty tylko indekséw gietdowych, ktore -
jako typ - stanowia tylko niewielki wycinek sposréd dostepnych instrumentéow
finansowych. Zatem naturalnym rozszerzeniem zakresu badan bytoby przetestowane
proponowanych modeli na innych typach instrumentéw, takich jak przyktadowo kursy
walut, kryptowaluty, surowce, towary handlowe czy tez opcje i kontrakty terminowe.
Dodatkowo, metody prezentowane w tej pracy stosowa¢ mozna takze w innych
dziedzinach, jak cho¢by prognozowanie cen lub zuzycia energii elektrycznej.

Obszar badan poszerzy¢ mozna takze do analizowania szeregéw wielowymiarowych.
W tym zakresie sieci uczenia gtebokiego wykorzysta¢ mozna do analizy portfelowej —
prob zbudowania strategii inwestycyjnych czy tez szacowania ryzyka dla catego portfela.
Dodatkowo modele uczenia gtebokiego mogtyby by¢ takze zbadane w kontekscie danych
o wysokiej czestotliwosci.

Do kluczowych zagadnien, ktére wymagaja dalszych badan jest takze usprawnienie

procesu dostrajania hiperparametréow oraz kwestie zwigzane z wyborem danych, na

5W tym miejscu zwrécié takze nalezy uwage na pewne problemy, ktére pojawily sie podczas uczenia
sieci z wykorzystaniem funkcji MADL. Ze wzgledu na konstrukcje tej funkcji, stabo sprawdza sie w jej
przypadku wykorzystanie metod optymalizacyjnych bazujacych na gradiencie, przez co uczenie sieci

w tym przypadku miato charakter losowy, bardziej zblizony do metody siatki grid search.
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ktorych proces dostrajania jest prowadzony. Wcigz trwaja prace nad rozwojem narzedzi
umozliwiajacych zautomatyzowanie tego procesu, jednak bazujac na doswiadczeniu
dotyczacym ich stosowania w zaprezentowanych powyzej badaniach, wcigz wymagaja
one dalszego usprawniania.

Jak wykazano w badaniach przeprowadzonych w tej pracy, wazna kwestia
zwigzana z projektowaniem modeli sieciowych jest dobor odpowiedniej funkcji straty.
Proponowane mierniki bledéw, o ile sprawdzaja si¢ jako narzedzia oceny uzyskanych
prognoz, czesto wymagaja doprecyzowania w przypadkach kiedy wykorzystane maja
by¢ jako funkcja straty stosowana do rozwigzania konkretnego problemu.
Przyktadowo, zamiast korzystania z ogélnych miernikoéw btedu prognoz, mozna
skonstruowa¢ funkcje straty optymalizujaca, przyktadowo, wskazniki informacyjne
w kontekscie strategii inwestycyjnych lub bezposrednio poziom prognozowanej
warto$ci zagrozonej podczas szacowania ryzyka kapitalowego.

Sieciowe modele prognoz probabilistycznych, stosowane do prognozowania
parametrow zadanego rozktadu prawdopodobienstwa, mozna w praktyce wykorzystac¢
takze do uzyskania prognoz punktowych, jak ma to miejsce przyktadowo
w przypadku rozktadu normalnego, gdzie wartos¢ parametru p;y; mozna traktowac
jako prognoze punktows stopy zwrotu, a parametru o;.; — jako punktowa prognoze
zmiennosci, pomimo, ze w przypadku tych modeli funkcja straty bazuje na zupetnie
innej koncepcji, niz w przypadku modeli prognozowania punktowego. Uzasadnione
bytoby wiec przeprowadzenie badan poréownujacych wyniki prognoz punktowych
uzyskanych za pomoca modeli bazujacych na tych dwéch odmiennych podejsciach. Z
kolei w prognozowaniu catych rozktadéow prawdopodobienstwa przysztych stép
zwrotu Naturalnym kierunkiem naturalnym kierunkiem badan byloby takze
wykorzystanie w tym zakresie sieci bayesowskich.

Zaprezentowane w niniejszej pracy modele ewaluowane byly przede wszystkim
z wykorzystaniem testow wstecznych (z wyjatkiem sieci LSTM, ktora zastosowana
zostata takze do uzyskania prognoz punktowych w czasie rzeczywistym). W celu
uzyskania pekiejszego obrazu mozliwosci prognostycznych proponowanych modeli,
nalezalo by je oceni¢ takze w kontekscie eksploatacji poprzez budowe
zautomatyzowanych algorytméw inwestycyjnych lub szacujacych ryzyko w czasie
rzeczywistym. Pozwolitoby to na doktadniejsza ocene omawianych narzedzi od strony

praktyczne;j.
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Z.akonczenie

Gléwnym celem pracy byta analiza modeli bazujacych na sieciach neuronowych
uczenia glebokiego w prognozowaniu szeregdw czasowych stoép zwrotu wybranych
instrumentow finansowych oraz ich zmiennoéci. Cel ten osiagniety zostal poprzez
szczegOtowe przedstawienie zagadnien teoretycznych zwigzanych 2z poruszang
problematyka omoéwionych w pierwszej czesci pracy, w szczegdlnosci w rozdziatach 2
i 3, oraz wieloaspektowe badania empiryczne dotyczace mozliwosci prognostycznych
omawianych modeli, zaprezentowane w rozdziatach 5 i 6.

W  badaniach przedstawionych w niniejszej rozprawie zastosowane zostato
podejscie interdyscyplinarne. Szczegélny nacisk polozony zostal na potaczenie
narzedzi ekonometrycznych z metodami z zakresu sztucznej inteligencji. Podjeta
zostata proba syntezy tych metodologii, ktora zaowocowata propozycjami nowych
narzedzi stuzgcych do prognozowania finansowych szeregéw czasowych, w postaci
modeli hybrydowych i sieciowych modeli prognozowania probabilistycznego.

Omawiane w pracy modele przeanalizowane zostaly na trzech ptaszczyznach. W
pierwszej kolejnosci zbadano mozliwosci modeli wykorzystujacych sieci neuronowe
w prognozowaniu punktowym stop zwrotu. Nastepnie, uzyskane prognozy
wykorzystano do budowy strategii inwestycyjnych. W tym zakresie zaobserwowano
przewage sieci uczenia glebokiego (LSTM oraz CNN) nad klasycznymi sieciami MLP.
Zwrocono tez uwage na fakt, ze duzy wplyw na uzyskiwane wyniki ma takze sposob
konstrukcji strategii.

W  kolejnej czesci zaproponowane w ramach pracy modele hybrydowe
ARMA-GARCH-LSTM postuzyty do punktowego prognozowania zmienno$ci oraz
szacowania ryzyka kapitalowego. Wyniki prognoz poréwnane zostaly takze
z czystymi” modelami klasy ARMA-GARCH. Poczatkowa ocena jakos$ci prognoz,
bazujaca na funkcji MSE, ktoéra minimalizowana byla przez sie¢, wskazywala na
poprawe wynikéw uzyskanych przez specyfikacje rozbudowane o komponent sieciowy.
Biorac jednak pod uwage dodatkowe mierniki oraz ocene¢ prognoz ryzyka kapitatowego
stwierdzono, ze rezultaty uzyskane poprzez poszczegdlne grupy modeli sg zblizone.

Trzecia czes¢ badan empirycznych dotyczyta ewaluacji modeli sieciowych

179



stosowanych do prognozowania parametrow rozktadow prawdopodobienstwa
przysztych stép zwrotu. W tym celu zastosowane zostalty kryteria oceny prognoz
probabilistycznych, oraz ponownie, miary trafno$ci prognoz ryzyka kapitatowego.
Takze w tym zakresie jako$¢ prognoz zalezata w duzym stopniu od stosowanego
kryterium oceny. Modele sieciowe najlepsze rezultaty uzyskaly pod katem miernika
LPS, ktérego konstrukcja jest najbardziej zblizona do wykorzystywanych przez sieé¢
funkcji straty.

Wyniki przeprowadzonych badan wskazuja na zasadnos¢ wykorzystania sieci
neuronowych uczenia gtebokiego w prognozowaniu finansowych szeregéw czasowych,
cho¢ nie pokazuja jednoznacznej przewagi konkretnej specyfikacji modelowej nad
innymi. Ta niejednoznaczno$¢ w duzej mierze wynika z kwestii zwigzanych
z konstrukcja i wyborem funkcji straty minimalizowanych przez modele sieciowe, co
w bezposredni sposob przektada sie na wyniki uzyskiwane przez dany model. Majac
to na uwadze, mozna jednak stwierdzi¢, ze sposréd badanych typow sieci
neuronowych, rekurencyjne sieci LSTM regularnie charakteryzowaly si¢ dobrymi
rezultatami we wszystkich trzech aspektach.

