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Wstęp

Wprowadzenie do problematyki pracy

W XXI. wieku, zwłaszcza w ostatnich latach, można zaobserwować znaczący

wzrost popularności i zastosowań metod sztucznej inteligencji w szeroko pojętej

analizie danych. Wiele modeli, powstałych jako mające ogólne zastosowanie

w różnych dziedzinach sztucznej inteligencji, daje się wykorzystywać także jako

narzędzia wspierające przy modelowaniu i prognozowaniu zmian cen aktywów

finansowych. Nie są to jednak narzędzia, które pozwoliłyby niedoświadczonym

użytkownikom przewidzieć notowania giełdowe czy kursy walut. Natomiast mają one

na celu służyć jako pomoc dla analityków danych i inwestorów w podejmowaniu

decyzji inwestycyjnych. Dotyczy to także ekonometrii finansowej, gdzie wiodącym

obszarem zainteresowań badaczy jest modelowanie i prognozowanie szeregów

czasowych cen i stóp zwrotu różnorakich instrumentów finansowych.

Głównymi obszarami wykorzystania sztucznej inteligencji w badaniach rynków

finansowych, i zarazem jednymi z wiodących zagadnień ekonometrii finansowej są:

prognozowanie szeregów czasowych, zarządzanie ryzykiem oraz optymalizacja portfela

inwestycyjnego. W tej pracy uwaga zostanie skoncentrowana przede wszystkim na

prognozowaniu stóp zwrotu, zmienności oraz szacowaniu ryzyka. Pomimo licznych

prac naukowych na ten temat, problem prognozowania wciąż pozostaje otwarty

i aktualny. Analiza i optymalizacja istniejących modeli może przyczynić się zarówno

do poprawy jakości istniejących już narzędzi handlu aktywami, jak i budowy nowych.

Dodatkowe korzyści może przynieść także stworzenie modeli hybrydowych, opartych

na sieciach neuronowych w połączeniu z modelami ekonometrii finansowej oraz

metodami prognozowania probabilistycznego.

Na gruncie metod sztucznej inteligencji jednym z najbardziej dynamicznie

rozwijających się w ciągu ostatnich lat obszarów jest uczenie głębokie (ang. deep

learning). Stanowi ono pewne rozwinięcie klasycznych już metod uczenia

maszynowego, a w szczególności sieci neuronowych. O uczeniu głębokim można

mówić też jako o pewnej ”nowej epoce” w rozwoju prac nad metodami sztucznej
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inteligencji, w której, dzięki dostępności coraz szybszego sprzętu komputerowego

i wzrostowi mocy obliczeniowej, nastąpiło znaczne przyspieszenie postępu badań nad

nowymi rozwiązaniami i narzędziami w obszarze sieci neuronowych i uczenia

maszynowego. Rozwój ten, z kolei, spowodował znaczny wzrost popularności tych

metod zarówno wśród badaczy, jak i wśród końcowych użytkowników tych rozwiązań.

Badania dotyczące wykorzystania sieci uczenia głębokiego w prognozowaniu

instrumentów finansowych zaczęły pojawiać się dopiero w ciągu ostatnich kilku lat

i wciąż pozostawiają wiele miejsca na poszukiwanie nowych rozwiązań. Niewiele jest

też badań łączących metody oparte na sieciach głębokich z metodami

ekonometrycznymi. W nurcie tym mieści się także niniejsza rozprawa.

W pracy szczególny nacisk położony zostanie na synergię metod uczenia

głębokiego oraz metod ekonometrycznych, która możliwa jest do dosięgnięcia poprzez

rozwiązania hybrydowe, zastosowane przede wszystkim do prognozowania zmienności

i ryzyka, a także w kontekście prognozowania probabilistycznego. Proponowane

w kolejnych rozdziałach rozwiązania wykorzystują aspekty obu podejść, łącząc

modele uczenia głębokiego z modelami ekonometrycznymi w celu uzyskania

efektywniejszych narzędzi. Zdaniem autora, takie podejście przyczyni się korzystniej

do rozwoju badań, niż jedynie próba wskazania lepszych metod, których

jednoznaczne określenie często jest niemożliwe.

Cele i hipotezy badawcze

Głównym celem pracy jest opracowanie modeli predykcyjnych, opartych na

metodach uczenia głębokiego, oraz wskazanie możliwości i potencjalnych kierunków

ich wykorzystania, a także przeprowadzenie analizy ich efektywności, rozumianej jako

trafność predykcji w prognozowaniu szeregów czasowych (logarytmicznych) stóp

zwrotu aktywów finansowych oraz ich zmienności.

Z kolei do celów cząstkowych dysertacji zaliczyć można:

1. Zbadanie efektywności modeli predykcyjnych opartych na uczeniu głębokim

w prognozowaniu punktowym stóp zwrotu oraz zmienności.

2. Sprawdzenie jakości prognoz punktowych stóp zwrotu w kontekście strategii

inwestycyjnych.

3. Porównanie wyników strategii inwestycyjnych w zależności od poziomu

rozwinięcia rynków finansowych wybranych krajów.





4. Propozycja nowych rozwiązań w postaci modeli hybrydowych, łączących

metody uczenia głębokiego oraz narzędzia ekonometryczne, w celu

prognozowania zmienności instrumentów finansowych.

5. Wykorzystanie prognoz zmienności uzyskanych przez badane modele do

szacowania ryzyka kapitałowego.

6. Propozycja nowych rozwiązań umożliwiających wykorzystanie głębokich sieci

neuronowych w prognozowaniu probabilistycznym.

7. Porównanie modeli opartych na sztucznej inteligencji z metodami

ekonometrycznymi opartymi na modelach klasy ARMA-GARCH pod względem

trafności predykcji punktowej i probabilistycznej.

8. Stworzenie autorskich kodów umożliwiających przeprowadzenie badań

z wykorzystaniem sieci uczenia głębokiego w zakresie powyższych celów

badawczych.

Główna hipoteza badawcza zakłada, że modele predykcyjne oparte na metodach

uczenia głębokiego można efektywnie wykorzystywać do prognozowania finansowych

szeregów czasowych w postaci logarytmicznych stóp zwrotu, oraz ich zmienności.

Natomiast hipotezy szczegółowe sformułowane zostały następująco:

1. Modele oparte na uczeniu głębokim generują lepsze efekty predykcji

w porównaniu z modelami wykorzystującymi klasyczne metody sztucznej

inteligencji w kontekście punktowych prognoz stóp zwrotu.

2. Prognozy punktowe stóp zwrotu uzyskiwane przez modele oparte na uczeniu

głębokim można wykorzystać do budowy skutecznych strategii inwestycyjnych.

3. Prognozy stóp zwrotu uzyskane na podstawie danych z rynków wschodzących

dają lepsze wyniki w kontekście strategii inwestycyjnych od prognoz z rynków

rozwiniętych.

4. Połączenie metod ekonometrycznych z metodami uczenia głębokiego w ramach

modeli hybrydowych przyczynia się do poprawy efektywności prognoz zmienności.

5. Prognozy zmienności uzyskane w ramach modeli hybrydowych przyczyniają się

do poprawy prognoz ryzyka kapitałowego.

6. Sieci neuronowe uczenia głębokiego można wykorzystać jako narzędzie

prognozowania rozkładów prawdopodobieństw.





7. Prognozy probabilistyczne uzyskane za pomocą sieci uczenia głębokiego

przynoszą lepsze rezultaty w porównaniu z modelami klasy GARCH.

Metodyka badań

Punktem wyjścia w zakresie metodycznym niniejszej rozprawy jest przegląd

literatury dotyczącej badań naukowych, przeprowadzonych w ostatnich latach,

analizujących strukturę oraz skuteczność modeli opartych na klasycznych metodach

sztucznej inteligencji oraz metodach ekonometrycznych. Przedstawia on opis

obecnego stanu wiedzy, ze wskazaniem problemów, które do tej pory nie zostały

zbadane lub pozostają w sferze zagadnień otwartych. W przeglądzie skupiono się na

najnowszych publikacjach dotyczących badań naukowych w zakresie wykorzystania

sieci uczenia głębokiego, modeli klasy GARCH oraz prognozowania

probabilistycznego w analizie finansowych szeregów czasowych (konkretnie stóp

zwrotu i ich zmienności). W dalszych podrozdziałach prezentowana uprzednio

literatura została poszerzona także o badania bardziej specyficzne dla danego tematu,

wymagające często wcześniejszego wprowadzenia teoretycznego.

W zakresie metod ekonometrycznych praca skupia się na modelowaniu

jednowymiarowych szeregów czasowych (stóp zwrotu oraz ich zmienności)

z wykorzystaniem modeli klasy GARCH (ARMA-GARCH), szacowanych za pomocą

metody największej wiarygodności (MNW). Głównymi specyfikacjami klasy GARCH

rozważanymi w tym opracowaniu będą podklasy EGARCH, GJR-GARCH

i APARCH. Wskazane są także alternatywne modele zmienności: modele SV oraz

modele hybrydowe (M)SV-(M)GARCH.

Głównym narzędziem wykorzystywanym w tej pracy są sieci neuronowe uczenia

głębokiego. Do budowy modeli w tym zakresie stosowane są dwa typy sieci głębokich:

sieci rekurencyjne LSTM (ang. Long Short Term Memory) oraz sieci konwolucyjne

(ang. Convolutional Neural Networks - CNN). W celu zapewnienia prawidłowego

działania sieci i optymalizacji ich hiperparametrów zastosowany jest także szeroki

zakres narzędzi pomocniczych, szerzej opisanych w rozdziale 3. Jako dodatkowy

poziom porównania metod uczenia głębokiego z klasycznymi sieciami neuronowymi

wykorzystane są wielowarstwowe sieci perceptronowe (ang. Multi-Layer Perceptron -

MLP).

Metody ekonometryczne połączone są z metodami uczenia głębokiego w modele

hybrydowe, stanowiące autorskie rozwiązanie mające na celu poprawę wyników

uzyskiwanych przez indywidualne modele składowe przynależące w całości bądź do

grupy narzędzi ekonometrii finansowej, bądź sztucznej inteligencji.





Przedstawione powyżej metody wykorzystane są przede wszystkim do

prognozowania finansowych szeregów czasowych. Przedmiotem prognoz punktowych

są logarytmiczne stopy zwrotu wybranych instrumentów finansowych - i przede

wszystkim - ich zmienność. Obok prognoz punktowych, badane narzędzia

wykorzystane są także do uzyskania prognoz probabilistycznych, ze względu na wzrost

znaczenia takiego podejścia w ostatnim czasie. W szczególności, do prognozowania

probabilistycznego dostosowane będą modele bazujące na sieciach uczenia głębokiego.

Do oceny trafności predykcji stosowane jest podejście wieloaspektowe. Prognozy

punktowe ocenione są przy pomocy typowych mierników błędu, takich jak błąd

średniokwadratowy. Jako zmienność ”zaobserwowana” rozumiana jest zmienność

oszacowana przy pomocy estymatorów opartych na zakresie cen. Dodatkowym

poziomem oceny prognoz punktowych stóp zwrotu są strategie inwestycyjne, opisane

przy pomocy krzywych kapitałowych oraz dodatkowych mierników. W końcu, do

oceny trafności probabilistycznych stosowane są kryteria specyficzne dla tej

problematyki, w szczególności LPS (ang. Log Predictive Score), CRPS (ang.

Continous Ranked Probability Score) oraz PIT (ang. Probability Integral Transform).

Uzyskane prognozy ocienione są także w kontekście ryzyka kapitałowego. Do tego

celu wykorzystane są prognozy wartości zagrożonej (ang. Value at Risk - VaR) oraz

oczekiwanego niedoboru (ang. Expected Shortfall - ES). Ocena prognoz VaR i ES

przeprowadzona zostanie zarówno w kontekście punktowych prognoz zmienności jak

i modeli prognoz probabilistycznych.

Do oceny trafności prognoz modeli wykorzystywane są symulacje komputerowe,

z których pomocą badana jest efektywności wybranych modeli predykcyjnych opartych

na uczeniu głębokim i metodach ekonometrycznych, z wykorzystaniem algorytmów

testowania wstecznego.

Do implementacji modeli i tworzenia algorytmów wykorzystywane są narzędzia

programistyczne i biblioteki dostępne w środowiskach Python oraz R, wspomagające

uczenie głębokie i metody ekonometryczne. Jako podstawowe biblioteki do

przetwarzania i wizualizacji danych używane są pakiety Pandas (McKinney [2010]),

Numpy (Harris i in. [2020]) oraz Matplotlib (Hunter [2007]). Spośród narzędzi

wspomagających klasyczne uczenie maszynowe oraz w ramach uczenia głębokiego

wykorzystane zostaną biblioteki TensorFlow (Abadi i in. [2016]) oraz Keras (Chollet i

in. [2015]). Do budowy modeli klasy ARMA-GARCH, oraz do testowania

prognozowanych poziomów wartości zagrożonej i oczekiwanego niedoboru

wykorzystany będzie pakiet rugarch (Ghalanos [2020]).

Badania prowadzone są z wykorzystaniem danych w postaci logarytmicznych stóp

zwrotu. Dane obejmują sześć indeksów giełdowych: S&P 500, DAX, NIKKEI 225,





WIG, KOSPI oraz BOVESPA, reprezentujących kraje na różnych poziomach rozwoju

gospodarczego (rynki rozwinięte oraz wschodzące) i z różnych rejonów geograficznych.

Wyniki empiryczne poddane są analizie porównawczej, polegającej na zestawieniu

najlepszych specyfikacji modelowych, a także wskazaniu zalet i ograniczeń

wynikających ze stosowania metod opartych na uczeniu głębokim. W odniesieniu do

prognoz punktowych stóp zwrotu i zbudowanych na ich podstawie strategii

inwestycyjnych porównane zostaną klasyczne sieci neuronowe MLP, oraz sieci uczenia

głębokiego LSTM i CNN. W kontekście punktowych prognoz zmienności i szacowania

ryzyka kapitałowego porównane zostaną poszczególne specyfikacje modeli klasy

GARCH z wybranymi rozkładami warunkowymi, oraz modele hybrydowe, łączące

modele GARCH z sieciami uczenia głębokiego. Ocenie w kontekście szacowania

ryzyka kapitałowego poddane zostaną również modele prognoz probabilistycznych.

Streszczenie zawartości poszczególnych rozdziałów

W pierwszym rozdziale, w ramach wprowadzenia, omówiono podstawowe kwestie

związane z rynkami finansowymi oraz ich prognozowaniem. Przedstawiono definicje

oraz strukturę podziału rynków finansowych oraz wskazano podstawowe narzędzia

służące do ich prognozowania. W tej części pracy przedstawiono także najważniejsze

publikacje naukowe, z zakresu ekonometrii finansowej oraz sieci neuronowych,

dotyczące prognozowania instrumentów finansowych.

W rozdziale drugim szczegółowo przedstawiono narzędzia ekonometryczne

stosowane do modelowania i prognozowania instrumentów finansowych. Omówiono

empiryczne własności finansowych szeregów czasowych, oraz najważniejsze modele

służące do analizy i prognozowania stóp zwrotu oraz zmienności, ze szczególnym

naciskiem położonym na modele klasy ARMA-GARCH. Przedstawiono podstawy

konstrukcji tych modeli, metody estymacji, oraz ich możliwości predykcyjne, zarówno

w kontekście prognoz punktowych jak i probabilistycznych. Wskazano także sposoby

oceny trafności predykcji oraz możliwości ich wykorzystania przy budowie strategii

inwestycyjnych oraz w szacowaniu ryzyka kapitałowego.

Trzeci rozdział dotyczy koncepcji związanych z sieciami neuronowymi uczenia

głębokiego oraz ich wykorzystania jako modeli predykcyjnych. Przedstawiono w nim

wybrane architektury sieci neuronowych, w szczególności sieci uczenia głębokiego,

kwestie związane z uczeniem sieci, dotyczące stosowanych w tym procesie algorytmów

oraz odpowiedniego przygotowania danych, a także problematykę dotyczącą

dostrajania hiperparametrów sieci. Omówiono także wybrane publikacje naukowe

dotyczące wykorzystania sieci uczenia głębokiego w prognozowaniu finansowych





szeregów czasowych.

W rozdziale czwartym zaprezentowano autorskie propozycje modeli

wykorzystujące elementy sieci uczenia głębokiego oraz metod ekonometrycznych. W

pierwszej kolejności wskazano dotychczasowe propozycje modeli hybrydowych,

wykorzystujące wspomniane metody, proponowane w literaturze przedmiotu. Biorąc

pod uwagę zalety i niedociągnięcia tych rozwiązań, zaproponowano autorską

architekturę hybrydowego modelu punktowych prognoz zmienności,

ARMA-GARCH-LSTM. Przedstawiono także propozycje wykorzystania sieci

neuronowych uczenia głębokiego w prognozowaniu probabilistycznym, poprzez

prognozowanie parametrów rozkładów prawdopodobieństwa finansowych szeregów

czasowych.

Rozdział piąty dotyczy empirycznej ewaluacji omawianych specyfikacji

modelowych. W ramach tego rozdziału omówiono statystyczne charakterystyki

badanych zbiorów danych, narzędzia programistyczne stosowane do wdrożenia

analizowanych narzędzi, a także kwestie związane z doborem i optymalizacją

hiperparametrów modeli sieciowych. Zaprezentowano tu wyniki empiryczne uzyskane

przez modele wykorzystujące sieci neuronowe w kontekście prognoz punktowych stóp

zwrotu oraz zbudowanych z ich wykorzystaniem strategii inwestycyjnych. W dalszej

kolejności omówiono wyniki uzyskane z wykorzystaniem modeli punktowych prognoz

zmienności: poszczególnych specyfikacji ekonometrycznych modeli ARMA-GARCH

oraz modeli hybrydowych ARMA-GARCH-LSTM. Wyniki oceniono wykorzystując

klasyczne mierniki prognoz punktowych oraz w kontekście szacowania ryzyka

kapitałowego. W kolejnej części zaprezentowano wyniki uzyskane przez modele

prognoz probabilistycznych, które oceniono pod kątem specyficznych miar i kryteriów

oceny prognoz probabilistycznych, oraz, podobnie jak w przypadku modeli

punktowych prognoz zmienności, w odniesieniu do ryzyka kapitałowego.

W rozdziale szóstym przeprowadzono analizę porównawczą wyników uzyskanych

przez wybrane najlepsze specyfikacje modelowe. Porównano tutaj modele punktowych

prognoz stóp zwrotu, modele hybrydowe punktowych prognoz zmienności oraz

sieciowe modele prognozowania probabilistycznego. Omówiono także sposoby

realizacji założonych w pracy celów badawczych oraz poszczególne hipotezy

badawcze. Przedstawiono tu także zalety i wady wynikające z zastosowania metod

uczenia głębokiego oraz propozycje dalszych prac badawczych w tym zakresie.









Rozdział 1

Podstawowe podejścia do predykcji

finansowych szeregów czasowych

w badaniach naukowych

i wdrożeniach praktycznych

W pierwszej kolejności przedstawione zostaną podstawowe pojęcia i definicje

związane z rynkami finansowymi, a także różne podejścia stosowane w ich

prognozowaniu. Zaprezentowany zostanie także przegląd podstawowej literatury

z zakresu ekonometrii finansowej i sieci neuronowych. Informacje zawarte w tym

rozdziale mają na celu zaznajomienie czytelnika z przedmiotem niniejszej rozprawy,

oraz zwrócenie uwagi na popularność problematyki związanej z prognozowaniem

instrumentów finansowych,

1.1 Rynki finansowe i ich prognozowanie

1.1.1 Rynki i aktywa finansowe

Głównym przedmiotem badań w niniejszej pracy, a zarazem źródłem danych

empirycznych są wybrane instrumenty finansowe. Jako instrument finansowych

rozumieć można kontrakt regulujący zobowiązania finansowe pomiędzy stronami,

powodujące powstanie aktywów finansowych u jednej ze stron i zobowiązania

finansowego lub instrumentu kapitałowego u drugiej (za Kudła [2011], oraz art. 3 ust.

1 pkt 23 ustawy o rachunkowości (Dz.U. z 2021 r. poz. 217)). Transakcje kupna

i sprzedaży różnych form kapitału pieniężnego, w oparciu o różne instrumenty

finansowe, zawierane są na rynkach finansowych. Te z kolei podzielić można na
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następujące segmenty (zob. Kudła [2011]):

– rynek pieniężny, na którym zawierane są transakcje krótkoterminowe (do jednego

roku) o niskim poziomie ryzyka i dużej płynności,

– rynek kapitałowy, na którym zwierane są transakcje średnio- i długoterminowe,

dotyczące różnych instrumentów finansowych emitowanych i nabywanych przez

podmioty, takich jak akcje i obligacje,

– rynek walutowy, dotyczący obrotu walutami obcymi, na którym stosunek ceny

między walutami odzwierciedla kurs walutowy,

– rynek depozytowo-kredytowy, dotyczący transakcji między bankami a ich

klientami, charakteryzujący się dużym ryzykiem i małą płynnością,

– rynek terminowy (instrumentów pochodnych), na którym zawierane są

kontrakty terminowe, czyli umowy na operacje finansowe z terminem wykonania

w przyszłości.

W obrębie przedstawionych powyżej segmentów rynku finansowego, wyróżnia się

dalsze podziały i struktury. Przykładowo, rynek kapitałowy, który jest w tej pracy

głównym przedmiotem zainteresowania, dodatkowo podzielić można (za Kachniewski

i in. [2008]) na rynek pierwotny i wtórny (z uwzględnieniem przepływów

finansowych), rynek giełdowy i pozagiełdowy (w zależności od stopnia zorganizowania

rynku), oraz na rynek regulowany i nieregulowany (w zależności od stopnia regulacji).

Na rynku pierwotnym dokonywane są transakcje emitowanych papierów

wartościowych (np. akcji spółek giełdowych) bezpośrednio między spółkami

a inwestorami, zanim trafią na rynek wtórny (Giełdę Papierów Wartościowych

w Warszawie - GPW), na którym transakcje zawierane są między inwestorami. GPW

należy wg podanego podziału do rynków giełdowych i regulowanych. Przykładami

rynków nieregulowanych są alternatywne systemy obrotu (ASO), z pośród których

wymienić można działające obecnie w Polsce rynek NewConnect oraz Catalyst1 (zob.

Kachniewski i in. [2008] oraz Kozdra [2015]).

Jak wspominano wcześniej, przedmiotem transakcji na rynkach finansowych są

różnego rodzaju instrumenty finansowe. Ich zakres jest bardzo szeroki, dlatego

poniżej ograniczymy się do przedstawienia kilku typów instrumentów, które często

wybierane są jako przedmiot badań finansowych.

1Rynek Catalyst działa w kilku wariantach, jako regulowany rynek ASO dostępny dla klientów

detalicznych, prowadzony przez GPW, oraz rynek pozagiełdowy, dostępny tylko dla klientów

hurtowych, prowadzony przez BondSpot S.A





Jednym z podstawowych instrumentów na rynku kapitałowym, a jednocześnie

jednym za najpopularniejszych aktywów finansowych są akcje spółek giełdowych.

Jako akcje rozumieć można (za Kudła [2011]) „tytuł własności do ułamkowej części

spółki akcyjnej, lub komandytowo-akcyjnej, wyrażający wniesiony wkład i prawa

członkowskie, a jednocześnie papier wartościowy (imienny lub na okaziciela), który

może podlegać obrotowi”. Ceny akcji na rynku wtórnym kształtowane są poprzez

popyt i podaż wśród inwestorów. Oprócz zleceń kupna i sprzedaży akcji, dla dużych

spółek (m.in. o wartości rynkowej powyżej 100 mln euro) możliwa jest także tzw.

sprzedaż krótka — sprzedaż akcji pożyczonych z przeznaczeniem odkupu

w przyszłości (zob. Kudła [2011]).

Zmiany kursów koszyka akcji odzwierciedla indeks giełdowy. Jest on

statystycznym wskaźnikiem, podsumowującym zmiany kursów akcji wybranych

spółek podczas sesji giełdowej (zob. Kachniewski i in. [2008]). Indeksy giełdowe mogą

dostarczać informacji o konkretnych segmentach rynku, zależnych przykładowo od

wielkości spółek lub wybranej branży, przez co mogą służyć jako punkt odniesienia

przy ocenie efektywności portfeli (lub funduszy) inwestycyjnych. Bezpośredni handel

indeksami nie jest możliwy, odbywa się on z wykorzystaniem instrumentów

pochodnych, takich jak kontrakty terminowe, opcje lub certyfikaty funduszy

inwestycyjnych typu ETF (ang. Exchange-Traded Fund), dla których indeksy

stanowią instrument bazowy.

Do najpopularniejszych indeksów giełdowych (zob. Bodie i in. [2018]) należą

indeksy DJIA (ang. Dow Jones Industrial Average), S&P 500 (ang. Standard and

Poor’s 500 ), w skład których wchodzą największe spółki notowane na Nowojorskiej

Giełdzie Papierów Wartościowych (ang. New York Stock Exchange - NYSE) oraz

NASDAQ (ang. National Association of Securities Dealers Automated Quotations)

czy indeks FTSE (ang. Financial Times Stock Exchange) złożony ze spółek

notowanych na Giełdzie Papierów Wartościowych w Londynie (ang. London Stock

Exchange). W Polsce, od 1991, roku na Giełdzie Papierów Wartościowych notowany

jest indeks WIG (Warszawski Indeks Giełdowy), będący najstarszym indeksem

w kraju.

Sposoby obliczania wartości indeksów giełdowych (oraz kryteria udziału spółek)

są rożne, w zależności od danego kraju i giełdy. Przykładowo, dla indeksu WIG

notowanego na GPW stosowana jest następująca formuła (Kachniewski i in. [2008]):

WIG =

∑
Pi · Si∑

(P0 · S0) ·Kt

· 1000, (1.1)

gdzie Si to pakiet uczestnika indeksu i na danej sesji, Pi to kurs uczestnika indeksu i





na danej sesji, P0 oraz S0 to odpowiednio pakiet i kurs uczestnika w dniu bazowym,

zaś Kt jest współczynnikiem korygującym indeksu na danej sesji.

Zakres instrumentów, które podlegają handlowi na rynkach finansowych jest

bardzo szeroki i nie sposób je tu wszystkie opisać. Do najważniejszych grup aktywów

finansowych należą także (zob Kudła [2011]):

– kursy walutowe - rozumiane mogą być jako instrumenty finansowe,

odzwierciedlające stosunek ceny między walutami, wynikający z popytu

i podaży na rynku walutowym,

– derywatywy - instrumenty pochodne, których wycena zależy od ceny

instrumentów bazowych; do najważniejszych przykładów należą tutaj kontrakty

terminowe oraz opcje,

– towary handlowe (ang. commodities) - produkty występujące w naturalny sposób

w ziemi lub uprawiane w ramach rolnictwa, takie jak ropa naftowa, gaz ziemny,

pszenica; handel towarami odbywa się najczęściej poprzez instrumenty pochodne,

– kryptowaluty - rozproszone systemy wirtualnych walut, bazujące na

kryptografii, cieszące się w ostatnich latach rosnącą popularnością wśród

inwestorów detalicznych; jako najważniejsze wymienić można kryptowaluty

Bitcoin oraz Ethereum,

– inne instrumenty finansowe, w tym obligacje skarbowe, bony skarbowe.