Ze wzgledu na szeroki zakres tematyki zwigzanej z modelowaniem
i prognozowaniem finansowych szeregéw czasowych, nalezy wzia¢ pod uwage, ze
metody i narzedzia przedstawione w tej pracy, cho¢ analizowane byly w mozliwie
szerokim zakresie, stanowia jedynie podstawe, na bazie ktorej mozna dokonywaé
dalszej ich rozbudowy koncepcyjnej i analizy poprzez badania empiryczne, co

pozostawacé bedzie w obszarze dalszych zainteresowan autora.
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Aneks

Tlustracje
S&P 500 MNIKKEI 225 DA
0.4 0.4 o 04+
0.2 0.2 o 0.2
0.0 0.0 0.0
T T T T T T T T T T T T T T T T T T
o 10 20 30 40 30 0 10 20 0 40 50 o 0 20 30 40 50
WG KOSPI BOWVESPA
0.4 04 o 04 o
0.2 0.2 0.2
0.0 0.0 0.0
T T T T T T T T T T T T T T T T T T
o 10 20 30 40 30 0 10 20 0 40 50 o 0 20 30 40 50
Rysunek A.1: ACF dla wartosci bezwzglednych stép zwrotu
Zrédlo: Opracowanie wlasne.
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Rysunek A.2: PACF dla wartosci bezwzglednych stop zwrotu

Zrédlo: Opracowanie wlasne.
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Rysunek A.3: ACF dla oszacowan zmiennosci uzyskanych za pomoca estymatora GKYZ

Zrédlo: Opracowanie wlasne.
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Rysunek A.4: PACF dla oszacowan zmienno$ci uzyskanych za pomocy estymatora GKYZ

Zrédlo: Opracowanie wlasne.
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Wyniki ARMA-GARCH
ARMA-GARCH-LSTM

modeli oraz modeli hybrydowych

Tabela A.l: Tlo$¢ przekroczen oszacowan VaR(0,05)/VaR(0,01) w modelach ARMA-GARCH i
hybrydowych ARMA-GARCH-LSTM

Model/Metrics G(N) G(N)-LSTM  G(STD)  G(STD)-LSTM  G(SSTD)  G(SSTD)-LSTM
S&P VaR 5%/1%  158/68 (6,35/2,73) 108/41 174/45 127/28 158/37 105/24
NKX VaR 5%/1%  136/58 (5,47/2,33) 80/26 153/45 90/18 134/37 77/11
WIG VaR 5%/1%  142/46 (5,71/1,85) 98/28 150/33 107/21 141/29 90,/19
KOSPI VaR 5%/1% 167/63 (6,71/2,53) 64/16 180/47 79/11 156/36 59/5

BVP VaR 5%/1%  133/36 (5,35/1,45) 68/18 145/29 69/13 137/30 67/16
DAX VaR 5%/1% 174/65 (7/2,61) 68/17 184/40 78/9 171/37 67/7

E(N) E(N)-LSTM  E(STD)  E(STD)-LSTM  E(SSTD)  E(SSTD)-LSTM

S&P VaR 5%/1%  163/64 (6,55/2,57) 110/36 179/46 118/33 155/22 98,22
NKX VaR 5%/1%  139/53 (5,59/2,13) 71/20 148/43 83/13 135/28 76/10
WIG VaR 5%/1%  150/49 (6,03/1,97) 83/28 158/41 99/24 144/31 86/16
KOSPI VaR 5%/1% 171/68 (6,88/2,73) 66/17 178/51 74/15 158/29 53/8

BVP VaR 5%/1%  130/42 (5,23/1,69) 60/14 123/19 75/11 119/16 77/12
DAX VaR 5%/1%  159/57 (6,39/2,29) 67/18 171/51 77/15 150/38 60/9

GIR(N) GJR(N)-LSTM GJR(STD) GJR(STD)-LSTM GJR(SSTD) GJR(SSTD)-LSTM
S&P VaR 5%/1%  149/59 (5,99/2,37) 98/30 171/37 112/24 140/26 80/12
NKX VaR 5%/1%  140/58 (5,63/2,33) 76/21 145/43 85/17 134/37 74/11
WIG VaR 5%/1%  136/45 (5,47/1,81) 89/27 147/32 98/21 134/30 87/16
KOSPT VaR 5%/1% 165/57 (6,63/2,29) 61/19 175/46 67/13 155/30 61/10
BVP VaR 5%/1%  128/36 (5,15/1,45) 66/14 135/25 67/13 142/28 69/10
DAX VaR 5%/1%  162/56 (6,51,/2,25) 62/19 171/41 67/12 151/33 60,10
AP(N) AP(N)-LSTM  AP(STD) AP(STD)-LSTM  AP(SSTD)  AP(SSTD)-LSTM

S&P VaR 5%/1%  166/71 (6,67/2,85) 111/41 176/41 115/29 148/27 99/18
NKX VaR 5%/1%  135/50 (5,43/2,01) 74/23 140/39 81/14 122/27 75/11
WIG VaR 5%/1%  142/48 (5,71/1,93) 95/29 145/33 96/23 136/31 85,20
KOSPI VaR 5%/1% 172/66 (6,92/2,65) 72/20 179/46 74/13 53/31 65/10
BVP VaR 5%/1%  144/41 (5,79/1,65) 67/16 143/31 79/12 138/33 81/15
DAX VaR 5%/1%  162/59 (6,51/2,37) 63/21 175/47 67/13 151/39 57/10

Uwaga: Oczekiwana liczba przekroczen wynosi 124/24, ilo$¢ prognoz 2487

Zrédlo: Opracowanie wlasne.
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Tabela A.2: Prognozy zmiennosci, indeks S&P500, model GARCH i GARCH LSTM

Model/Metrics G(N) G(N)-LSTM G(STD) G(STD)-LSTM  G(SSTD)  G(SSTD)-LSTM
MSE 0,3285463 0,3280888 0,3251186 0,324028 0,3352583 0,3314607
DM p-value 0,8624 0,8597 0,7724
MAE 0,3652576 0,3712369 0,363694 0,370711 0,3656465 0,3782946
HMSE 0,2156606 0,3453763 0,2237549 0,3471955 0,223676 0,3767537
R? 0,6341285 0,5696598 0,6186275 0,5822008 0,6143863 0,5668014
Przek. VaR 158/68 108/41 174/45 127/28 158/37 105/24
Przek. VaR (%) 158/68 108/41 174/45 127/28 158/37 105/24
Kupiec 5% 0,002911799(R) 0,1241958 1,559684e-05(R)  0,8080036  0,002911799(R)  0,06766877
Kupiec 1% 7,048087c-13(R)  0,002949403(R)  0,0002689616(R)  0,5363499  0,02262881(R) 0,8600111
Christoff. 5% 0,007515332(R)  0,02411495(R)  6,208225¢-05(R)  0,2230072  0,003462283(R)  0,01050691(R)
Christoff. 1% 5,308975¢-12(R)  2,53154e-05(R)  0,0006885124(R) 0,01072578(R)  0,02265446(R)  0,005157251(R)
ES bootstrap 5%  0,0001550028  0,0007601218 0,3960251 0,5437578 0,561588 0,7726647
ES prébkowy 5%  3,201136e-07(R)  2,719803¢-05(R) 0,3386457 0,534278 0,5917593 0,8535576
ES bootstrap 1% — — — 0,4240474 — 0,6901583
ES prébkowy 1% 0,3757155 0,7637902

Zrédlo: Opracowanie wlasne.

Tabela A.3: Prognozy zmiennosci, indeks S&P500, model EGARCH i EGARCH-LSTM

Model/Metrics E(N) E(N)-LSTM E(STD) E(STD)-LSTM  E(SSTD)  E(SSTD)-LSTM
MSE 0,3575556 0,3518625 0,3517481 0,3448754 0,3632544 0,3605409
DM p-value 0,1617 0,1553 0,1453
MAE 0,3642571 0,3835117 0,3609983 0,37705 0,3635144 0,3819407
HMSE 0,1732228 0,3853719 0,1751933 0,3553598 0,1756505 0,3638078
R? 0,5729105 0,5488056 0,561027 0,5877998 0,5661337 0,5163117
Przek. VaR 163/64 110/36 179/46 118/33 155/22 98,22
Przek. VaR (%) 163/64 110/36 179/46 118/33 155/22 98/22
Kupiec 5% 0,0006710911(R)  0,1784333 2.227363¢-06(R)  0,5558262  0,006522105(R)  0,01194658(R)
Kupiec 1% 4,569256e-11(R)  0,03551858(R)  0,0001401641(R)  0,1186792 0,5552061 0,5552061
Christoff. 5% 0,002998533(R)  0,01632977(R)  1,302748¢-05(R)  0,0369363(R)  0,01829748(R)  0,002670763(R)
Chrisotff. 1% 2,395822e-10(R)  2,545875¢-07(R)  0,0001252356(R) 0,000998233(R)  0,355113  0,0001042493(R)
ES bootstrap 5%  3,307416e-05 0,007496304 0,174615 0,2261359 0,6434566 0,5576949
ES probkowy 5%  2,938924¢-07(R)  0,0007393309(R)  0,09533645 0,1474097 0,6735219 0,5641093
ES bootstrap 1% — — — 0,6758302 0,1517443 0,6403693
ES probkowy 1% — — — 0,70159 0,08271212 0,6664602

Zrédlo: Opracowanie wlasne.
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Tabela A.4: Prognozy zmiennosci, indeks S&P500, model GJR-GARCH i GJR-GARCH-LSTM

Model/Metrics GJR(N) GJR(N)-LSTM GJR(STD) GJR(STD)-LSTM GJR(SSTD) GJR(SSTD)-LSTM
MSE 0,302625 0,2914628 0,3012009 0,2809567 0,3063293 0,2946242
DM p-value 0,1478 0,1521 0,1521
MAE 0,3519807 0,3741351 0,3516875 0,3631845 0,3533803 0,3788403
HMSE 0,1807714 0,3842018 0,183153 0,3273964 0,1848005 0,4225433
R? 0,6068593 0,7384955 0,5981365 0,7677426 0,6015356 0,7731989
Przek. VaR 149/59 98/30 171/37 112/24 140/26 80/12
Przek. VaR (%)

Kupiec 5% 0,02764251(R)  0,01194658(R)  4,674136e-05(R) 0,2481387 0,1577436 1,337974e-05(R)
Kupiec 1% 5,095557¢-09(R) 0,3166331 0,02262881(R) 0,8600111 0,821158 0,003927525(R)
Christoff. 5% 0,08359927 0,002670763(R)  0,0002338338(R) 0,1259191 0,274063 4,477951e-06(R)
Chrisotff. 1% 3,589397e-08(R)  0,0116681(R) 0,06384671 0,005157251(R) 0,5376108 0,01474698(R)
ES bootstrap 5%  0,0008605812 0,08362556 0,5690876 0,6861423 0,6974109 0,8121736
ES prébkowy 5%  1,545614e-05(R)  0,02975946(R) 0,589491 0,7224967 0,7623357 0,8867095
ES bootstrap 1% — 0,0310762 0,5853297 0,4358049 0,3789528 —

ES prébkowy 1% 0,01149588(R) 0,5632319 0,3510686 0,3088883

Zrédlo: Opracowanie wlasne.

Tabela A.5: Prognozy zmiennosci, indeks S&P500, model APARCH i APARCH-LSTM

Model/Metrics AP(N) AP(N)-LSTM AP(STD) AP(STD)-LSTM  AP(SSTD)  AP(SSTD)-LSTM
MSE 0,3426945 0,3344834 0,3242661 0,318056 0,3264551 0,3162408
DM p-value 0,1849 0,204 0,1616
MAE 0,3606189 0,3699534 0,3544302 0,3627978 0,3531873 0,3610026
HMSE 0,1685517 0,3312288 0,1715618 0,3185091 0,1670245 0,3035204
R? 0,5456934 0,5692383 0,5582577 0,611704 0,5676243 0,5926861
Przek. VaR 166/71 111/41 176/41 115/29 148/27 99/18
Przek. VaR (%)

Kupiec 5% 0,0002585233(R) 0,2112618 7,28635¢-06(R) 0,3838599 0,0344(R) 0,01574687(R)
Kupiec 1% 3,264056e-14(R)  0,002949403(R)  0,002949403(R) 0,4173806 0,6719996 0,1453207
Christoff. 5% 0,0006112344(R) 0,1036547 4,226065¢-05(R)  0,04996012(R)  0,03931851(R)  0,003824839(R)
Chrisotff. 1% 5,928591e-14(R)  2,410587¢-06(R)  0,004948776(R) 0,0114341(R) 0,5333337 0,1031526
ES bootstrap 5% 6,28606¢-06 0,002173954 0,242324 0,3242384 0,6982161 0,6809137
ES prébkowy 5%  2,985549¢-08(R)  0,000195468(R) 0,1541806 0,2350046 0,7501902 0,7400651
ES bootstrap 1% — — — 0,5986175 0,3858598 0,4302824
ES préobkowy 1% — — — 0,6280052 0,307657 0,3673147

Zrédlo: Opracowanie wlasne.
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Tabela A.6: Prognozy zmiennosci, indeks NIKKEI 225, model GARCH i GARCH-LSTM

Model/Metrics G(N) G(N)-LSTM G(STD) G(STD)-LSTM G(SSTD) G(SSTD)-LSTM
MSE 0,7190396 0,6295932 0,7156355 0,6413457 0,7232306 0,6445305
DM p-value 0,0001895 0,4401 0,3759
MAE 0,5676317 0,5713175 0,5689244 0,5740221 0,571226 0,5768095
HMSE 2,850735 4,558046 2,988673 4,457486 2,84862 4,60183

R? 0,1691152 0,1733029 0,1691473 0,1571037 0,1664218 0,14434
Przek. VaR 136/58 80/26 153/45 90/18 134/37 77/11
Przek. VaR (%)

Kupiec 5% 0,2906901 1,337974e-05(R)  0,01082282(R)  0,0009088047(R) 0,3803133 2,977075¢e-06(R)
Kupiec 1% 1,245618e-08(R) 0,821158 0,0002689616(R) 0,1453207 0,02262881(R)  0,001678938(R)
Christoff. 5% 0,5591795 1,255502e-05(R)  0,0381103(R) 0,001483662(R) 0,6504183 5,581325¢-06(R)
Chrisotff. 1% 4,149255¢-08(R) 0,5376108 0,0002087952(R) 0,1031526 0,004497022(R)  0,000831569(R)
ES bootstrap 5%  8,991041e-06 0,02218931 0,07341403 0,5331799 0,09595087 0,6353035
ES prébkowy 5%  3,819098e-07(R)  0,006081351(R)  0,02829267(R) 0,4774846 0,03660707(R) 0,6201986
ES bootstrap 1% — 0,04672565 — 0,4804514 — —

ES prébkowy 1% — 0,01821063(R) — 0,4009626 — —

Zrédlo: Opracowanie wlasne.

Tabela A.7: Prognozy zmiennosci, indeks NIKKEI 225, model EGARCH i EGARCH-LSTM

Model /Metrics E(N) E(N)-LSTM E(STD) E(STD)-LSTM  E(SSTD) E(SSTD)-LSTM
MSE 0,7293213 0,6421487 0,7185632 0,6292921 0,718122 0,6454369
DM p-value 0,5743 0,509 0,5842
MAE 0,5737363 0,571063 0,5684049 05657533 0,5669657  0,5696178
HMSE 2,667138 4,72994 2,687264 4,619211 2,616769 4,430363

R? 0,2060841 0,1326951 0,2125535 0,175777 0,2064342 0,124935
Przek. VaR 139/53 71/20 148/43 83/13 135/28 76/10
Przek. VaR (%)

Kupiec 5% 01855083  1,030394c-07(R)  0,0344(R)  5371088¢-05(R) 0,3335094 1,757875¢-06(R)
Kupiec 1% 8,393498¢-07(R) 0,3095893 0,0009299509(R)  0,008473333(R)  0,5363499  0,0006566578(R)
Christoft. 5% 0,3750778 5,71622e-07(R) 0,1064974 0,000130801(R)  0,6060121  3,122448e-06(R)
Chrisotff. 1% 4,039331e-06(R) 0,2143328 0,003996211(R)  0,005037558(R)  0,5077687  0,0002877767(R)
ES bootstrap 5%  0,0003025123 0,04243671 0,02555243 0,4185492 0,1609098 0,6743024
ES probkowy 5%  1,929293e-05(R)  0,01453429(R)  0,006372951(R) 0,3478262 0,08017253 0,7029006
ES bootstrap 1% — 0,02279984 - - 0,2118688 .

ES préobkowy 1% — 0,0111404(R) — — 0,1254408 —

Zrédto: Opracowanie wlasne.
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Tabela A.8: Prognozy zmiennosci, indeks NIKKEI 225, model GJR-GARCH i GJR-GARCH-LSTM

Model /Metrics GJR(N) GJR(N)-LSTM  GJR(STD)  GJR(STD)-LSTM  GJR(SSTD) GJR(SSTD)-LSTM
MSE 0,7042808 0,6496123 0,6900629 0,6344323 0,6961625 0,6277231
DM p-value 0,7503 0,7358 0,6868
MAE 0,5644395 0,5706564 0,5603332 0,5675919 0,5620999 0,5669418
HMSE 2,886685 4,5297 2,958561 4,473554 2,634196 4,449538

R? 0,197785 0,113094 0,2090007 0,160146 0,2040482 0,1698732
Przek. VaR 140/58 76/21 145/43 85/17 134/37 74/11
Przek. VaR (%)

Kupiec 5% 0,1577436 1,757875e-06(R) 0,06383829 0,0001276986(R) 0,3803133 5,888947e-07(R)
Kupiec 1% 1,245618e-08(R) 0,4229126 0,0009299509(R) 0,09252608 0,02262881(R) 0,001678938(R)
Christoff. 5% 0,3480243 6,414211e-06(R) 0,1546133 0,0003315829(R) 0,6023921 2,026285e-06(R)
Chrisotff. 1% 7,936179¢-08(R) 0,2833833 0,001947491(R) 0,06519099 0,06384671 0,000831569(R)
ES bootstrap 5% 0,0006524609 0,05506156 0,0622781 0,4463583 0,2221808 0,6550945
ES probkowy 5%  4,228499¢-05(R)  0,02204104(R) 0,01948298(R) 0,3895219 0,1306741 0,6805171
ES bootstrap 1% 0,03188525 0,401404

ES probkowy 1% — 0,01836927(R) — 0,3184132 —

Zrédlo: Opracowanie wlasne.