Powyższa klasyfikacja nie stanowi pełnej klasyfikacji wszystkich typów i podtypów

instrumentów finansowych. Szersze informacje na ten temat przedstawione zostały

w opracowaniach Kudła [2011], Bodie i in. [2018] oraz Babu [2006].

1.1.2 Prognozowanie instrumentów finansowych

Modelowanie instrumentów finansowych leży u podstaw finansów empirycznych.

Obok oczywistych korzyści finansowych, odpowiednie prognozowanie wartości stóp

zwrotu oraz zmienności jest kluczowe w konstruowaniu narzędzi wyceny opcji,

szacowaniu ryzyka, tworzeniu strategii hedgingowych czy też w obszarze inżynierii

finansowej.

Pomimo powszechnego przekonania, że szeregi czasowe cen instrumentów

finansowych mają charakter losowy (zob. Cootner [1964], Fama [1965b]), istnieją

pewne charakterystyczne własności wspomnianych szeregów stóp zwrotu oraz ich

zmienności, wskazujące na to, że modelowanie szeregów w tej postaci jest uzasadnione

(zob. punkt 2.2.3).





Wśród rozmaitych podejść stosowanych w modelowaniu i prognozowaniu

finansowych szeregów czasowych, jako najważniejsze należy wskazać metody

ekonometrii finansowej. Narzędzia rozwijane w ramach tej dyscypliny skupiają się na

analizie danych finansowych z wykorzystaniem metod ilościowych, w szczególności

z wykorzystaniem różnego typu modeli zmienności. Rozwój ekonometrii finansowej

zyskał na popularności na początku lat siedemdziesiątych ubiegłego stulecia, kiedy

pojawiły się pierwsze modele wyceny opcji (Black i Scholes [1973]). Do dalszego

rozwoju dyscypliny przyczyniły się prace Mandelbrot [1963], Fama [1965a], Engle

[1982] oraz Bollerslev [1986] dotyczące własności oraz modelowania szeregów stóp

zwrotu i ich zmienności. Tematyce tej poświęcona jest znaczna część tej pracy (w

szczególności rozdziały 2, 5 oraz 6), zaś szczegółowe omówienie narzędzi

ekonometrycznych znaleźć można w licznych opracowaniach literaturowych, których

przegląd przedstawiony jest w podrozdziale 1.2.

W ciągu ostatniej dekady, na popularności zyskały metody bazujące na

wykorzystaniu sieci neuronowych i uczenia maszynowego. Co prawda możliwości

prognostyczne sieci neuronowych badane były już wcześniej, jednak efektywność

zbudowanych z ich wykorzystaniem modeli była ograniczona, głównie ze względu na

znacznie niżą niż obecnie moc obliczeniową2. Wraz z dynamicznym rozwojem

dostępnego na rynku sprzętu komputerowego i dostępności danych, rezultaty badań

wykorzystujących te narzędzia uległy znacznej poprawie, głównie za zasługą sieci

neuronowych uczenia głębokiego, stosowanych w obszarze rozpoznawania obrazów

i przetwarzania języka naturalnego. Narzędzia te z powodzeniem zaczęto stosować

także w analizie i prognozowaniu danych finansowych, co jest też głównym tematem

tej pracy. Szeroki zakres literatury dotyczącej prognozowania z wykorzystaniem

metod bazujących na sztucznej inteligencji przedstawiony został w podrozdziałach

1.3, 3.4 oraz 4.1.

Obok przedstawionych powyżej podejść bazujących na ekonometrii finansowej

i sztucznej inteligencji, problematyka związana z prognozowaniem instrumentów

finansowych jest przedmiotem badań także w innych dziedzinach, takich jak:

– matematyka finansowa,

– inżynieria finansowa,

– analiza techniczna,

– teoria chaosu,

2W zasadzie argument ten można zastosować także w odniesieniu do innych prezentowanych tutaj

podejść.





– analiza falkowa,

– modele logiki rozmytej,

Pomimo, że podejścia te nie będą animalizowane w tej pracy, wskazać w tym miejscu

można wybrane publikacje z tych dziedzin, do których należą: Kodogiannis i Lolis

[2002], Ravi i in. [2017], Farias Nazário i in. [2017] czy też Zolfaghari i Gholami

[2021]. Opublikowane zostało także wiele artykułów przeglądowych, prezentujących

różne podejścia do analizy szeregów czasowych, z pośród których wymienić można

prace: Mallikarjuna i Rao [2019], Majid [2018] oraz Timmermann [2018].

Wielość i różnorakość przedstawionych powyżej podejść świadczy o wadze

i popularności problematyki prognozowania instrumentów finansowych. Wciąż

prowadzone są nowe badania nad rozwojem metod prognostycznych, pozwalających

na dalszą poprawę uzyskiwanych wyników, o czym świadczyć może szeroki zakres

literatury przedstawiony w kolejnych podrozdziałach.

Zaznaczyć należy także, że obszar zastosowania wymienionych metod, w tym

także tych opracowywanych w ramach tej pracy, nie musi ograniczać się do rynków

finansowych. Proponowane modele można stosować także w innych dziedzinach,

przykładowo do prognozowania cen i zużycia cen energii elektrycznej.

1.2 Stan badań w nurcie ekonometrii finansowej

W poniższym podrozdziale przedstawiony został przegląd podstawowej (zarówno

zagranicznej, jak i krajowej) literatury dotyczącej wykorzystania metod ekonometrii

finansowej w modelowaniu stóp zwrotu i zmienności instrumentów finansowych.

Największą popularnością wśród narzędzi wykorzystywanych do szacowania

i predykcji zmienności są modele autoregresyjnej warunkowej heteroskedastyczności

(ang. AutoRegressive Conditional Heteroskedasticity - ARCH), zaproponowane przez

Engla [1982]. Podstawowa postać modelu rozszerzona została następnie przez

Bollersleva [1986] oraz Taylora [1986], do modeli GARCH (ang. Generalized

Autoregressive Conditional Heteroskedasticity ), które znaczenie częściej stosowane są

w badaniach rynków finansowych.3 Modele tej klasy zostały szerzej opisane w punkcie

2.4.3.

Szeroki i dokładny opis metod wykorzystywanych w badaniu finansowych

szeregów czasowych, zarówno od strony teoretycznej, jak i praktycznej, przedstawił

w swojej pracy Tsay [2010]. Natomiast w literaturze polskojęzycznej tymi

3Engle za swoją pracę nad metodami analizowania szeregów czasowych w 2003 roku otrzymał

nagrodę im. Alfreda Nobla.





zagadnieniami zajmowali się Doman i Doman [2004, 2009] oraz Fiszeder [2009], który

w swojej rozprawie habilitacyjnej szczegółowo przedstawia różne parametryzacje,

uogólnienia i modyfikacje modeli klasy GARCH (jedno- i wielowymiarowe) oraz ich

zastosowanie w empirycznych badaniach finansowych, w tym także w prognozowaniu

procesów finansowych. Porównanie możliwości predykcyjnych różnych specyfikacji

modeli GARCH w prognozowaniu zmienności instrumentów finansowych znaleźć

można także między innymi w pracach: Trück i Liang [2012], Nilsson [2017], Costa

[2017], Tong i in. [2020], oraz Tay i in. [2020].

Na gruncie ekonometrii finansowej silnie rozwijane są także podejścia bazujące na

wykorzystaniu modeli SV (ang. Stochastic Volatility) (zob. Clark [1973]), również

w połączeniu z modelami GARCH, także w postaci wielowymiarowej. W literaturze

polskojęzycznej problematyka ta szczegółowo opisana została w pracach Doman

i Doman [2004], [2009], Osiewalski i in. [2004], Pajor ([2003, 2010]) oraz Osiewalski i

Pajor [2018].

Prognozy zmienności mają bardzo istotne znaczenie w większości problemów

z obszaru finansów empirycznych, m. in. w kontekście szacowania ryzyka

kapitałowego, mierzonego przy pomocy wartości zagrożonej oraz oczekiwanego

niedoboru. Modele klasy GARCH w szacowaniu wartości zagrożonej (VaR)

wykorzystywali w swoich badaniach m.in. Tong i in. [2020], Piontek [2001], Piontek i

Papla [2005], Fiszeder [2007], [2009], Aloui i Mabrouk [2010], Ardia i Hoogerheide

[2014], Będowska-Sójka [2015], Slim i in. [2017], Bams i in. [2017], Laporta i in.

[2018], Zhang i in. [2018a]. Małecka [2016] z kolei szczegółowo przedstawia sposoby

oceny prognoz VaR oraz ES.

Obszar zastosowań modeli ekonometrycznych dodatkowo można rozszerzyć o

prognozowanie całego rozkładu prawdopodobieństwa przyszłych cen oraz ich zmian.

Szczegółowy opis tych metod, a także miar i sposobów ewaluacji wykorzystywanych

w prognozowaniu probabilistycznym, przedstawili w swoich pracach Gneiting i in.

[2007], Gneiting i Raftery [2007], Jordan i in. [2018] a także Nowotarski i Weron

[2018] w pracy dotyczącej prognozowania cen energii elektrycznej.

Wśród zwartych monografii wskazujących metodykę narzędzi ekonometrycznych

w zakresie ekonometrii finansowej wyróżnić można: Osiewalski [2001], Brzeszczynski i

Kelm [2002], Tsay [2010] oraz Danielsson [2011].

1.3 Stan badań w zakresie sieci neuronowych

Wraz ze wzrostem popularności sieci neuronowych uczenia głębokiego w ciągu

ostatniej dekady, pojawiło się w tym okresie wiele publikacji naukowych poświęconych





metodom sztucznej inteligencji w modelowaniu szeregów czasowych. Poniższe

zestawienie literatury skupia się przede wszystkim na przedstawieniu najnowszych

publikacji, w dodatku z naciskiem na te badania, w których zastosowanie sieci służyło

przede wszystkim modelowaniu stóp zwrotu, zmienności oraz szacowaniu ryzyka.

Jedną z publikacji, która szeroko opisuje problem zastosowania uczenia

maszynowego do prognozowania rynków finansowych jest praca doktorska Fletchera

[2012]. Można w niej znaleźć rzetelny i dobrze odzwierciedlający ówczesny stan badań

przegląd metod i modeli uczenia maszynowego. Wykorzystanie klasycznych sieci

neuronowych w tym obszarze opisane zostało także w monografii Dunis i in. [2016].

Zastosowanie poszczególnych narzędzi uczenia maszynowego do prognozowania

szeregów czasowych instrumentów finansowych było także przedmiotem prac:

Morajda [2007], Marcek i in. [2009], Devadoss i in. [2013], Bernal i in. [2012], Vui i in.

[2013] Ding i in. [2015], Chen i Lee [2015], Fischer i Krauss [2018], Kurani i in. [2021].

Z kolei problematyka dotycząca wykorzystania sieci uczenia głębokiego opisana

została m.in. w pracach: Fischer i Krauss [2018], Chong i in. [2017], Jiahong Li i in.

[2017], Dixon i in. [2017], Di Persio i Honchar [2016], Hansson [2017], Chen i in.

[2015], Chen i in. [2016], oraz Yang i in. [2019]. Dodatkowy przegląd literatury

dotyczących stosowania narzędzi uczenia głębokiego w prognozowaniu finansowych

szeregów czasowych można znaleźć w pracy Sezer i in. [2020]. Wyniki badań z tego

zakresu dokładniej przeanalizowane zostały w podrozdziale 3.4. Z kolei porównanie

narzędzi ekonometrycznych i metodami uczenia maszynowego omówione zostało m.in.

w pracach: Hossain i Nasser [2011], Yu i Li [2018], Zhou i in. [2020] oraz Kijewski i

Ślepaczuk [2020].

W literaturze znaleźć można także wiele publikacji na temat badań nad modelami

hybrydowymi, łączącymi metody ekonometryczne z modelami bazującymi na sieciach

neuronowych. Wśród prac dotyczących tej tematyki można wyróżnić publikacje: Mat́ias

i in. [2010], Monfared i Enke [2014], Lu i in. [2016], Kristjanpoller i Hernández [2017],

Kristjanpoller i Minutolo [2018], Kim i Won [2018], Jeong i Lee [2019] oraz Garćia i

Kristjanpoller [2019]. Wyniki badań dotyczących wykorzystania modeli hybrydowych

dokładniej przeanalizowane zostały w rozdziale 4.1. Na tle tych rezultatów wskazany

następnie został wkład autora w tym nurcie.

Modele bazujące na sieciach neuronowych wykorzystywane są także

w prognozowaniu całych rozkładów prawdopodobieństwa przyszłych stóp zwrotu.

Problematyką tą zajmowali się między innymi Toubeau i in. [2019], Brusaferri i in.

[2019], Salinas i in. [2020], Chen i in. [2020]. Tematyka ta poruszana zastała także

w monografiach Duerra 2020, oraz Murphy’ego [2012, 2022]. Opracowania te opisują

problematykę prognozowania probabilistycznego z wykorzystaniem narzędzi uczenia





głębokiego na poziomie ogólnym, lub, jak ma to miejsce w przypadku wskazanych

artykułów, dotyczą danych spoza obszaru związanego z rynkami finansowymi.

Jednym z celów niniejszej pracy jest propozycja rozwiązań umożliwiających

wykorzystanie tych metod w probabilistycznym prognozowaniu finansowych szeregów

czasowych.

W tym miejscu zaznaczyć należy, że ze względu na dużą liczbę publikacji

naukowych dotyczących prognozowania finansowych szeregów czasowych, zarówno

w zakresie ekonometrii finansowej jak i sieci neuronowych, przedstawiona

w powyższych podrozdziałach literatura dotyczy jedynie wybranych publikacji. W

dalszej części rozprawy starano się możliwie często wskazywać dodatkowe odniesienia

literaturowe, w miejscach gdzie wydawało się to zasadne, co ma na celu uzupełnienie

obrazu obecnego stanu wiedzy.









Rozdział 2

Ekonometryczne modelowanie

i prognozowanie jednowymiarowych

finansowych szeregów czasowych

(z wykorzystaniem modeli klasy

ARMA-GARCH)

Poniższy rozdział opisuje podstawowe narzędzia wywodzące się przede wszystkim

z dziedziny ekonometrii finansowej, stosowane w analizie szeregów czasowych. Ze

względu na bardzo szeroki zakres poruszanych kwestii, szczególną uwagę poświęcono

tutaj metodom, które zostaną wykorzystane w badaniach empirycznych wykonanych

w ramach w tej pracy, przy czym wskazane zostały także inne narzędzia stosowane

przez badaczy w zakresie poruszanej tematyki. Przedstawione w tym rozdziale

definicje i wzory bazują przede wszystkim na pracach: Tsay [2010], Doman i Doman

[2009], Fiszeder [2009] oraz Małecka [2016], w których znaleźć można znacznie szersze

omówienie rozważanych metod.

2.1 Procesy stochastyczne w ekonometrycznej

analizie szeregów czasowych

Powszechnie przyjmuje się, że procesy cen oraz stóp zwrotu mają charakter

losowy (zob. Kendall i Hill [1953], Fama [1965b], Campbell i in. [1997]). Procesy te

zatem traktować jako realizację procesów stochastycznych, pod pojęciem których

rozumiemy (za Doman i Doman [2009]) rodzinę zmiennych losowych (Xt)t∈T,
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określonych na wspólnej przestrzeni probabilistycznej (Ω,F , P ), gdzie Ω jest zbiorem

zdarzeń elementarnych, F jest σ-ciałem podzbioru w zbiorze Ω, natomiast P jest

σ-addytywną miarą probabilistyczną. W dalszym ciągu rozważane będą tylko procesy

z czasem dyskretnym, czyli takie, gdzie zbiór indeksów T jest przeliczalny i zawiera

się w zbiorze liczb całkowitych (T = Z) lub całkowitych nieujemnych

(T = N0 = {0, 1, 2, 3, . . .}). Szeregiem czasowym, oznaczanym symbolem (xt), nazywa

się realizację procesu stochastycznego (Xt)t∈T, stanowiącą ciąg obserwacji x1, x2, ....

W dalszej części pracy dla uproszczenia notacji jako (xt) będzie oznaczany zarówno

szereg czasowy jak i proces stochastyczny, z pominięciem także subskryptu t ∈ T.

Na gruncie finansów empirycznych dwoma typami szeregów czasowych, które

najczęściej podlegają analizie są szeregi czasowe cen (notowań) instrumentów

finansowych oraz ich stopy zwrotu, opisane w poniższych podrozdziałach.

2.2 Empiryczne własności finansowych szeregów

czasowych

Aby prawidłowo zrozumieć poruszaną w pracy problematykę, konieczne jest

pewne teoretyczne wprowadzenie do tematyki związanej z modelowaniem finansowych

szeregów czasowych, oraz przedstawienie podstawowych definicji i własności takich

szeregów. Poniżej przedstawione zostaną podstawowe własności szeregów czasowych

cen oraz, przede wszystkim, stóp zwrotu, które stanowią główny przedmiot badań

ekonometrii finansowej. Znajomość tych własności jest kluczowa, ponieważ umożliwia

wybór i odpowiednie zastosowanie narzędzi służących do ich modelowania.

2.2.1 Szeregi czasowe cen

Podstawowym źródłem informacji w badaniach z zakresu finansów empirycznych

są ceny instrumentów finansowych. Same ceny rzadko są jednak przedmiotem badań,

w praktyce najczęściej analizie poddaje się stopy zwrotu. Campbell i in. [1997] (za

Tsay [2010]) zwracają uwagę na dwa powody ku temu: stopy zwrotu zawierają

kompletne informacje o inwestycji, wyrażone w jednakowej skali, a także posiadają

pewne (bardziej atrakcyjne dla badaczy) własności statystyczne, które umożliwiają

ich modelowanie. Istnieją jednak obszary badań, w których podstawą analizy są

jednak szeregi cen. Przykładowo, w modelowaniu wielowymiarowym (wielu

instrumentów finansowych jednocześnie), w przypadku stóp zwrotu możliwe jest

jedynie badanie krótkookresowych zależności pomiędzy aktywami. Chcąc natomiast

modelować zależności długookresowe (przykładowo w ramach analizy kointegracji),





podstawę stanowią szeregi czasowe w postaci logarytmów cen badanych instrumentów

(zob. Osiewalski i Osiewalski [2013], Pajor i Wróblewska [2017]). Szeregi czasowe cen

instrumentów finansowych są także często przedmiotem badań w publikacjach

dotyczących prognozowania z wykorzystaniem metod sztucznej inteligencji,

cechujących się podejściem eklektycznym (zob. Lu i in. [2020], Shahi i in. [2020]).

Jednakże, ze względu na przedmiot tej pracy (procesy jednowymiarowe) i teoretyczne

podstawy silnie bazujące na ekonometrii finansowej, analizie poddane zostaną szeregi

czasowe w postaci stóp zwrotu.

2.2.2 Proste i logarytmiczne Stopy zwrotu – ich definicje

i własności

Można wyróżnić dwa rodzaje stóp zwrotu (za Fiszeder [2009]):

– zwykła (prosta) stopa zwrotu, wyrażona w punktach procentowych, określona

wzorem:

Rt =
Pt − Pt−1

Pt−1
· 100, (2.1)

– logarytmiczna stopa zwrotu, wyrażona w punktach procentowych, określona

wzorem:

rt = lnPt − lnPt−1 · 100, (2.2)

gdzie Pt jest ceną instrumentu finansowego w chwili t. Doman i Doman [2004]

zwracają uwagę, że w ekonometrii i matematyce finansowej logarytmiczne stopy

zwrotu analizowane są częściej, głównie z uwagi na prostotę obliczania zwrotów

długookresowych, możliwość przyjmowania przez nie dowolnych wartości ze zbioru

liczb rzeczywistych (w przeciwieństwie do prostych stóp zwrotu, które są lewostronnie

ograniczone przez -1), oraz częste występowanie procesu logarytmu ceny

w stochastycznych równaniach różniczkowych wykorzystywanych modelach

matematyki finansowej, stosowanych w przypadku analizy procesów z czasem

ciągłym. Proste stopy zwrotu z kolei stosowane są przez inwestorów, w praktyce

banków i instytucji finansowych oraz w analizie portfelowej, głównie ze względu na

ich łatwiejszą interpretację. W dalszych badaniach najczęściej wykorzystywana będzie

postać logarytmiczna.





Powszechnie zakłada się, że szeregi (logarytmicznych) stóp zwrotu instrumentów

finansowych są kowariancyjnie (słabo) stacjonarne (zob. Doman i Doman [2009]).

Oznacza to, że zmienne rt mają skończony drugi moment E(r2
t ) <∞, a dodatkowo

E(rt) = µ, (2.3)

Cov(rt, rt+l) = γl, (2.4)

dla dowolnych indeksów t oraz l, co oznacza, że auto-kowariancja jest funkcją tylko

odległości na osi czasu, a nie samego czasu, oraz że wszystkie rt mają tą samą,

skończoną wariancję γ0.

Z kolei o ścisłej stacjonarności procesu (rt) mówimy w przypadku, kiedy łączny

rozkład wektora losowego (rt1 , rt2 , ..., rtn) jest taki sam jak rozkład wektora

(rt1+k, rt2+k, ..., rtn+k), co oznacza, że rozkłady te nie zmieniają się względem

przesunięcia na osi czasu.

Gdy mamy do czynienia z procesem kowariancyjnie stacjonarnym, można posłużyć

się empiryczną funkcją autokorelacji (ang. AutoCorrelation Function - ACF), w celu

oszacowania współczynników autokorelacji z rzędów l = 1, 2, ..., zadaną wzorem:

ˆCorr(rt, rt−l) = ρ̂l =

T∑
t=l+1

(rt − r̄)(rt−l − r̄)

T∑
t=1

(rt − r̄)2

, (2.5)

gdzie T oznacza długość szeregu czasowego, natomiast r̄ oznacza średnią z próby, r̄ =

1
T

T∑
t=1

rt. Należy się spodziewać, że dla procesów kowariancyjne stacjonarnych wpływ

przeszłych wartości procesu (rt) na bieżące wartości rt wygasa wraz ze wzrostem l.

Istotnym pojęciem w analizie szeregów czasowych, o którym należy tutaj

wspomnieć, jest biały szum. Proces stochastyczny nazywamy białym szumem (ang.

White Noise) gdy zmienne rt tworzą ciąg nieskorelowanych zmiennych losowych o

zerowej średniej i stałej, skończonej wariancji. Jeśli zmienne losowe są dodatkowo

niezależne to proces taki nazywamy ścisłym białym szumem.

2.2.3 Fakty empiryczne

Wśród empirycznych własności danych finansowych wyróżnić można pewne

prawidłowości, które są obserwowalne podczas analizy szeregów stóp zwrotu

różnorodnych aktywów. Właściwości te określane są mianem faktów empirycznych

(ang. stylized facts). Należą do nich następujące właśności (za Doman i Doman





[2004]):

– brak autokorelacji - autokorelacja w szeregach stóp zwrotu jest często nieistotna

statystycznie (z wyjątkiem zwrotów śróddziennych, gdzie może pojawić się efekt

mikrostruktury rynku),

– grupowanie zmienności (ang. volatility clustering) - występujące po sobie okresy

podwyższonej i obniżonej zmienności (rozumiane np. jako warunkowa wariancja),

– grube ogony rozkładów - częste występowanie obserwacji nietypowych

(odstających) w porównaniu do rozkładu normalnego,

– spiczastość rozkładów - silniejsza koncentracja wokół modalnej,

– asymetria spadków i wzrostów - znaczne ujemne zmiany są często większe co

do wartości bezwzględnej od znacznych wzrostów, przez co rozkłady są często

lewostronnie asymetryczne,

– efekt dźwigni (ang. leverage effect) - ujemna korelacja pomiędzy stopami zwrotu

a ich zmiennością,

– wahania zmienności - zmienne w czasie natężenie poziomu zmienności, niezależnie

od przyjętego sposobu jej estymowania,

– powracanie zmienności do średniej - po okresach zwiększonej zmienności

następuje powrót do pewnego jej „normalnego” poziomu,

– powolne zanikanie autokorelacji w szeregach wartości bezwzględnych stóp zwrotu,

co może wskazywać na występowanie zależności długookresowej.

Własnością tym poświęcona jest szeroka literatura, z pośród której wskazać można

tutaj takie publikacje jak Cont [2001], Engle i Patton [2001], Brzeszczynski i Kelm

[2002] oraz Doman i Doman [2004, 2009].

2.3 Zmienność finansowych szeregów czasowych

Kluczową wielkością podlegającą modelowaniu i prognozowaniu zarówno

w ekonometrii finansowej, jak i wśród praktyków rynku jest zmienności cen

instrumentów finansowych. Najczęściej rozumiana jest jako niepewność dotycząca

ceny lub stóp zwrotu tego instrumentu, a wyrażana jest jako jego warunkowa

wariancja lub warunkowe odchylenie standardowe (zob. Fiszeder [2009]). Zmienność

nie jest bezpośrednio obserwowana, przez co powstało wiele sposobów estymacji jej





wartości. Możliwie najlepszy opis i prognozowanie zmienności jest istotny ze względu

na szeroki zakres jej zastosowania w analizie instrumentów finansowych, stanowiąc

podstawy w takich obszarach jak konstruowanie portfela inwestycyjnego, szacowanie

ryzyka kapitałowego czy wycena opcji.

2.3.1 Zmienność historyczna i zrealizowana

Jednym z najprostszych sposobów mierzenia zmienności są kwadraty stóp zwrotu

wyznaczanych na podstawie cen zamknięcia:

σ̂2
t = r2

t , (2.6)

gdzie rt zadane jest wzorem 2.2. Estymator w tej postaci jest jednak nieefektywny

ponieważ bazuje tylko na jednej obserwacji.

Piontek [2002] oraz Fiszeder [2009] jako popularne estymatory zmienności wskazują

wariancję i odchylenie standardowe stóp zwrotu, opisane wzorami:

σ̂2
t =

1
n

n∑
t=1

r2
t − r̄2, (2.7)

gdzie r̄ jest średnią arytmetyczną stóp zwrotu z próby, zaś n ustaloną długością

ruchomego okna obserwacji.