Tabela A.9: Prognozy zmiennosci, indeks NIKKEI 225, model APARCH i APARCH-LSTM

Model/Metrics AP(N) AP(N)-LSTM  AP(STD)  AP(STD)-LSTM AP(SSTD) AP(SSTD)-LSTM
MSE 0,725722 0,6385541 0,7014102 0,6340941 0,7013369 0,6347263
DM p-value 0,6452 0,69 0,7182
MAE 0,5717364 0,5658564 0,5641562 0,5677007 0,5644852 0,566896
HMSE 2,788908 4,645786 2,817499 4,70593 2,712554 4,604738

R? 0,1649554 0,1567614 0,194411 0,1519926 0,1997656 0,1436635
Przck. VaR 135/50 74/23 140/39 81/14 122/27 75/11
Przek. VaR (%)

Kupiec 5% 0,3335094 5,888947e-07(R) 0,1577436 2,152801e-05(R)  0,8283143  1,024309¢-06(R)
Kupiec 1% 8,449136e-06(R) 0,7026887 0,008555221(R)  0,01697476(R) 0,6719996 0,001678938(R)
Christoff. 5% 0,6212114 2,026285¢-06(R) 0,3385526 4,861257¢-05(R)  0,8924112  3,634332¢-06(R)
Chrisotff. 1% 4,934183e-05(R) 0,4228579 0,02833089(R) 0,01076814(R) 0,5333337 0,000831569(R)
ES bootstrap 5% 0,001917887 0,04622795 0,1655853 0,4697999 0,2384024 0,6936294
ES prébkowy 5% 0,0001867613(R)  0,01756195(R) 0,08321602 0,4091589 0,1476266 0,7310164
ES bootstrap 1% — 0,03978208 — — 0,2314639 —

ES probkowy 1% — 0,01846625(R) — — 0,1444633 —

Zrédlo: Opracowanie wlasne.
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Tabela A.10: Prognozy zmiennosci, indeks DAX, model GARCH i GARCH-LSTM

Model/Metrics G(N) G(N)-LSTM G(STD) G(STD)-LSTM G(SSTD)  G(SSTD)-LSTM
MSE 1,069736 0,7849515 1,051762 0,7771242 1,075352 0,7910381
DM p-value 0,002308 0,001331 0,0007548
MAE 0,6289005 0,5624794 0,6203608 0,5560515 0,6246122 0,5605514
HMSE 0,1854313 0,3559361 0,1831631 0,340455 0,1836664 0,3445947

R? 0,3513935 0,3170056 0,3469804 0,3242 0,3267928 0,3125383
Przek. VaR 174/65 68/17 184/40 78/9 171/37 67/7

Przek. VaR (%)
Kupiec 5%
Kupiec 1%
Christoff. 5%
Chrisotff. 1%

ES bootstrap 5%
ES prébkowy 5%
ES bootstrap 1%
ES prébkowy 1%

1,559684e-05(R
1,607487e-11(R
7,284972¢-06(R
4,364076e-11(R

0,0001373883
8,476633¢-06(R)

RN NN

1,586138¢-08(R)

0,09252608

8,449678¢-08(R)

0,2161062
0,1848147
0,1060256
0,213894
0,1262211

2,754904e-07(R)
0,005080548(R)
2,363876¢-07(R)

2,83897¢-05(R)

0,01026075(R)  0,001107336(R)
0,2414165 0,9135146
0,1595951 0,9731608

4,976404¢-06(R)
0,0002327628(R)

4,674136e-05(R)

0,02262881(R)

1,486731¢-05(R)

0,04253562(R)
0,464242
0,4183047

8,2539186-09(R)
2,073181e-05(R)
6,066743c-08(R)
0,0001138994(R)
0,9517954
0,9933471

Zrédlo: Opracowanie wlasne.

Tabela A.11: Prognozy zmiennosci, indeks DAX, model EGARCH i EGARCH-LSTM

Model/Metrics E(N) E(N)-LSTM E(STD) E(STD)-LSTM  E(SSTD)  E(SSTD)-LSTM
MSE 1,214811 0,8233499 1,196003 0,8740355 1,19496 0,8504577
DM p-value 0,0009276 0,001369 0,001283
MAE 0,6577704 0,5625484 0,6427355 0,5718593 0,6437478 0,5654752
HMSE 0,1719085 0,3506878 0,1695586 0,3428184 0,1699276 0,3554711

R? 0,2859736 0,342667 0,2403574 0,3205843 0,2422677 0,3380977
Przek. VaR 159/57 67/18 171/51 77/15 150/38 60/9

Przek. VaR (%)
Kupiec 5%
Kupiec 1%
Christoff. 5%
Chrisotff. 1%

ES bootstrap 5%
ES probkowy 5%
ES bootstrap 1%
ES probkowy 1%

0,002198025(R)
2,993902e-08(R)
0,007694525(R.
9,139484e-08(R)
1,195145¢-05
9,584718¢-07(R)

8,253918¢-09(R)
0,1453207

2,118517¢-08(R)
0,3037263
0,1550033
0,08640518
0,08146706

0,04933472(R)

4,674136¢-05(R)
3,98726¢-06(R)
0,0001991965(R)

1,676681e-05(R) 0,09102395
0,0004296552 0,1640598
4,446945¢-05(R) 0,08472213
0,3471822

— 0,240651

2,977075¢-06(R)
0,03176469(R)
7,274061¢-07(R)

0,02207304(R)
0,0140778(R)

0,05817807

0,04315141(R)

0,2602961
0,1686346

5,51249¢-11(R)

0,0002327628(R)

2,357327¢-10(R)

0,001107336(R)
0,7191898
0,7487983

Zrédlo: Opracowanie wlasne.
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Tabela A.12:

Prognozy zmiennosci, indeks DAX, model GJR-GARCH i GJR-GARCH-LSTM

Model/Metrics GJR(N) GJR(N)-LSTM GJR(STD) GJR(STD)-LSTM  GJR(SSTD)  GJR(SSTD)-LSTM
MSE 1,018062 0,7592761 0,9778356 0,7556117 0,9762771 0,7446205
DM p-value 0,0151 0,01883 0,009107
MAE 0,6204018 0,551187 0,6046727 0,5491992 0,6033362 0,5396463
HMSE 0,1662555 0,3420855 0,1643428 0,3494785 0,1640458 0,3278431
R? 0,3871644 0,3670471 0,3966749 0,3592803 0,403628 0,3764779
Przek. VaR 162/56 62/19 171/41 67/12 151/33 60/10
Przek. VaR (%)

Kupiec 5% 0,0009111476(R) 2,499176e-10(R) 4,674136e-05(R)  8,253918e¢-09(R)  0,0175152(R) 5,51249e-11(R)
Kupiec 1% 7,073541e-08(R) 0,2170907 0,002949403(R) 0,003927525(R) 0,1186792 0,0006566578(R)
Christoff. 5% 0,003015094(R)  1,902654e-09(R) 0,0001991965(R)  4,316764e-08(R)  0,04891764(R) 4,19351e-10(R)
Chrisotff. 1% 4,784607e-07(R) 0,4032968 0,01122788(R) 0,01474698(R) 0,1898935 0,002895986(R)
ES bootstrap 5% 0,000112717 0,09519169 0,2659333 0,6875935 0,6054211 0,7795719
ES prébkowy 5%  6,030285e-06(R)  0,04682177(R) 0,1829912 0,7082645 0,6473815 0,8633752
ES bootstrap 1% 0,1365961 0,6832069

ES probkowy 1% — 0,0700981 — — 0,7042714 —

Zrédlo: Opracowanie wlasne.

Tabela A.13: Prognozy zmienno$ci, indeks DAX, model APARCH i APARCH-LSTM

Model/Metrics AP(N) AP(N)-LSTM AP(STD) AP(STD)-LSTM  AP(SSTD)  AP(SSTD)-LSTM
MSE 1,080154 0,7755289 1,03333 0,7596108 1,048637 0,7690159
DM p-value 0,00331 0,007559 0,005758
MAE 0,6322617 0,5483295 0,616666 0,546451 0,6158596 0,5453936
HMSE 0,163826 0,3209685 0,161454 0,3395394 0,1606082 0,3411371

R? 0,3900843 0,3679386 0,3932616 0,3684221 0,3722437 0,3481467
Przek. VaR 162/59 63/21 175/47 67/13 151/39 57/10

Przek. VaR (%)
Kupiec 5%
Kupiec 1%
Christoff. 5%
Chrisotff. 1%

ES bootstrap 5%
ES probkowy 5%
ES bootstrap 1%
ES prébkowy 1%

0,0009111476(R)  5,191794e-10(R)

5,095557e-09(R)

0,002264429(R)

3,403486¢-08(R)
8,81916e-05
5,70966e-06

0,4229126
2,459031e-09(R)
0,6065243
0,06353271
0,03009668
0,1535328
0,08743779

1,069158¢-05(R)
7,156069¢-05(R)
5,436756e-05(R)
0,0003738905(R)
0,1944392
0,1071196

8,253918¢-09
0,008473333(R)
4,316764e-08(R)
0,02019851(R)
0,5367139
0,5193546

0,0175152(R)
0,008555221(R)
0,03771531(R)
0,02833089(R)
0,4903197
0,4539598

5,027312¢-12(R)
0,0006566578(R)
3,757084e-11(R)
00,002895986(R)
0,6874604
0,7172347