W praktyce, wśród badaczy związanych bliżej ze środowiskiem inwestycyjnym,

często stosowaną miarą zmienności jest tzw. zmienność historyczna, (ang. Historical

Volatility - HV), najczęściej przedstawiania w skali rocznej jako odchylenie

standardowe. Zmienność historyczna obliczana jest za pomocą wzoru (Piontek

[1999]):

HVt =

√√√√ N

n− 1

n∑
t=1

(rt − r̄)2, (2.8)

gdzie N liczbą okresów sesyjnych w ciągu roku (zazwyczaj 252 dni).

Fiszeder [2009] i Doman i Doman [2009] jako najlepszą miarę zmienności wskazują

zmienność zrealizowaną (ang. Realized Volatility - RV), zaproponowaną przez

Andersena i Bollersleva [1998], szacowaną na podstawie kwadratów stóp zwrotu o

częstotliwości wyższej niż dzienna:

RVt =
d∑
j=1

r2
t,j, (2.9)





gdzie rt,j oznacza śródzienną stopę zwrotu o interwale j, zaś d to liczba obserwacji

śróddziennych.

Na rynkach finansowych, które nie są notowane przez całą dobę, należy wziąć pod

uwagę także nocną stopę zwrotu. Powstało kilka propozycji rozwiązania tego

problemu, w tym popularne rozwiązanie zaproponowane przez Martensa 2002,

polegające na wprowadzeniu dodatkowego współczynnika skalującego c:

RVt = (1 + c)
D∑
d=1

r2
d,t, (2.10)

c =
σ2
co

σ2
oc

, (2.11)

gdzie σ2
co = V ar(rn,t) oznacza wariancję nocnych stóp zwrotu, natomiast

σ2
oc = V ar

( D∑
d=1

rd,t
)

jest wariancją dziennych stóp zwrotu, przy czym D oznacza tutaj

liczbę obserwacji o ustalonej częstotliwości w ciągu dnia.

Doman i Doman [2009] zwracają uwagę, że podczas wyboru częstotliwości

obserwacji śróddziennych należałoby wybierać obserwacje o jak najwyższej

częstotliwości, ze względu na to, że najbardziej zbliżone są one do procesu ciągłego.

W praktyce jednak, dane o niskiej częstotliwości dla długich okresów często są słabej

jakości lub niedostępne. Dodatkowo pojawiają się także problemy związane z tzw.

efektem mikrostruktury rynku, wynikające z dynamiki i ułatwień możliwości

zawierania transakcji (zob. także Bień-Barkowska [2016]). Zalicza się do nich między

innymi niską płynność, koszty transakcyjne, różnice w ofertach kupna i sprzedaży

oraz problemy związane z napływem informacji i nieregularnością handlu. Dla danych

o wysokiej częstotliwości często występuje także silna autokorelacja. Autorzy,

powołując się na literaturę, zalecają wybór częstotliwości pomiędzy 5-minutową

i godzinną, natomiast Tsay [2010] dla aktywów o dużej płynności – częstotliwości od

4- do 15-minutowej (zob. także Andersen i in. [2000], Oomen [2001], Będowska-Sójka i

Kliber [2010]).

2.3.2 Estymatory zmienności bazujące na zakresie cen

W związku z przedstawionymi powyżej problemami dotyczącymi danych o

wysokiej częstotliwości, Fiszeder [2020] proponuje stosowanie estymatorów

konstruowanych na podstawie zakresów cen (ang. Range Estimators), szczególnie

w sytuacjach, gdy występują efekty mikrostruktury rynku lub gdy brakuje dobrej

jakości danych o wysokiej częstotliwości.





Przyjmijmy następujące oznaczenia:

– Ot — cena otwarcia w okresie t,

– Ct — cena zamknięcia w okresie t,

– Lt — cena minimalna w okresie t,

– Ht — cena maksymalna w okresie t.

Poniżej zestawiono wybrane estymatory bazujące na zakresach cen.

Estymator Parkinsona

Jednym z podstawowych estymatorów budowanych na podstawie zakresów cen

jest estymator Parkinsona [1980], bazujący na cenach maksymalnej i minimalnej,

zakładający zerową wartość dryfu:

σ̂2
t =

1
4 ln 2

(
ln
Ht

Lt

)2

. (2.12)

Estymator Garmana-Klasa

Garman i Klass [1980] przedstawili estymator wprowadzający dodatkowo ceny

otwarcia i zamknięcia, zakładający jednak brak skoku między cenami zamknięcia

z okresu poprzedniego i otwarcia w bierzącym okresie, a także zerową wartość dryfu:

σ̂2
t =

1
2

(
ln
Ht

Lt

)2

− (2 · ln 2− 1) · ln
(
Ct
Ot

)2

. (2.13)

Estymator Rogersa-Sachela

Chcąc umożliwić wykorzystanie niezerowej wartości dryfu, Rogers i Satchell [1991]

jako rozszerzenie estymatora Parkinsona zaproponowali estymator przedstawiony

wzorem:

σ̂2
t = ln

Ht

Ct
· ln Ht

Ot

+ ln
Lt
Ct
· ln Lt

Ot

. (2.14)

Estymator ten może jednak przyjmować wartość zerową pomimo dużych zmian ceny

w ciągu dnia. Dzieje się tak w przypadku gdy cena otwarcia jest równa cenie

maksymalnej a cena zamknięcia cenie minimalnej.





Estymator Garmana Klasa zmodyfikowany o skoki pomiędzy cenami

otwarcia i zamknięcia (GKYZ)

Yang i Zhang [2000] rozszerzyli podstawową postać estymatora Garmana-Klassa o

różnicę pomiędzy cenami zamknięcia z dnia poprzedniego i otwarcia w dniu dzisiejszym

(wciąż jednak zakładając zerową wartość dryfu):

σ̂2
t =

(
ln

Ot

Ct−1

)2

+
1
2

(
ln
Ht

Lt

)2

− (2 · ln 2− 1) · ln
(
Ct
Ot

)2

. (2.15)

We wspomnianej pracy, Autorzy zaproponowali także własną wersję estymatora,

który bierze pod uwagę skoki cen między zamknięciem i otwarciem, a także umożliwia

wykorzystanie założenia o niezerowym dryfie. Estymator ten zakłada jednak stałość

wariancji dla okresu dłuższego niż jeden dzień. Ponadto, niemożliwe jest także

oszacowanie za jego pomocą wariancji dla pojedynczego dnia.

W literaturze znaleźć można także wiele innych propozycji estymatorów

zmienności, których dokładne porównanie znaleźć można w książce Fiszeder [2020],

poświęconej w całości tej tematyce, a także w pracach Fałdziński i Osińska [2016]

oraz Shu i Zhang [2006]. W części empirycznej tej pracy wykorzystany zostanie

estymator Garmana-Klasa zmodyfikowany przez Yanga i Zhanga (oznaczany

w dalszej części pracy skrótem od nazwisk autorów - GKYZ), głównie ze względu na

prostotę jego konstrukcji, brak założenia o stałości wariancji i wzięcie pod uwagę

skoku między cenami otwarcia i zamknięcia.

2.3.3 Transformacje estymatorów zmienności

Jak zauważa Fiszeder [2005], [2009], [2020], estymatory zmienności konstruowane

na podstawie zakresu cen często niedoszacowują zmienność. Wynika to z faktu, że

procesy cen są procesami dyskretnymi, zaś głównym założeniem leżącym u podstaw

tych estymatorów jest to, że mamy do czynienia z procesem z czasem ciągłym.

Jako próbę rozwiązania tego problemu zaproponował on metodę skalowania

estymatora bazującego na prawdziwym zakresie zmian (ang. True Range TR),

według propozycji Wildera [1978]:

TRt = max
{
Ht − Lt,

∣∣∣Ct−1 −Ht

∣∣∣, ∣∣∣Ct−1 − Lt
∣∣∣}. (2.16)

Propozycja Fiszedera przyjmuje następującą postać:

STRt =
a

b
TR, (2.17)





a =

√√√√1
t

t∑
i=1

r2
i , b =

√√√√1
t

t∑
i=1

TR2
i , (2.18)

gdzie czynniki skalujące a i b wynikają z porównania średnich kwadratów stóp zwrotu

i zmienności oszacowanej za pomocą estymatora.

W równaniach czynników skalujących, zadanych w 2.18, zamiast kwadratów można

stosować wartości bezwzględne, jednak może to prowadzić do zniżonych prognoz. Jak

sugeruje Autor powyższych prac źródłowych, skalowanie 2.17 jest konieczne aby można

było wykorzystać STR jako oszacowanie zmienności, które następnie wykorzystane jest

w zaproponowanym przez Fiszedera [2005] modelu GARCH-TR.

Wilder [1978] zaproponował także uśrednioną wersję estymatora prawdziwego

zakresu cen - (ang. Averaged True Range - ATR).

ATR =
1
n

n∑
t=1

TRt, (2.19)

gdzie n to długość okna średniej ruchomej, zazwyczaj ustalany na 14 lub 21 dni.

Dodatkowo stosowanym zabiegiem jest tutaj obliczenie średniej z n okresów

wstecz aby uzyskać uśredniony szacunek zmienności. To podejście zakłada jednak

stałość wariancji w tym okresie, co z formalnego punktu widzenia nie jest słuszne.

Wygładzone szacunki zmienności są o wiele bardziej zbliżone do prognoz uzyskanych

przez modele GARCH. Fiszeder [2020] zauważa jednak, że nie należy dążyć do

dopasowania zmienności w ten sposób, ponieważ prognozy te są jedynie pewnym

przybliżeniem procesu generującego dane finansowe.

Bazując na przeglądzie literatury można stwierdzić, że w praktyce wśród publikacji

związanych z badaniami nad zmiennością w celach inwestycyjnych, a także w literaturze

dotyczącej uczenia maszynowego, najczęściej stosuje się ujęcie historyczne (HV) lub

kwadraty stóp zwrotu (zob. Kim i Won [2018], Kristjanpoller i Minutolo [2018]) . Z

kolei w literaturze ekonometrycznej zaleca się stosowanie zmienności zrealizowanej (RV)

lub estymatorów bazujących na zakresach cen (zob. Fiszeder [2009, 2020]).

Odrębnym aspektem skalowania, stosowanym przy obliczaniu zmienności

w dłuższym horyzoncie, jest wspomniane także wcześniej mnożenie estymatora

zmienności (wariancji) przez liczbę okresów (dni sesyjnych) w ciągu roku - N -

zazwyczaj ustalane na 252, uzyskując w ten sposób zmienność w skali rocznej

(zannualizowaną).





2.3.4 Zmienność implikowana

Odrębne podejście do estymacji zmienności polega na obliczaniu jej wartości na

podstawie cen opcji, uzyskując w ten sposób warunkowe odchylenie standardowe dla

danego instrumentu bazowego. Wyznaczane w ten sposób odchylenie standardowe

nazywane jest zmiennością implikowaną (zob. Schmalensee i Trippi [1978], Beckers

[1981]). Przykładowo, zakładając, że ceny opcji są realizacją procesu Browna,

zmienność dla opcji europejskich wyznaczyć można modelem Blacka i Scholesa (Black

i Scholes [1973]) lub jego uogólnieniami. Jednak także ten sposób obliczania

zmienności nie jest pozbawiony wad. Podstawowy model Blacka-Scholesa zakłada

stałość zmienności. Dodatkowo, uzyskane w ten sposób oceny zmienności zawierają

premię za ryzyko (przez co zmienność wyznaczana w ten sposób jest wyższa niż ta

uzyskana przy pomocy modeli GARCH), specyfikacja modelu użytego do wyceny

opcji może być wadliwa, a także występować może brak równowagi rynkowej lub efekt

uśmiechu zmienności (ang. volatility smile). Mimo to, zmienność implikowana cieszy

się dużą popularnością, przykładowo jest ona podstawą do obliczania wartości dla

indeksów zmienności takich jak VIX (ang. Chicago Board Options Exchange’s

Volatility Index ), na podstawie indeksu S&P 500, czy indeksu VDAX, bazującego na

niemieckim indeksie DAX (zob. Fiszeder [2009]).

2.4 Modele klasy ARMA-GARCH

Jednym z podstawowych narzędzi ekonometrycznych wykorzystywanych w tej

pracy są modele ARMA-GARCH. Specyfikacja tych modeli umożliwia opis procesu

stóp zwrotu jednocześnie za pomocą warunkowej wartości oczekiwanej i warunkowej

wariancji. Należą one do jednych z najpopularniejszych metod stosowanych

w finansach empirycznych, stanowią także podstawę w badaniach nad rozwojem

nowych narzędzi. Wyniki uzyskane przez modele ARMA-GARCH stanowić będą

główny punkt odniesienia w analizie porównawczej z modelami hybrydowymi

i sieciowymi modelami prognozowania probabilistycznego.

2.4.1 Definicja procesu ARMA-GARCH

Szeregi logarytmicznych stóp zwrotu można opisać za pomocą procesu ze zmienną

w czasie warunkową wartością oczekiwaną µt i wariancją warunkową σ2
t :

rt|Ψt−1 ∼ D(µt, σ2
t ), (2.20)





gdzie Ψt−1 oznacza całą przeszłość procesu (rt) do chwili t− 1 włącznie, zaś D oznacza

zadany rozkład prawdopodobieństwa.

W takim przypadku do opisu tego procesu można wykorzystać model

ARMA-GARCH, w którym średnia warunkowa opisana jest za pomocą struktury

ARMA, natomiast dynamikę warunkowej zmienności opisuje proces GARCH. Proces

ARMA-GARCH można zdefiniować następująco:

rt = a0 +
p∑
i=1

airt−i + εt −
q∑
i=1

biεt−i, (2.21)

εt = ztσt, zt ∼ N(0, 1), (2.22)

σ2 = α0 +
q∑
i=1

αiε
2
t−i +

p∑
j=1

βjσ
2
t−j. (2.23)

W kolejnych punktach zostaną dokładniej omówione struktury procesów opisujących

dynamikę średniej warunkowej oraz składnika losowego, a także metoda

wykorzystywana do estymacji łącznego modelu ARMA-GARCH.