Zrédlo: Opracowanie wlasne.
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Tabela A.14: Prognozy zmiennosci, indeks WIG, model GARCH i GARCH-LSTM
Model /Metrics G(N) G(N)-LSTM G(STD) G(STD)-LSTM  G(SSTD)  G(SSTD)-LSTM
MSE 0,5016779 0,4807461 0,4898187 0,4648025 0,4919046 0,4899494
DM p-value 0,2081 0,00342 0,3169
MAE 0,3971172 0,4007828 0,3892141 0,3971894 0,3901081 0,404276
HMSE 0,159309 0,2495876 0,1512678 0,2510024 0,1506661 0,2596854
R? 0,2438276 0,2024343 0,2395174 0,2168488 0,238097 0,1963516
Przek. VaR 142/46 98/28 150/33 107/21 141/29 90/19
Przek. VaR (%)
Kupiec 5% 0,1119399 0,01194658(R) 0,02207304(R) 0,1023182 0,1332994 0,0009088047(R)
Kupiec 1% 0,0001401641(R) 0,5363499 0,1186792 0,4229126 0,4173806 0,2170907
Christoff. 5% 0,008804667(R)  0,006510383(R)  0,002855768(R)  0,2129693  0,0193541(R)  9,135134e-05(R)
Chrisotff. 1% 2,704862¢-05(R) 0,5077687 0,2252329 0,2833833 0,4646559 0,1531993
ES bootstrap 5% 6,965654e-05 0,003694259 0,02497194 0,3177466 0,04674462 0,2333109
ES probkowy 5%  3,788183e-06(R)  0,0003317787(R) 0,005185661(R) 0,2363042 0,01537991(R) 0,1491645
ES bootstrap 1% — 0,0005649516 0,01611454 0,3218875 0,009718938 0,1384656
ES probkowy 1% — 3,453853e-05(R)  0,002733272(R) 0,2975999 0,001389077 0,06825786

Zrédlo: Opracowanie wlasne.

Tabela A.15: Prognozy zmiennosci, indeks WIG, model EGARCH i EGARCH-LSTM

Model/Metrics E(N) E(N)-LSTM E(STD)  E(STD)-LSTM  E(SSTD)  E(SSTD)-LSTM
MSE 0,5110341 0,4883024 0,5080994 0,4868426 0,5032369 0,4992776
DM p-value 0,3057 0,2132 0,2438
MAE 0,4009833 0,4030376 0,4020795 0,4053615 0,4008149 0,4059339
HMSE 0,1465773 0,2628319 0,147502 0,2540669 0,1486358 0,2608203
R? 0,2842135 0,189866 0,2724925 0,2004278 0,2428964 0,1927532
Przek. VaR 150/49 83/28 158/41 99/24 144/31 86/16
Przek. VaR (%)

Kupiec 5% 0,02207304(R)  5,371088e-05(R) 0,002911799(R) 0,01574687(R) 0,07746676 0,0001934506(R))
Kupiec 1% 1,756379e-05(R) 0,5363499 0,002949403(R) 0,8600111 0,2341585 0,0558152
Christoff. 5% 0,01098066(R)  7,786051e-06(R) 0,005324692(R) 0,009110769(R) 0,05870036 0,0002627241(R)
Chrisotff. 1% 2,317021e-05(R) 0,5077687 0,004948776(R) 0,4796015 0,08470451 0,03851254
ES bootstrap 5% 0,0001821562 0,001073194 0,02395514 0,1064 0,08013354 0,3480869
ES probkowy 5% 1,398831e-05(R)  9,564629¢-05(R)  0,004593311(R)  0,04680702(R) 0,03123847(R) 0,2800814
ES bootstrap 1% — 0,0008099588 — 0,1890437 0,05412765 0,1126649
ES prébkowy 1% 6,40275¢-05(R) 0,1106635 0,01295855(R) 0,05013207

Zrédlo: Opracowanie wlasne.
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Tabela A.16: Prognozy zmiennosci, indeks WIG, model GJR-GARCH i GJR-GARCH-LSTM

Model/Metrics GJR(N) GJR(N)-LSTM GJR(STD) GJR(STD)-LSTM  GJR(SSTD)  GJR(SSTD)-LSTM
MSE 0,480196 0,4319645 0,4727176 0,4331499 0,4729606 0,4335862
DM p-value 0,006797 0,009753 0,01336
MAE 0,3904561 0,3877966 0,3870368 0,3887263 0,3873296 0,3894942
HMSE 0,1470687 0,245685 0,1467416 0,2391514 0,1476416 0,243874

R? 0,2643956 0,2663223 0,260102 0,2653745 0,2536893 0,2634236
Przek. VaR 136/45 89/27 147/32 98/21 134/30 87/16
Przek. VaR (%)

Kupiec 5% 0,2906901 0,0006277842(R)  0,04254057(R) 0,01194658(R) 0,3803133 0,0002896842(R)
Kupiec 1% 0,0002689616(R)) 0,6719996 0,1688211 0,4229126 0,3166331 0,0558152
Christoff. 5% 0,1491261 0,0009832874(R)  0,0263967(R) 0,01368701(R) 0,2588073 0,0007930645(R)
Chrisotff. 1% 0,001283738(R) 0,6796999 0,2556413 0,6065243 0,4198489 0,1447965
ES bootstrap 5%  0,0001293162 0,01579327 0,04979409 0,2571328 0,1011758 0,4251651
ES prébkowy 5%  1,047157e-05(R)  0,002703568(R)  0,01810339(R) 0,1709857 0,03751224 0,3802523
ES bootstrap 1% — 0,001002251 0,01049462 0,3490302 0,03524295 0,1406133
ES prébkowy 1% — 0,000104181(R)  0,001351261(R) 0,3071385 0,008806436(R) 0,08105896

Zrédlo: Opracowanie wlasne.

Tabela A.17: Prognozy zmiennosci, indeks WIG, model APARCH i APARCH-LSTM

Model/Metrics AP(N) AP(N)-LSTM AP(STD) AP(STD)-LSTM AP(SSTD) AP(SSTD)-LSTM
MSE 0,4951572 0,4778275 0,4825994 0,4723306 0,5062653 0,4659261
DM p-value 0,3771 0,2187 0,09545
MAE 0,3978857 0,3957532 0,390865 0,4014725 0,3932025 0,3988304
HMSE 0,150432 0,2455245 0,1467749 0,2646203 0,1752026 0,2662842

R? 0,2545484 0,2061789 0,2517307 0,2072169 0,162094 0,2169121
Przek. VaR 142/48 95/29 145/33 96/23 136/31 85/20
Przek. VaR (%)

Kupiec 5% 0,1119399 0,004914388(R) 0,06383829 0,006674846(R) 0,2906901 0,0001276986(R)
Kupiec 1% 3,580577e-05(R) 0,4173806 0,1186792 0,7026887 0,2341585 0,3095893
Christoff. 5% 0,06768427 0,0002796864(R)  0,03123931(R)  0,003193499(R) 0,1491261 0,0001643573(R)
Chrisotff. 1% 0,0001196566(R) 0,4646559 0,1898935 0,4228579 0,3331484 0,2143328
ES bootstrap 5% 0,0002196592 0,007406649 0,03522117 0,2679577 0,05801245 0,3727497
ES prébkowy 5% 1,353553e-05(R)  0,001012632(R)  0,006961378(R) 0,1756529 0,01795494(R) 0,3007678
ES bootstrap 1% 0,00128344 0,005429643 0,2118191 0,01828824 0,1518267
ES préobkowy 1% 4,851239¢-05(R)  0,0003618305(R) 0,1263483 0,003464845(R) 0,08199591

Zrédlo: Opracowanie wlasne.
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Tabela A.18: Prognozy zmiennosci, indeks KOSPI, model GARCH i GARCH-LSTM

Model/Metrics G(N) G(N)-LSTM G(STD) G(STD)-LSTM G(SSTD) G(SSTD)-LSTM
MSE 0,7378322 0,553092 0,7188387 0,5574311 0,7388017 0,559372
DM p-value 0,007025 0,01168 0,008227
MAE 0,5041342 0,4498382 0,4950363 0,450868 0,5003664 0,4527608
HMSE 0,1486261 0,2673304 0,1465225 0,2714647 0,1473925 0,2759781
R? 0,2754385 0,2566355 0,2819561 0,252989 0,262754 0,249279
Przek. VaR 167/63 64/16 180/47 79/11 156/36 59/5
Przek. VaR (%)

Kupiec 5% 0,000185844(R) 1,061341e-09(R) 1,483234e-06 8,211886e-06 0,005015865(R)  2,524525e-11(R)
Kupiec 1% 1,211037e-10(R) 0,0558152 7,156069¢-05(R)  0,001678938(R)  0,03551858(R)  1,037271e-06(R)
Christoff. 5% 1,42488¢-05(R)  5,173137e-09(R) 1,958115e-07 3,207632¢-05  0,0003327804(R) 1,913443e-10(R)
Chrisotff. 1% 8,738547¢e-10(R) 0,1447965 0,0003738905(R)  0,006843567(R) 0,09169552 6,531212¢-06(R)
ES bootstrap 5%  2,999049¢-06 0,2047013 0,07023574 0,9739512 0,1828492 0,9879942
ES prébkowy 5% 1,440762¢-08(R) 0,1119625 0,02321616(R) 0,9974071 0,1093607 0,9995317
ES bootstrap 1% — 0,391375 — — 0,8428028 —

ES prébkowy 1% — 0,3104891 — — 0,9125288 —

Zrédlo: Opracowanie wlasne.