2.4.2 Procesy ARMA

Podstawą modelowania średniej warunkowej w dalszych rozważaniach jest proces

ARMA(k,m). Specyfikację tego procesu można opisać za pomocą wzoru (zob. Tsay

[2010], Doman i Doman [2009]):

rt = a0 +
k∑
i=1

airt−i + εt −
m∑
j=1

bjεt−j, (2.24)

gdzie k i m są nieujemnymi liczbami całkowitymi oznaczającymi maksymalne rzędy

opóźnień, natomiast (εt) jest (z reguły gaussowskim) białym szumem. Zmienna losowa

(εt) zwana jest składnikiem losowym, wstrząsem, szokiem lub innowacją w okresie t.

Dwie główne wyrażenia sumy przedstawionej w równaniu (2.24) opisują: proces

autoregresyjny (ang. Autoregressive process - AR) oraz proces średniej ruchomej (ang.

Moving Average process - MA), które zostaną szerzej opisane poniżej. Połączenie tych

dwóch składowych jest szczególnie pomocne przy opisie zależności długotrwałych

z wykorzystaniem mniejszej liczby parametrów (zob. Doman i Doman [2009]).

Do wskazania optymalnych wartości rzędów opóźnień k i m w modelach

ARMA(k,m) najczęściej stosuje się kryterium Akaike (ang. Akaike Information

Criterion - AIC ) lub kryterium Schwarza (ang. Schwarz Criterion - SC ), zwane

również kryterium Bayesowskim (ang. Bayesian Information Criterion - BIC ).





Równania dla tych kryteriów przedstawiają się następująco (za Doman i Doman

[2009]):

AIC = −2
lnL(θ̂)
T

+ 2
a

T
, (2.25)

BIC = −2
lnL(θ̂)
T

+ 2
a lnT
T

, (2.26)

gdzie L(θ̂) oznacza wartość funkcji wiarygodności oszacowanego wektora parametrów

θ̂ dla obserwacji (r1, ..., rT ), natomiast a oznacza liczbę wszystkich parametrów

modelu.1 Warto zauważyć, że kryterium BIC ma tendencję do preferowania modeli o

mniejszej liczbie parametrów. Obok przedstawionych powyżej kryteriów proponowane

są także inne, takie jak: kryterium informacyjne Hannana-Quinna (ang.

Hannan–Quinn Information Criterion, zob. Hannan i Quinn [1979]) lub kryterium

Shibaty [1976].

Doman i Doman [2004] oraz Tsay [2010] zwracają uwagę, że funkcje autokorelacji

i cząstkowej autokorelacji2 w przypadku modeli ARMA raczej nie dają użytecznych

informacji na temat rzędów opóźnień. W tym przypadku należy estymować określoną

liczbę modeli, dla wybranych wartości K i M , gdzie 0 ¬ k ¬ K i 0 ¬ m ¬ M .

Wybierane są zazwyczaj te modele, dla których wartości AIC lub BIC są najniższe.

W niektórych przypadkach, podczas wyboru rzędów opóźnień modeli ARMA(k,m),

przykładowo przy użyciu opisanych powyżej kryteriów informacyjnych, okazuje się, że

optymalną wartością parametru m jest zero. Wartość rt opisana jest wówczas poprzez

liniową kombinację opóźnionych wartości rt−i, co odpowiada procesowi autoregresji

AR(p)3:

rt = a0 +
m∑
i=1

airt−i + εt, (2.27)

gdzie εt oznacza ścisły biały szum z zerową średnią i stałą wariancją4 σ2.

Gdy mamy do czynienia z procesem AR(1): rt = a0 + a1rt−1 + εt, można dowieść

następujących własności (zob. Doman i Doman [2009]):

1Estymację przy pomocy metody największej wiarygodności, opisano w punkcie 2.4.5, w kontekście

modeli ARMA-GARCH.
2Opisane wzorami 2.5 oraz 2.28 - 2.30.
3Zdążają się też przypadki, w których wartości optymalne dla obu rzędów opóźnień są równe zero,

co oznacza, że logarytm ceny można opisywać za pomocą błądzenia losowego.
4W przypadku założenia o zmienności wariancji warunkowej, proces stóp zwrotu możemy

modelować wykorzystując model AR-GARCH.





– warunkowa wartość oczekiwana zmiennej rt wynosi E(rt|rt−1) = a0 + a1rt−1,

– warunkowa wariancja V ar(rt|rt−1) = V ar(εt) = σ2,

– proces (rt) jest kowariancyjnie stacjonarny w tedy i tylko wtedy gdy −1 < a1 < 1

(zachodzi tu też zależność odwrotna),

– funkcja ACF przyjmuje postać ρl = a1ρl−1 dla l > 0 i ρl = al1 dla l ­ 0.

W celu wyboru rzędu modelu AR(p), obok wspomianych powyżej kryteriów

informacyjnych, można posiłkować się także funkcją autokorelacji cząstkowej (ang.

Partial AutoCorrelation Function - PACF). Definiuje się ją korzystając ze

współczynników autokorelacji (za Doman i Doman [2009]):

a1,1 = ρ1, (2.28)

a2,2 = (ρ2 − ρ2
1)(1− ρ2

1), (2.29)

as,s =
ρs −

∑s−1
j=1 as−1,jρs−j

1−∑s−1
j=1 as−1ρj

, dla s = 3, 4, 5, ... (2.30)

gdzie as,j = as−1,j − as,sas−1,s−j dla j = 1, 2, 3, ..., s − 1. Współczynniki autokorelacji

cząstkowej oszacować można estymując za pomocą metody najmniejszych kwadratów

równania AR kolejnych rzędów.

W przypadkach, w których wartość rt jest wyłącznie przez liniową kombinację

bieżącego praz przeszłych zaburzeń losowych ε stosuje się model średniej ruchomej

(ang. Moving Average) - MA(m). Model ten można zapisać w postaci:

rt = c0 −
m∑
j=1

bjεt−j, (2.31)

gdzie c0 oznacza pewną stałą. „Czyste” modele średniej ruchomej rzadko są

wykorzystywane w empirycznych analizach danych finansowych.

Modele ARMA cieszą się wśród badaczy dużą popularnością, przez długi czas

były jednym z podstawowych narzędzi służących do opisu stóp zwrotu. Najczęściej

stosowane są modele o niskich rzędach opóźnień, głównie ze względu na mniejszą

liczbę estymowanych parametrów. Więcej na temat tych modeli, ich właściwości,

sposobów doboru liczby opóźnień oraz metod prognozowania z ich wykorzystaniem

znaleźć można w licznych opracowaniach (zob. Mondal i in. [2014], Junior i in. [2014],

Kocak [2017]).





Warto zauważyć, że procesy AR oraz ARMA, pomimo swoich własności, nie są

jednak wystarczające do opisu szeregów stóp zwrotu, i należy je rozbudować o składnik

losowy (εt), w którym wariancja warunkowa będzie zmienna w czasie.

2.4.3 Opis struktury GARCH

Jako jedno z głównych narzędzi wykorzystywanych w celu modelowania składnika

losowego ze zmienną w czasie wariancją warunkową, w badaniach i prognozowaniu

szeregów czasowych stosuje się uogólnione modele autoregresyjnej warunkowej

heteroskedastyczności (ang. Generalized Autoregressive Conditional Heteroskedasticity

- GARCH). Wykorzystywane są one przede wszystkim w modelowaniu zmienności

w zagadnieniach finansów empirycznych takich jak analiza ryzyka czy budowa

portfela inwestycyjnego. Rodzina modeli GARCH jest bardzo szeroka, od czasu

pierwszych specyfikacji modelu wprowadzono liczne uogólnienia i modyfikacje, które

mają na celu dokładniejszy opis modelowanych danych, z uwzględnieniem ich

dodatkowych własności. W tej części pracy opisane zostały wybrane,

najpopularniejsze specyfikacje modeli klasy GARCH, które zostały także

wykorzystane w części empirycznej.

Pojęcie heteroskedastyczności warunkowej zaproponowane zostało przez R. F.

Engle’a [1982]. Zaproponowany przez niego model ARCH cieszył się dużą

popularnością głównie w badaniach makroekonomicznych, wykorzystujących dane o

niskiej częstotliwości (miesięcznej lub kwartalnej). Poniżej przedstawiona została

definicja procesu ARCH, wprowadzająca do metodyki modelowania zmienności

warunkowej.

Proces stochastyczny opisujący logarytmiczne stopy zwrotu można przedstawić

równaniem (za Doman i Doman [2009]):

rt = µt + εt, (2.32)

gdzie µt = E(rt | Ψt−1) jest warunkową wartością oczekiwaną.

Proces (εt) jest procesem ARCH(q) gdy zachodzi:

εt = ztσt, zt ∼ N(0, 1), (2.33)

σ2
t = α0 +

q∑
i=1

αiε
2
t−i, (2.34)

przy ograniczeniach α0 > 0, αi ­ 0 dla i = 1, ..., q, gdzie σ2
t oznacza warunkową

względem przeszłości wariancję procesu (εt).





Uogólniona postać modelu - GARCH

Zaproponowany przez Engla model rozszerzyli w swoich badaniach jednocześnie T.

Bollerslev [1986] i S.Taylor [1986] proponując model GARCH. Okazał się on bardziej

adekwatny do pracy z szeregami o wyższej częstotliwości, częściej wykorzystywanych

w badaniach na gruncie finansowym.

Zgodnie z definicją, proces (εt) jest procesem GARCH(p,q) gdy określony jest on

równaniem (2.33), natomiast równanie wariancji warunkowej przyjmuje postać:

σ2
t = α0 +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjσ
2
t−j, (2.35)

przy ograniczeniach α0 > 0, αi ­ 0 dla i = 1, ..., q, oraz βi ­ 0 dla i = 1, ..., q.

W badaniach empirycznych zwykle przyjmuje się p = q = 1. Model w postaci

GARCH(1,1) jest więc jednym z najczęściej spotykanych w literaturze. Do własności

empirycznych procesu stochastycznego (εt) opisanego procesem GARCH(1,1) można

zaliczyć brak autokorelacji stóp zwrotu dla tego procesu, co wskazuje na to, że

wymagane jest osobne modelowanie warunkowej wartości oczekiwanej np. za pomocą

procesu ARMA.

Funkcja autokorelacji procesu (ε2
t ) ma postać (za Kwiatkowski [2008]):

ρε2t (l) =


α1(1−β21−α1β1)

1−β21−2α1β1
, dla l = 1,

(α1 + β1)ρε2t (l − 1), dla l < 1.
(2.36)

Taki charakter funkcji autokorelacji oznacza pewną persystencję w kwadratach

procesu GARCH(1,1), co odpowiada własnościom empirycznym stóp zwrotu

i pozwala wychwycić grupowanie zmienności. Suma wartości parametrów α1 i β1

odpowiada za tempo wygasania funkcji autokorelacji oraz wpływ przeszłych wartości

zmienności na obserwacje w chwili obecnej, który jest większy im suma ta jest bliższa

jedności.

Z kolei, jeżeli zachodzi warunek α1 + β1 < 1 (co jest jednocześnie warunkiem

kowariancyjnej stacjonarności rozważanego procesu), to istnieje skończona wariancja

bezwarunkowa zadana wzorem:

V ar(εt) =
α0

1− α1 − β1
. (2.37)

Co więcej, w przypadku procesu GARCH(1,1) warunek kowariancyjnej stacjonarności

jest silniejszy niż warunek ścisłej stacjonarności E(ln(α1ε
2
t +β1)) < 0 (zob. także Nelson

[1990], Osiewalski [2001]).





Z równania (2.33) wynika, że rozkład warunkowy εt jest rozkładem normalnym:

p(εt|Ψt−1, θ) = f
(1)
N (εt; 0, σ2

t ). (2.38)

Mimo to, można pokazać, że rozkład bezwarunkowy posiada kurtozę wyższą od 3, co

oznacza, że ogony rozkładu brzegowego εt są grubsze niż te w rozkładzie normalnym.

Szersze opracowanie własności procesów GARCH przedstawione zostało także

w pracach Piontek [2002], Pipień [2006], Kwiatkowski [2008], Doman i Doman [2009]

oraz Fiszeder [2009].

Typy rozkładów warunkowych

Jednym z podstawowych rozkładów prawdopodobieństwa, stosowanych w modelach

GARCH jako rozkład zmiennej losowej, jest rozkład normalny, który w pełni opisany

może być za pomocą dwóch parametrów: średniej µ (parametr położenia, ang. location)

oraz wariancji σ2 (parametr skali, ang. scale) , co dla zmiennej losowej X można zapisać

jako:

X ∼ N(µ, σ2). (2.39)

Funkcję gęstości rozkładu normalnego zapisać możemy jako:

f(x) =
1

σ
√

2π
e
− 12

(
x−µ
σ

)2
. (2.40)

Rozkład normalny ma zerowy współczynnik skośności, kurtozę równą trzy, a kurtozę

nadwyżkową (ang. excess kurtosis) równą zero. Pomimo tego, że już przy warunkowej

normalności kurtoza rozkładu brzegowego jest wyższa niż w rozkładzie normalnym,

często w dalszym ciągu rozkład ten okazuje się niewystarczający. Z tego względu

stosowane są także inne rozkłady warunkowe, lepiej wychwytujące obserwacje

odstające, w szczególności rozkład t-Studenta oraz skośny rozkład t-Studenta.

Rozkład t-Studenta po raz pierwszy do modeli GARCH zastosowany został przez

Bollersleva [1987]. Do oznaczenia rozkładu t-Studenta stosujemy poniższy zapis:

X ∼ St(µ, σ2, ν), (2.41)

gdzie µ oznacza parametr niecentralności (modalną), σ > 0 parametr skali (odwrotność

precyzji) zaś ν > 0 jest liczbą stopni swobody. Funkcję gęstości tego rozkładu można

zapisać jako:





fSt(x) =
Γ(ν+1

2 )√
σ2νπΓ(ν2 )

(
1 +

(x− µ)2

νσ2

)−( ν+12 )
, (2.42)

gdzie Γ oznacza funkcję Gamma. Rozkład t-Studenta ma zerowy parametr skośności

przy ν > 3, nadwyżkową kurtozę równą 6
(ν−4) dla ν > 4 i wariancję V ar(X) = ν

ν−2σ
2

dla ν > 2. 5 Wraz ze wzrostem liczby stopni swobody, rozkład ten przyjmuje postać

zbliżoną do rozkładu normalnego.

Przy warunkowo symetrycznym rozkładzie stóp zwrotu, otrzymujemy również

symetryczny rozkład brzegowy, podczas gdy z empirycznych własności stóp zwrotu

(asymetria) wynika, że bardziej adekwatny do ich opisu jest rozkład skośny. W tym

celu stosuje się skośny rozkład t-studenta, który uzyskać można za pomocą metody

zaproponowanej przez Fernandez i Steela [1998]. Do oznaczenia skośnego rozkładu

t-Studenta można zastosować zapis:

X ∼ sSt(µ, σ2, ν, ξ), (2.43)

gdzie ξ > 0 jest parametrem skośności (równym 1 dla symetrycznych rozkładów).

Funkcję gęstości zmiennej losowej można zapisać jako:

fsSt(x|ξ) =
2

ξ + ξ−1

[
fSt(ξx)H−(−x) + fSt(ξ−1x)H+(x)

]
, (2.44)

gdzie H() oznacza funkcję Heaviside’a:

H(x) =


0 dla x < 0

1 dla x ­ 0.
(2.45)

W przypadku, gdy parametr skośności ξ ∈ (0, 1) mamy do czynienia z asymetrią

lewostronną, natomiast gdy ξ > 1 z asymetrią prawostronną. Jak pokazuje Pipień

[2000], warunkową wartość oczekiwaną i warunkową wariancję wyznaczyć można

w następujący sposób:

E(X) = φσ, (2.46)

V ar(X) = (γ − φ2)σ2, (2.47)

5W pakiecie rugarch zaimplementowany jest standaryzowany rozkład t-Studenta.





gdzie:

φ =

(
ξ2 − 1

ξ2

)
2νΓ

(
1
2(ν + 1)

)
(
ξ + 1

ξ

)
(ν − 1)Γ

(
1
2ν
)√

πν
, (2.48)

γ =

(
ξ3 − 1

ξ3

)
(
ξ − 1

ξ

) ν

ν − 2
. (2.49)

Typy rozkładów opisane powyżej rozważane będą w części empirycznej tej pracy.

Niekiedy stosowane są także inne typy rozkładów, wśród których wymienić można

uogólniony rozkład błędu (ang. Generalized Error Distribution - GED) czy uogólniony

rozkład hiperboliczny (ang. Generalized Hyperbolic Distribution - GHD, zob. Chorro i

in. [2012], Dritsaki [2019]).

2.4.4 Uogólnienia i modyfikacje podstawowej specyfikacji

procesu GARCH

Modele GARCH przez długi czas były jednym z najczęściej wykorzystywanych

narzędzi w modelowaniu szeregów jednowymiarowych. Z czasem doczekały się jednak

licznych rozwinięć. Poszczególne uogólnienia modelu GARCH mają na celu przede

wszystkim poprawę opisu poszczególnych własności szeregów czasowych, a co za tym

idzie, poprawienie jakości prognoz uzyskanych za pomocą modeli.

Jedną z często obserwowanych zależności, charakterystycznych dla rynków

rozwiniętych, jest asymetryczny wpływ dodatnich i ujemnych stóp zwrotu

z przeszłości na bieżący poziom wariancji warunkowej (zob. Fiszeder [2009], za

którym podane są także dalsze wzory). W takich przypadkach często stosowane są

uogólnione specyfikacje podstawowego modelu GARCH, takie jak progowy model

GARCH (ang. Threshold GARCH - T-GARCH, Rabemananjara i Zakoian [1993]),

wykładniczy model GARCH (ang. Exponential GARCH - EGARCH, Nelson [1991])

oraz GJR-GARCH (Glosten i in. [1993]). W szczególności, najczęściej

wykorzystywany jest ten ostatni, w którym równanie wariancji warunkowej dla

procesu GJR-GARCH(p,q) definiowane jest następująco:

σ2
t = α0 +

q∑
i=1

αiε
2
t−i +

q∑
i=1

ωiIt−iε
2
t−i +

p∑
j=1

βjσ
2
t−j, (2.50)

gdzie


It−1 = 1, gdy εt−1 ¬ 0,

It−1 = 0, gdy εt−1 > 0,
(2.51)





oraz α0 > 0, αi ­ 0, αi + ωi ­ 0, dla i = 1, ..., q, zaś βj > 0 dla j = 1, ..., p

Doman i Doman [2009] zwracają uwagę, że taka specyfikacja modelu umożliwia

wychwycenie efektu dźwigni, poprzez oszacowanie parametru ω, którego wartość

wpływa na poziom asymetrii i różnicę w uwzględnianiu zwrotów dodatnich

i ujemnych na poziom zmienności (zob. także Piontek [2002]).

Wśród specyfikacji modelu z nieliniowym równaniem wariancji warunkowej często

stosowany jest także model EGARCH, w którym równanie zmienności zadane jest

w następujący sposób:

lnσ2
t = α0 +

q∑
i=1

αi

{
θzt−i + γ

[
|zt−i| − E(|zt−i|)

] }
+

p∑
j=1

βj lnσ2
t−j, (2.52)

przy założeniu α1 ≡ 1. W modelu EGARCH wariancja warunkowa przyjmuje postać

logarytmiczną, dzięki czemu nie jest wymagane wprowadzanie dodatkowych ograniczeń

na parametry w celu zapewnienia dodatniej wartości wariancji, jednak taka postać

modelu może prowadzić do znacznych przeszacowań prognoz zmienności (zob. Fiszeder

[2009]).

Postać modelu EGARCH zależy od przyjętego rozkładu warunkowego zmiennej

zt−i. Odchylenie zmiennej zt−i od jej wartości oczekiwanej E|zt−i| wpływa na zmianę

wariancji w zależności od kierunku i siły tego odchylenia. Przykładowo, wartość

oczekiwana dla rozkładu normalnego wynosi E|zt−i| =
√

2
π
. Innymi często

przyjmowanymi rozkładami dla tego modelu są także skośny rozkład t-Studenta, oraz

rozkład GED, dla których postaci wartości oczekiwanej przedstawione są we

wspomnianych publikacjach Piontek [2002] oraz Doman i Doman [2009].

Kolejną rozważaną w tej pracy specyfikacją jest model APARCH (ang. Asymmetric

Power ARCH model), zaproponowany przez Dinga i in. [1993]. Równanie wariancji

warunkowej w tym modelu przyjmuje postać:

σδ = α0 +
q∑
i=1

αi
[
|εt−i| − γiεt−i

]δ
+

p∑
j=1

βjσ
δ
t−j, (2.53)

przy następujących restrykcjach nałożonych na parametry: δ > 0, −1 < γi < 1, i =

1, ..., q.

Dobierając odpowiednio parametry δ, βj i γi model uzyskuje postać zbliżoną do

opisanych wcześniej modeli, takich jak ARCH, GARCH i GJR-GARCH i innych

(więcej w Ding [2011] oraz Ding i in. [1993]). Parametr γi określa tutaj wpływ efektu

dźwigni - wartość dodatnia oznacza wpływ informacji pozytywnych na zmienność,

natomiast parametr δ określa tzw. efekt Taylora, opisujący różnicę w autokorelacji

zwrotów bezwzględnych i kwadratowych.





Dla odpowiednich wartości parametrów δ, βj i γi możliwe jest uzyskanie

szczególnych przypadków modelu APARCH, co jest jedną z głównych jego zalet (zob.

także Doman i Doman [2009]):

– gdy δ = 2, βj = 0 (j = 1, ..., p), γi = 0 (i = 1, ..., q), model APARCH redukuje

się do modelu ARCH,

– gdy δ = 2, γi = 0 (i = 1, ..., q), model APARCH redukuje się do modelu GARCH,

– gdy δ = 2, model APARCH redukuje się do modelu GJR-GARCH,

– gdy δ = 1, model APARCH redukuje się do modelu TARCH (zob. Zakoian

[1994]),

– gdy βj = 0 (j = 1, ..., p), γi = 0 (i = 1, ..., q), model APARCH redukuje się do

nieliniowego modelu ARCH (ang. Non-Linear ARCH - NARCH, zob. Higgins i

Bera [1992]),

– gdy δ = ∞, model APARCH redukuje się do logarytmicznego modelu ARCH

(ang. Logarythmic ARCH - Log-ARCH, zob. Higgins i Bera [1992]).

Obok omówionych powyżej specyfikacji, istnieje jeszcze także wiele innych

modyfikacji podstawowego modelu GARCH, które szerzej opisane zostały m.in.

w pracy Teräsvirta [2009].

Do zarzutów stawianych wobec modeli klasy GARCH można zaliczyć fakt, że ich

specyfikacja posiada słabe podstawy teoretyczne (zob. Fiszeder [2009]). W

podstawowych postaciach modelu napływające na bieżąco na rynek nowe informacje

brane są pod uwagę tylko w równaniach stopy zwrotu, natomiast nie są uwzględniane

w równaniach zmienności, która jest funkcją tylko i wyłącznie przeszłości. Można też

zauważyć, że modele nie wyjaśniają w żaden sposób przyczyn zmienności, a służą

jedynie jako narzędzie do opisu przebiegu jej procesu. Mimo to, modele tej klasy

wciąż są jednym z najczęściej wykorzystywanych narzędzi służących do szacowania

i prognozowania zmienności.

2.4.5 Estymacja modeli klasy ARMA-GARCH

Jednym z podstawowych narzędzi stosowanych do estymacji parametrów modeli

ARMA-GARCH jest metoda największej wiarygodności (MNW). Metoda ta polega

na wyznaczeniu analitycznej postaci funkcji wiarygodności, czyli funkcji wektora

parametrów modelu dla ustalonego wektora obserwacji, a następnie maksymalizacji





względem wektora parametrów θ. W ogólności, dla obserwacji r1, ..., rt logarytm

funkcji wiarygodności przyjmuje postać (za Doman i Doman [2009]):

lnL(θ) =
T∑
t=1

ln f(rt|Ψt−1; θ), (2.54)

gdzie f(rt|Ψt−1; θ) oznacza wartość funkcji gęstości rozkładu warunkowego dla stopy

zwrotu rt w zaobserwowanej wartości tejże stopy zwrotu. Dla modeli ARMA-GARCH,

funkcja przyjmuje postać:

f(rt|Ψt−1; θ) =
1

σ(θ)
g
(
rt − E(rt|Ψt−1; θ)

σ(θ)

)
, (2.55)

gdzie g jest funkcją gęstości innowacji zt. Estymator MNW wektora nieznanych

parametrów θ stanowi taki wektor θ̂, dla którego funkcja L(θ) przyjmuje wartość

maksymalną:

θ̂ = argmax
θ∈Θ

L(θ) = argmax
θ∈Θ

lnL(θ). (2.56)

Autorzy zwracają także uwagę, że jednym z problemów związanych ze stosowaniem

MNW jest sytuacja, w której przyjęta funkcja gęstości rozkładu (standaryzowanego

składnika losowego zt) nie odpowiada nieznanemu prawdziwemu rozkładowi, a więc nie

ma gwarancji, że estymator θ̂ będzie zgodny. W takim wypadku, często stosowane jest

podejście nazywane metodą quasi-największej wiarygodności (ang. Quasi Maximum

Likelihood Estimator/Estimation - QMLE) (zob. Doman i Doman [2009]).

Warto również zauważyć, że w modelach ARMA-GARCH jednocześnie

estymowane są równania średniej i zmienności, co jest lepszym rozwiązaniem niż

estymowanie procesów składowych osobno, ponieważ biorąc pod uwagę obie struktury

jednocześnie, estymatory uzyskane za pomocą MNK dla modelu ARMA-GARCH są

efektywniejsze, w stosunku do estymatorów uzyskanych poprzez oddzielne

estymowanie procesów ARMA i GARCH6. Z drugiej strony, w celu zapewnienia

kowariancyjnej stacjonarności dla procesu ARMA-GARCH wystarczy koniunkcja

warunku kowariancyjnej stacjonarności osobno dla struktury ARMA i tego dla

struktury GARCH.

Estymacja parametrów z wykorzystaniem przestawionych powyżej metod

przypisuje tym parametrom pewne określone wartości punktowe. Odmiennym

podejściem jest wnioskowanie bayesowskie, w którym brana pod uwagę jest

6W przypadku estymowania samej struktury ARMA, estymatory uzyskane w ten sposób są zgodne,

asymptotycznie nieobciążone, ale nieefektywne.





niepewność dotycząca parametrów, opisana rozkładem prawdopodobieństwa, a nie

tylko wartością punktową (zob. Osiewalski [2001], Pipień [2006], Bauwens i in. [2000]).