Tabela A.19: Prognozy zmiennosci, indeks KOSPI, model EGARCH i EGARCH-LSTM

Model /Metrics E(N) E(N)-LSTM E(STD) E(STD)-LSTM E(SSTD)  E(SSTD)-LSTM
MSE 0,7895534 0,5861569 0,7751247 0,5751065 0,7710203 0,5626108
DM p-value 0,01117 0,004848 0,003027
MAE 0,5224552 04577732 0,5150387 0,4656652 0,5142949 0,4605595
HMSE 0,1493635 0,2748749 0,1470675 0,2939542 0,1467586 0,293472

R? 0,3587522 0,2984503 0,3502296 0,3046175 0,3549323 0,3079475
Przek. VaR 171/68 66/17 178/51 74/15 158/29 53/8

Przek. VaR (%)
Kupiec 5%
Kupiec 1%
Christoff. 5%
Chrisotff. 1%

ES bootstrap 5%
ES prébkowy 5%
ES bootstrap 1%
ES préobkowy 1%

4,674136e-05(R
7,948087c-13(R
7,013816¢-05(R
2,690514e-12(R
1,28053¢-05
2,839617e-07(R)

NN N

4,230779¢-09(R)
0,09252608

1,038133¢-09(R)
0,2161062
0,2098873

0,117655
0,04334628
0,01240531(R)

3,325637e-06(R)
3,98726¢-06(R)
6,054885¢-06(R)
6,654995¢-06(R)
0,02930189
0,005943415(R)

5,888947¢-07(R)

0,03176469(R)

2,026285¢-06(R)

0,09102395
0,8671703
0,9436366
0,8574863
0,9381089

0,002911799(R)
0,4173806
0,003215756(R)
0,5111283
0,3388093
0,2729836
0,2039617
0,1226525

1,606493¢-13(R)
7,391891c-05(R)
1,134759¢-12(R)
0,0003783371(R)
0,9264903
0,9824801

Zrédlo: Opracowanie wlasne.
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Tabela A.20: Prognozy zmiennosci, indeks KOSPI, model GJR-GARCH i GJR-GARCH-LSTM

Model/Metrics GJR(N) GJR(N)-LSTM GJR(STD) GJR(STD)-LSTM  GJR(SSTD)  GJR(SSTD)-LSTM
MSE 0,7034035 0,5402718 0,6912846 0,553268 0,7065312 0,5602887
DM p-value 0,02455 0,05489 0,0555
MAE 0,5023142 0,4447278 0,4944834 0,4506149 0,4973971 0,4444016
HMSE 0,1421074 0,2522675 0,1401998 0,2670855 0,1404988 0,241665

R? 0,4039474 0,3128245 0,3982769 0,2954005 0,3884698 0,2837887
Przek. VaR 165/57 61/19 175/46 67/13 155/30 61/10
Przek. VaR (%)

Kupiec 5% 0,0003574606(R) 1,183531e-10(R) 1,069158e-05(R)  8,253918¢-09(R)  0,006522105(R) 1,183531e-10(R)
Kupiec 1% 2,993902¢-08(R) 0,2170907 0,0001401641(R)  0,008473333(R) 0,3166331 0,0006566578(R)
Christoff. 5% 0,0002933049(R) 2,102257e-10(R) 1,477245e-05(R)  4,316764e-08(R)  0,01324942(R) 2,102257e-10(R)
Chrisotff. 1% 1,814355¢-07(R) 0,4032968 0,0003938719(R) 0,02919851(R) 0,4198489 0,002895986(R)
ES bootstrap 5% 0,6929617 0,9603083 0,1267458 0,7745528 0,4490631 0,8761657
ES probkowy 5% 0,7371838 0,9936208 0,04995367(R) 0,8262102 0,4041286(R) 0,9525879
ES bootstrap 1% — 0,1595358 — — 0,6235896 —

ES probkowy 1% 0,07610875 0,6472259

Zrédlo: Opracowanie wlasne.

Tabela A.21: Prognozy zmiennosci, indeks KOSPI, model APARCH i APARCH-LSTM

Model/Metrics AP(N) AP(N)-LSTM AP(STD)  AP(STD)-LSTM  AP(SSTD)  AP(SSTD)-LSTM
MSE 0,7496204 0,5317775 0,7233447 0,5511946 0,7324045 0,5664421
DM p-value 0,00115 0,005486 0,01627
MAE 0,5138654 0,4403128 0,5016307 0,454489 0,5024283 0,453435
HMSE 0,1444482 0,237207 0,1411206 0,2727843 0,1407051 0,2578569
R? 0,4013762 0,3247839 0,4044557 0,2982872 0,3991118 0,2823087
Prack. VaR 172/66 72/20 179/46 74/13 153/31 65/10
Przek. VaR (%)

Kupiec 5% 3,26119e-05(R)  1,868141e-07(R) 2,227363¢-06(R) 5,888047e-07(R) 0,01082282(R)  2,135601e-09(R)
Kupiec 1% 6,210588¢-12(R) 0,3095893 0,0001401641(R)  0,008473333(R)  0,2341585(R)  0,0006566578(R)
Christoff. 5% 2,040205e-05(R)  5,99583¢-07(R)  1,697194e-06(R) ~ 2,026285¢-06(R)  0,0122336(R)  4,909902¢-09(R)
Chrisotff. 1% 5,364187e-11(R) 0,5074174 0,0007011565(R)  0,02919851(R) 0,3331484 0,002895986(R)
ES bootstrap 5% 4,622223e-05 0,1316408 0,09488302 0,8681284 0,3414234 0,9324648
ES prébkowy 5%  2,071653e-07(R) 0,06027143 0,03768734(R) 0,9394527 0,2840894 0,9833066
ES bootstrap 1% — 0,03769699 — — 0,5110893 —

ES prébkowy 1% — 0,01248621(R) — — 0,4713184 —

Zrédlo: Opracowanie wlasne.
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Tabela A.22: Prognozy zmiennosci, indeks BVP, model GARCH i GARCH-LSTM

Model/Metrics G(N) G(N)-LSTM G(STD) G(STD)-LSTM  G(SSTD) G(SSTD)-LSTM
MSE 0,7934381 0,6665721 0,7988081 0,6707073 0,8114086 0,6783546
DM p-value 0,08275 0,1263 0,09155
MAE 0,560111 0,5333564 0,5577967 0,5324868 0,5613681 0,5337788
HMSE 0,1526598 0,2279903 0,1491898 0,2304943 0,1499011 0,2281416
R? 0,4379412 0,4460823 0,4162867 0,4415638 0,4118728 0,4420366
Przek. VaR 133/36 68/18 145/29 69/13 137/30 67/16
Przek. VaR (%)

Kupiec 5% 0,4310731 1,586138¢-08(R) 0,06383829  3,003042e-08 0,25182  8,253918e-09(R)
Kupiec 1% 0,03551858(R) 0,1453207 0,4173806  0,008473333(R) 0,3166331 0,0558152
Christoff. 5% 0,7327024 1,708624e-08 0,1205989 2,99768e-08 0,3447194  9,584317e-09(R)
Chrisotff. 1% 0,06463278 0,3037263 0,5111283  .02919851(R)  0,4198489 0,1447965
ES bootstrap 5% 0,0162502 0,1187758 0,3304445 0,4189453 0,246131 0,4448575
ES prébkowy 5% 0,004163439(R) 0,05844181 0,269692 0,3577988 0,1497405 0,3922364
ES bootstrap 1%  0,006502646 0,04925743 0,248665 0,1034294 0,3923926
ES prébkowy 1% 0,002624935(R)  0,02356333(R)  0,1716354 0,05026162 0,289595

Zrédlo: Opracowanie wlasne.

Tabela A.23: Prognozy zmiennosci, indeks BVP, model EGARCH i EGARCH-LSTM

Model/Metrics E(N) E(N)-LSTM  E(STD) E(STD)-LSTM E(SSTD) E(SSTD)-LSTM
MSE 0,8487132 0,6503974 0,8181792 0,657855 0,8023545 0,6735475
DM p-value 0,03847 0,05963 0,05385
MAE 0,5765123 0,5364117 0,5532199 0,5433847 0,5480561 0,5441965
HMSE 0,1519191 0,2506146 0,173009 0,2567203 0,1845385 0,2609665
R? 0,450027 0,5072175 0,3991935 0,5164304 0,4446621 0,515144
Przek. VaR 130/42 60/14 123/19 75/11 119/16 77/12
Przek. VaR (%)

Kupiec 5% 0,6057333 5,51249¢-11(R)  0,9009813  1,024309¢-06(R) 0,6201504 2,977075¢-06(R)
Kupiec 1% 0,001674417(R)  0,01697476(R)  0,2170907 0,001678938(R) 0,0558152  0,003927525(R)
Christoff. 5% 0,8291842 1,049834e-10(R) 0,9225836  4,080854e-06(R) 0,6498937 1,057124e-05(R)
Chrisotff. 1% 0,003483071(R) 0,05346227 0,4032968  0,006843567(R) 0,1447965  0,01474698(R)
ES bootstrap 5% 0,002761678 0,2262921 0,7937584 0,9126173 0,9192221 0,9322515
ES préobkowy 5%  0,0003896895 0,1394997 0,8796151 0,976134 0,9788193 0,9856935
ES bootstrap 1% 0,02325789 0,6881639 0,7878925

ES prébkowy 1% — 0,01083468(R)  0,7376287 0,8509674 —

Zrédlo: Opracowanie wlasne.
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Tabela A.24: Prognozy zmiennosci, indeks BVP, model GJR-GARCH i GJR-GARCH-LSTM

Model/Metrics GJR(N) GJR(N)-LSTM GJR(STD)  GJR(STD)-LSTM GJR(SSTD) GJR(SSTD)-LSTM
MSE 0,7888172 0,6736189 0,7941569 0,6760366 0,8232394 0,6914141
DM p-value 0,08934 0,07432 0,1092
MAE 0,5665861 0,5339551 0,5653967 0,5378323 0,5705334 0,5373571
HMSE 0,1528855 0,2354904 0,1536421 0,2429683 0,1549077 0,2275408
R? 0,4643912 0,4576045 0,455036 0,440399 0,3623912 0,3844152
Przek. VaR 128/36 66/14 135/25 67/13 142/28 69/10
Przek. VaR (%)

Kupiec 5% 0,7381654 4,230779e-09(R) 0,3335094 8,253918e-09(R) 0,1119399 3,003042¢-08(R)
Kupiec 1% 0,03551858(R)  0,01697476(R) 0,9791164 0,008473333(R) 0,5363499 0,0006566578(R)
Christoff. 5% 0,2482394 5,289744e-09(R) 0,395033 4,89735¢-08(R) 0,2019643 1,628031e-07(R)
Chrisotff. 1% 0,06463278 0,05346227 0,7754523 0,02919851(R) 0,6004122 0,002895986
ES bootstrap 5% 0,01449717 0,1607308 0,222932 0,4686802 0,3506208 0,4887399
ES probkowy 5%  0,003722228(R) 0,08179994 0,1364645 0,4455389 0,2912791 0,4420894
ES bootstrap 1% 0,04193854 0,008548071 0,1027438 — 0,2010305 0,1732925
ES probkowy 1%  0,01566763(R)  0,003259883(R)  0,04382025(R) — 0,1218748 0,1094762

Zrédlo: Opracowanie wlasne.

Tabela A.25: Prognozy zmiennosci, indeks BVP, model APARCH i APARCH-LSTM

Model/Metrics AP(N) AP(N)-LSTM  AP(STD) AP(STD)-LSTM AP(SSTD) AP(SSTD)-LSTM
MSE 0,8060332 0,6740019 0,8053575 0,6695474 0,88005 0,7010085
DM p-value 0,1087 0,0696 0,04171
MAE 0,5722127 0,5344938 0,5554061 0,5327831 0,565691 0,5393321
HMSE 0,146249 0,2419149 0,1496342 0,2234588 0,1606514 0,2263562
R? 0,404476 0,4157662 0,3523447 0,4160728 0,2348076 0,4008941
Przek. VaR 144/41 67/16 143/31 79/12 138/33 81/15
Przek. VaR (%)

Kupiec 5% 0,07746676 8,253918e-09(R) 0,09341474 8,211886e-06(R)  0,2168065  2,152801e-05(R)
Kupiec 1% 0,002949403(R) 0,0558152 0,2341585  0,003927525(R)  0,1186792 0,03176469(R)
Christoff. 5% 0,2087564 4,89735e-08(R)  0,2352261  1,699626e-05(R)  0,4115865  4,861257e-05(R)
Chrisotff. 1% 0,00605536(R) 0,1447965 0,3331484  0,01474698(R) 0,1898935 0,09102395
ES bootstrap 5%  0,005872602 0,1979213 0,2344821 0,6529934 0,3395229 0,6089566
ES probkowy 5%  0,001471848 0,119337 0,140498 0,6682199 0,2588353 0,5965249
ES bootstrap 1% — 0,09421114 0,1387183 — 0,2645184 —

ES prébkowy 1% — 0,04267026 0,07048602 — 0,1656818 —

Zrédlo: Opracowanie wlasne.
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Wyniki modeli prognoz probabilistycznych

Tabela A.26: Tlo$§¢ przekroczenn oszacowan VaR(0,05)/VaR(0,01) w sieciowych modelach

prognozowania probabilistycznego

Model /Metrics CNN-N  CNN-STD  CNN-SSTD
S&P VaR 5%/1% 112/39 114/23 132/22
NKX VaR 5%/1% 107/37 100/23 88/10
DAX VaR 5%/1% 158/63 135/28 103/20
WIG VaR 5%/1% 126/49 114/28 92/20
KOSPI VaR 5%/1% 142/52 96/14 57/8
BOVESPA VaR 5%/1%  134/30 99/18 65/7

LSTM-N LSTM-STD LSTM-SSTD

S&P VaR 5%/1% 121/49 133/25 112/21
NKX VaR 5% /1% 111/47 114/25 95/16
DAX VaR 5%/1% 146,49 164,29 141/22
WIG VaR 5%/1% 120/46 123/30 106,/19
KOSPI VaR 5%/1% 135,48 111/21 84/11
BOVESPA VaR 5%/1%  129/31 91/17 60/8

Uwaga: Oczekiwana liczba przekroczen wynosi 124/24, ilosé prognoz 2487

Zrédlo: Opracowanie wlasne.
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Tabela A.27: Prognozy probabilistyczne, indeks S&P500, sieci CNN

Model /Metrics CNN(N) CNN(STD) CNN(SSTD)
LPS 1,28204 1,24162 1,222025
CRPS 0,5229748 0,5248868 0,5197192
PIT p-value 2,412545e-07 1,55995e-05 0,1144406
Przek. VaR 112/39 114/23 132/22
Przek. VaR (%) 4,50/1,56 4,58/0,92 5,30/0,88
Kupiec 5% 0,2481387 0,3344264 0,4856905
Kupiec 1% 0,008555221(R) 0,7026887 0,5552061
Christoff. 5% 0,00356562(R)  0,04092647(R) 0,03516364(R)
Chrisotff. 1% 0,0003746328(R)  0,05439649 0,355113
ES bootstrap 5% 0,8487771 0,9775541
ES prébkowy 5% 0,929866 0,9989004
ES bootstrap 1% 6,021294e-05 0,7343305 0,9529538
ES prébkowy 1%  2,237537e-06(R) 0,7875293 0,9917414

Zrédlo: Opracowanie wlasne.

Tabela A.28: Prognozy probabilistyczne, indeks S&P500, sieci LSTM

Model/Metrics LSTM(N) LSTM(STD) LSTM(SSTD)
LPS 1,263296 1,210462 1,193376
CRPS 0,5146218 0,5137579 0,5094981
PIT p-value 2,412545e-07 0,005700126 0,03094408
Przek. VaR 121/49 133/25 112/21
Przek. VaR (%) 4,86/1,97 5,34/1,005 4,50/0,84
Kupiec 5% 0,7569064 0,4310731 0,2481387
Kupiec 1% 1,756379¢e-05(R) 0,9791164 0,4229126
Christoff. 5% 04313099  0,01607378(R)  0,0264911(R)
Chrisotff. 1% 1,7719e-08(R) 0,5192243 0,2833833
ES bootstrap 5% 1,266502e-05 0,597149 0,5066612
ES probkowy 5% 1,520095¢-07(R)  0,6093057 0,4703062
ES bootstrap 1% 0,7041345 0,7884135
ES prébkowy 1% 0,7506336 0,8679756

Zrédlo: Opracowanie wlasne.
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Tabela A.29: Prognozy probabilistyczne, indeks NIKKEI, sieci CNN

Model /Metrics CNN(N) CNN(STD) CNN(SSTD)
LPS 1,613601 1,599068 1,586503
CRPS 0,6914938 0,6995629 0,6963353
PIT p-value 2,412545e-07 4,41466e-05 0,04761705
Przek. VaR 107/37 100/23 88/10
Przek. VaR (%) 4,30/1,48 4,02/0,92 3,53/0,40
Kupiec 5% 0,1023182  0,02055537(R)  0,000428861(R)
Kupiec 1% 0,02262881 0,7026887 0,0006566578(R))
Christoff. 5% 0,1453825 0,06066346 0,001789705(R)
Chrisotff. 1% 0,004497022 0,4228579 0,0002877767(R)
ES bootstrap 5% 0,002102751 0,3075887 —

ES prébkowy 5%  0,0003844503(R) 0,2251687 —

ES bootstrap 1% — 0,380783 —

ES prébkowy 1% — 0,2856043 —

Zrédlo: Opracowanie wlasne.

Tabela A.30: Prognozy probabilistyczne, indeks NIKKEI, sieci LSTM

Model/Metrics LSTM(N) LSTM(STD) LSTM(SSTD)
LPS 1,61246 1,587088 1,585482
CRPS 0,6892744 0,6894952 0,6874244
PIT p-value 2,412545e-07 2,412545e-07  2,412545e-07
Przek. VaR 111/47 114/25 95/16
Przek. VaR (%) 4,46/1,88 4,581,005 3,81/0,64
Kupiec 5% 0,2112618 0,3344264  0,004914388(R)
Kupiec 1% 7,156069e-05 0,9791164 0,0558152
Christoff. 5% 0,1036547 0,5192243  0,009433387(R)
Chrisotff. 1% 7,318607e-05 0,5192243 0,03851254(R)
ES bootstrap 5%  0,0001054134 0,2559864 —

ES probkowy 5%  7,944203¢-06(R)  0,161735 -

ES bootstrap 1% — 0,4130939 0,2318004
ES prébkowy 1% — 0,3101348 0,1424559

Zrédlo: Opracowanie wlasne.
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Tabela A.31: Prognozy probabilistyczne, indeks DAX, sieci CNN

Model /Metrics CNN(N) CNN(STD) CNN(SSTD)
LPS 1,580043 1,559851 1,570825
CRPS 0,6804201 0,6892444 0,6901093
PIT p-value 2,412545e-07  2,412545e-07  2,412545e-07
Przek. VaR 158/63 135/28 103/20
Przek. VaR (%) 6,35/2,53 5,42/1,12 4,14/0,80
Kupiec 5% 0,002911799 0,1855083  0,04319162(R)
Kupiec 1% 1,211037e-10  0,5363499 0,3095893
Christoff. 5% 0,0001283507  0,1349565 0,05763739
Chrisotff. 1% 9,511005e-10  0,6004122 0,5074174
ES bootstrap 5% — 0,6737697 0,6691323
ES probkowy 5% — 0,7277809 0,7148299
ES bootstrap 1% — 0,5022836 0,6010707
ES prébkowy 1% — 0,4382549 0,5626957

Zrédlo: Opracowanie wlasne.

Tabela A.32: Prognozy probabilistyczne, indeks DAX] sieci LSTM

Model/Metrics LSTM(N) LSTM(STD)  LSTM(SSTD)
LPS 1,55403 1,517858 1,522978
CRPS 0,6651706 0,666342 0,6645636
PIT p-value 2,412545e-07 2,412545e-07 0,3536619
Przek. VaR 146,/49 164,29 141/22
Przek. VaR (%) 5,87/1,97 6,59/1,16 5,66,/0,88
Kupiec 5% 0,05227703 0,0004912755(R) 0,1332994
Kupiec 1% 1,756379e-05 0,4173806 0,5552061
Christoff. 5% 0,007751175(R)  0,0001170212(R) 0,03889874(R)
Chrisotff. 1% 9,913803e-05 0,4646559 0,355113
ES bootstrap 5%  0,0004913535 — 0,8738948
ES prébkowy 5%  3,112749e-05(R) — 0,9464557
ES bootstrap 1% — 0,3795639 —

ES prébkowy 1% — 0,3082807 —

Zrédlo: Opracowanie wlasne.
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Tabela A.33: Prognozy probabilistyczne, indeks WIG, sieci CNN

Model/Metrics CNN(N) CNN(STD) CNN(SSTD)
LPS 1,452008 1,392544 1,405504
CRPS 0,5616494 0,570386 0,5716405
PIT p-value 2,412545e-07 2,412545e-07  2,412545e-07
Przek. VaR 126/49 114/28 92/20
Przek. VaR (%) 5,066/1,97 4,58/1,12 3,69/0,80
Kupiec 5% 0,8795866 0,3344264 0,001843078
Kupiec 1% 1,756379¢e-05(R) 0,5363499 0,3095893
Christoff. 5% 0,007760636(R)) 0,04092647  7,177948e-05
Chrisotff. 1% 1,059784e-06(R) 0,01072578(R)  0,2143328
ES bootstrap 5%  2,403899¢-05 0,08714938 —

ES prébkowy 5%  2,618736e-06(R) 0,03894271(R) —

ES bootstrap 1% — 0,05862529 0,1747533
ES prébkowy 1% — 0,0240911(R)  0,09648941

Zrédlo: Opracowanie wlasne.

Tabela A.34: Prognozy probabilistyczne, indeks WIG, sieci LSTM

Model/Metrics LSTM(N) LSTM(STD)  LSTM(SSTD)
LPS 1,426541 1,340019 1,347512
CRPS 0,560521 0,5553697 0,5553525
PIT p-value 2,412545e-07  0,002294637 0,008695127
Przek. VaR 120/46 123/30 106/19
Przek. VaR (%)  4,82/1,84 4,945/1,20 4,26/0,76
Kupiec 5% 0,6873387 0,9009813 0,08357332
Kupiec 1% 0,0001401641 0,3166331 0,2170907
Christoff. 5% 0,000830165 .001584901(R) 0,0001538501(R)
Chrisotff. 1% 0,0001252356  0,0009668114 0,1531993
ES bootstrap 5%  0,000117884 0,2029977 0,4422916
ES prébkowy 5%  7,166383e-06 0,1261955 0,3926888
ES bootstrap 1% — 0,3234363 0,2413903
ES prébkowy 1% — 0,2291602 0,1497585

Zrédlo: Opracowanie wlasne.
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Tabela A.35: Prognozy probabilistyczne, indeks KOSPI, sieci CNN

Model/Metrics CNN(N) CNN(STD) CNN(SSTD)
LPS 1,334934 1,314745 1,317218
CRPS 0,528494 0,5296849 0,5301505
PIT p-value 2,412545e-07 2,412545e-07 2,412545e-07
Przek. VaR 142/52 96/14 57/8
Przek. VaR (%) 5,70/2,09 3,86/0,56 2,29/0,32
Kupiec 5% 0,1119399 0,006674846(R)  5,027312e-12(R)
Kupiec 1% 1,846464e-06(R)  0,01697476  7,391891e-05(R)
Christoff. 5% 0,008804667(R) 0,006769434(R) 3,708023e-11(R)
Chrisotff. 1% 9,733326e-07(R) 0,05346227 0,0003783371(R)
ES bootstrap 5%  0,0002535663 — —

ES prébkowy 5%  1,132197e-05(R) — —

ES bootstrap 1% — 0,1928189 —

ES prébkowy 1% — 0,1338842 —

Zrédlo: Opracowanie wlasne.

Tabela A.36: Prognozy probabilistyczne, indeks KOSPI, sieci LSTM

Model/Metrics LSTM(N) LSTM(STD) LSTM(SSTD)
LPS 1,324042 1,296143 1,284761
CRPS 0,5246137 0,520129 0,5164842
PIT p-value 2,412545e-07 4,702576e-07 5,087511e-06
Przek. VaR 13548 111/21 84/11
Przek. VaR (%) 5,42/1,03 4,46/0,84 3,37/0,44
Kupiec 5% 0,3335094 0,2112618 8,331177e-05(R)
Kupiec 1% 3,580577e-05(R) 0,4229126 0,001678938(R)
Christoff. 5% 0,2382491 0,1846839  0,0004326179(R)
Chrisotff. 1% 0,0001947526(R)  0,6065243  0,006843567(R)
ES bootstrap 5% 0,000525885 0,5541596 —

ES prébkowy 5% 3,741374e-05 0,5469214 —

ES bootstrap 1% — 0,6018079 —

ES prébkowy 1% — 0,6328942 —

Zrédlo: Opracowanie wlasne.
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Tabela A.37: Prognozy probabilistyczne, indeks BOVESPA, sieci CNN

Model/Metrics CNN(N) CNN(STD) CNN(SSTD)
LPS 1,774015 1,782918 1,787533
CRPS 0,8267813 0,8369301 0,8349038
PIT p-value 2,412545e-07 0,186626 0,006914349
Przek. VaR 134/30 99/18 65/7
Przek. VaR (%) 5,38/1,20 3,08/0,72 2,61/0,28
Kupiec 5% 0,3803133 0,01574687(R)  2,135601e-09(R)
Kupiec 1% 0,3166331 0,1453207 2,073181e-05(R)
Christoff. 5% 0,6504183 0,0187212(R)  1,378183e-08(R)
Chrisotff. 1% 0,4198489 0,3037263 0,0001138994(R)
ES bootstrap 5%  0,09109641 — —

ES prébkowy 5%  0,03699279(R) — —

ES bootstrap 1% 0,00768195 0,2585884 —

ES prébkowy 1%  0,003277963 0,1794694 —

Zrédlo: Opracowanie wlasne.

Tabela A.38: Prognozy probabilistyczne, indeks BOVESPA sieci LSTM

Model/Metrics LSTM(N) LSTM(STD) LSTM(SSTD)
LPS 1,777575 1,775115 1,785089
CRPS 0,8221921 0,8268515 0,833506
PIT p-value 2,412545e-07 0,003849091 0,005559229
Przck. VaR 129/31 91/17 60/8
Przek. VaR (%) 5,18/1,24 3,65/0,68 2,41/0,32
Kupiec 5% 0,6705888  0,00130125(R)  5,51249¢-11(R)
Kupiec 1% 0,2341585 0,09252608 1,049834e-10
Christoff. 5% 0,4559963  0,005579407(R) 1,049834e-10(R)
Chrisotff. 1% 0,3474328 0,2161062 0,0003783371
ES bootstrap 5%  0,01629235 — —

ES probkowy 5%  0,004144868 . -

ES bootstrap 1% — 0,2206124 —

ES prébkowy 1% — 0,1296427 —

Zrédlo: Opracowanie wlasne.
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