W celu wyznaczenia wartości rzędów opóźnień dla modeli GARCH (lub

ARMA-GARCH) stosuje się te same kryteria informacyjne, co w przypadku modeli

ARMA – zwykle kryterium informacyjne Akaike lub kryterium Schwarza. Kryteria te

przedstawione zostały w punkcie 2.4.2

2.4.6 Alternatywne specyfikacje modeli zmienności

Innym, często wykorzystywanym podejściem do modelowania zmienności stóp

zwrotu są modele oparte na zmienności stochastycznej (ang. Stochastic Volatility -

SV), zaproponowane przez P.K. Clarka [1973] oraz S. Taylora [1986]. Modele tej klasy

wywodzą się z matematyki finansowej. Jednym z założeń modeli SV, odróżniających

je od modeli klasy GARCH jest, że to bieżąca wartości wariancji warunkowej nie jest

tylko funkcją przeszłości, ale oddziałuje na nią także dodatkowe, równoczesne

zaburzenie losowe. Podstawową postać procesu SV opisać można równaniami (zob.

Piontek [2002], Pajor [2003]):

εt = σtzt, (2.57)

lnσ2
t = φ0 + φ lnσ2

t−1 + σηηt, (2.58)

gdzie, zt, ηt mają standaryzowane rozkłady normalny (N(0, 1)) i są niezależne. Z

równania (2.58) wynika, że σ2
t zależy także od innowacji ηt, które określać mogą

zaburzenia intensywności napływu informacji, natomiast szoki εt są związane

z treścią tych informacji (zob. Doman i Doman [2009]). Modele SV, dzięki

wprowadzeniu dodatkowego źródła losowości ηt, są w praktyce bardziej elastyczne

i łatwiej dopasowują się do danych, natomiast ze względu na trudniejszą estymację

wciąż są rzadziej stosowane niż modele GARCH. Szerokie opracowanie modeli

zmienności stochastycznej przedstawione zostało w pracach A. Pajor ([2003], [2010]).

W ekonometrii finansowej prowadzone są także badania nad modelami

hybrydowymi, łączącymi możliwości modeli GARCH i SV, zarówno jedno-, jak

i wielowymiarowych (zob. Osiewalski i in. [2004], Osiewalski i Pajor [2018]). Jak

wykazują Pajor i Wróblewska [2017] oraz Wróblewska i Pajor [2019] stosowanie

(wielowymiarowych) modeli hybrydowych jest szczególnie opłacalne w kontekście

prognozowania, gdyż prognozy uzyskane przez modele hybrydowe są lepsze niż te

uzyskane przez modele GARCH czy SV.





2.4.7 Wielowymiarowe uogólnienia modeli ARMA-GARCH i

ARMA-SV-GARCH

Opisane powyżej narzędzia służą do modelowania procesów jednowymiarowych,

w związku z czym ich zastosowanie jest ograniczone przy takich zagadnieniach

wielowymiarowych jak analiza portfelowa. W związku zaproponowane zostały metody

pozwalające na modelowanie warunkowych kowariancji, zmienności całego portfela

lub jego poszczególnych składowych oraz ich ryzyka. Jedną z najczęściej

wykorzystywanych w tym celu klas modeli są wielowymiarowe procesy GARCH (ang.

Multivariate GARCH - MGARCH ).

Ponieważ modele te nie są przedmiotem tej pracy, a ich formalne przedstawienie

wymagało by szerokiego wstępu, poniżej wymienione zostaną jedynie

najpopularniejsze postaci wielowymiarowych modeli GARCH, wraz z odniesieniami

do literatury. Zaznaczyć należy natomiast, że modele te cieszą się obecnie dużą

popularnością wśród badaczy, wiąż prowadzone są liczne badania poświęcone tej

tematyce, co objawia się dużą ilością nowych publikacji w tym temacie (zob. Fiszeder

[2009], Pajor [2010], Francq i Zakoian [2019]).

Jedną z ogólniejszych postaci wielowymiarowych modeli GARCH jest model

VECH (alternatywnie oznaczany przez VEC) zaproponowany przez D. F. Krafta i R.

F. Engla w 1983 roku (Engle i Kraft [1983]). Jednak ze względu na dużą ilość

parametrów i trudności z formułowaniem warunków dodatniej określoności macierzy

kowariancji warunkowej (Ht) model ten rzadko znajduje zastosowanie w praktyce.

Problem ilości parametrów poprawiony został przez Bollersleva [1988] poprzez

sformułowanie diagonalnego modelu VECH (ang. Diagonal VECH - DVECH), który

jednak wciąż nie gwarantuje dodatniej określoności macierzy. Kolejną propozycją był

model BEKK, zaproponowany przez Baba, Engle’a, Krafta i Kronera w 1990 roku

(zob. Engle i Kroner [1995]). Przedstawiona przez nich postać modelu zapewnia

dodatniość macierzy warunkowych kowariancji, jednak wciąż cechuje się relatywnie

wysoką liczbą parametrów. Engle [2002] oraz Tse i Tsui [2000] zaproponowali model

opisujący dynamiczne korelacje warunkowe (ang. Dynamic Conditional Correlation -

DCC ). W modelu tym zakłada się, że korelacje warunkowe mogą zmieniać się

w czasie. Modele te opisują korelacje warunkowe bezpośrednio, posiadają mniej

parametrów i umożliwiają estymację parametrów w dwóch krokach: w pierwszym

kroku dokonywana jest estymacja dowolnej specyfikacji jednowymiarowych modeli

GARCH, a w drugim wyznacza się korelacje warunkowe na podstawie reszt. Model

DCC jest jednym z najpopularniejszych stosowanych obecnie wielowymiarowych

modeli zmienności.





Badania nad nowymi postaciami modeli wielowymiarowych wciąż są silnie

rozwijane. Proponowane w tym nurcie są także wielowymiarowe modele MSV, modele

hybrydowe MSV-MGARCH oraz ich uogólnienia (zob. Osiewalski i in. [2004],

Silvennoinen i Teräsvirta [2009], Pajor i Osiewalski [2010], Osiewalski i Pajor [2018].

2.5 Prognozowanie stóp zwrotu i ich zmienności

w ramach modeli klasy ARMA-GARCH

Prognozowanie stóp zwrotu i ich zmienności jest jednym z głównych przedmiotów

tej pracy. Stosując w tym celu modele ARMA-GARCH można uzyskać prognozy

zarówno warunkowej wartości oczekiwanej jak i warunkowej wariancji. Modele te

można wykorzystywać do otrzymania prognoz jednookresowych, jak

i długookresowych. Ponieważ w części empirycznej pracy skupiać się będziemy

wyłącznie na prognozach jednokresowych, właśnie temu podejściu poświęcony będzie

poniższy podrozdział.7.

2.5.1 Predykcja punktowa

Prognozowanie punktowe stóp zwrotu

Prognoza punktowa stóp zwortu w modelach ARMA-GARCH przebiega tak samo,

jak w zwykłych modelach ARMA, w których, jak wskazano wcześniej:

rt = a0 +
k∑
i=1

airt−i + εt −
m∑
j=1

bjεt−j, (2.59)

Optymalną prognozą punktową na jeden okres do przodu w przypadku tego tego

modelu, jest:

rt+1|t = E(rt+1|Ψt). (2.60)

Przyjmując określony rozkład warunkowy, wartość oczekiwana, może przyjmować

różną postać:

7Prognozy długookresowe dla modeli ARMA oraz GARCH szczegółowo opisane są w pracy Doman

i Doman [2009]





rt+1|t = E(rt+1|Ψt) =


µt+1 gdy zt ∼ N(0, 1)

µt+1 gdy zt ∼ St(0, 1, ν), ν > 1

µt+1 + φσ gdy zt ∼ sSt(0, 1, ν, ξ), ν > 1

(2.61)

gdzie φ zadane jest wzorem (2.48).

Prognozowanie punktowe zmienności

Punktowa prognoza zmienności w modelach ARMA-GARCH jest uzyskiwana

w taki sam sposób, jak w modelach GARCH, ponieważ V ar(rt+1|Ψt) = V ar(εt+1|Ψt).

Przyjmuje ona następującą postać:

σ2
t+1|t = E(σ2

t+1|ψt) = α0 +
p∑
i=1

αiε
2
t+1−i +

q∑
j=1

βjσ
2
t+1−j = σ2

t+1. (2.62)

Prognoza wariancji warunkowej dla określonych rozkładów warunkowych przyjmuje

zatem następujące postaci:

V ar(rt+1|Ψt) =


σ2
t+1 gdy zt ∼ N(0, 1)

ν
ν−2σ

2
t+1 gdy zt ∼ St(0, 1, ν), ν > 2

(γ − φ2)σ2
t+1 gdy zt ∼ sSt(0, 1, ν, ξ), ν > 2

(2.63)

gdzie φ zadane jest wzorem (2.48), zaś γ wzorem (2.49).

Zauważyć należy, że wraz z wydłużeniem horyzontu maleje w tempie

wykładniczym wpływ zmienności σ2
t+1 na prognozy. W przypadku, gdy mamy do

czynienia z procesem kowariancyjnie stacjonarnym, granicą wygasania będzie

wariancją bezwarunkową zmiennej εt. Efekt powrotu zmienności do średniej jest

jedną z własności takich procesów.

Prognozy zmienności w omawianych uprzednio uogólnieniach modelu GARCH

wyznacza się w sposób analogiczny do przedstawionego powyżej. W przypadku

modelu EGARCH, ze względu na logarytmiczną postać równania zmienności,

konieczne jest dokonanie transformacji odwrotnej poprzez funkcję eksponencjalną, co

może powodować zawyżone wyniki.

2.5.2 Mierniki trafności prognoz punktowych

Istnieje szereg miar i kryteriów, które można wykorzystać w celu oceny trafności

prognoz punktowych zarówno stóp zwrotu, jak i zmienności. Zaprezentowane poniżej





miary (za Fiszeder [2009]), stosowane w dalszej części pracy, należą przede wszystkim do

grupy miar symetrycznych (w których taki sam wpływ na ocenę jakości mają prognozy

przeszacowanie, jak i niedoszacowane).

Do podstawowych mierników dokładności prognoz należą błąd średni (ang. Mean

Error - ME) oraz względny błąd średni (ang. Relative Mean Error - RME)

informujące badacza o względnym obciążeniu prognozy. W praktyce częściej

stosowane są jednak takie mierniki jak średni błąd absolutny (ang. Mean Absolute

Error - MAE), błąd średniokwadratowy (ang. Mean Squared Error - MSE) oraz jego

pierwiastek (ang. Root Mean Squared Error - RMSE). Kryteria MSE oraz MAE

skorygowane o heteroskedastyczność określane są odpowiednio jako HMSE (ang.

Heteroskedasticity Adjusted Mean Square Error) oraz HMAE (ang. Heteroskedasticity

Adjusted Mean Absolute Error). Chcąc przejść na wielkości relatywne błędów stosuje

się średni absolutny błąd procentowy (ang. Mean Absolute Percentage Error -

MAPE) oraz pierwiastek procentowego błędu średniokwadratowego (ang. Root Mean

Squared Percentage Error - RMSPE) - które są tożsame z miarami HMAE i HRMSE.

W przypadku występowania dużej liczby wartości skrajnych można stosować także

logarytmiczną funkcję straty (ang. Logarithmic Loss - LL), na którą tego typu

obserwacje mają mniejszy wpływ. Postaci wymienionych powyżej mierników

przedstawione zostały w tabeli 2.1.





Tabela 2.1: Miary trafności prognoz punktowych.

Miernik Wzór

ME 1
n

n∑
t=1

(Yt − Ŷt)

RME ME/ 1
n

n∑
t=1

Yt

MAE 1
n

n∑
t=1

∣∣∣Yt − Ŷt∣∣∣
MSE 1

n

n∑
t=1

(Yt − Ŷt)2

RMSE

√√√√ 1
n

n∑
t=1

(Yt − Ŷt)2

HMSE 1
n

n∑
t=1

(
Yt − Ŷt
Yt

)2

MAPE, HMAE 1
n

n∑
t=1

∣∣∣∣Yt − ŶtYt

∣∣∣∣
RMSPE, HRMSE

√√√√ 1
n

n∑
t=1

(
Yt − Ŷt
Yt

)2

LL 1
n

n∑
t=1

(
ln(Yt)− ln(Ŷt)

)2

Uwaga: Yt to wartość badanej zmiennej (przykładowo stopy zwrotu lub zmienności) w chwili t,

natomiast Ŷt to wartość prognozy

Źródło: Opracowanie własne na podstawie Fiszeder [2009].

Dodatkową miarą, którą można wykorzystać do porównania trafności prognoz

zmienności jest współczynnik determinacji R2, opisany wzorem

R2 =

n∑
t=1

(Ŷt − Ȳ )2

n∑
t=1

(Yt − Ȳ )2
­ 0, (2.64)

gdzie Yt jest wartością zaobserwowaną, Ŷt jest wartością prognozowaną, zaś Ȳ jest

średnią arytmetyczną wartości zmiennej.

Przedstawione powyżej miary wykazują jednak pewne wady w praktycznym

zastosowaniu i mogą prowadzić do mylnych wniosków (zob. Hyndman i Koehler





[2006]). Przykładowo, w przypadku funkcji MSE kwadraty wartości odstających mają

większy wpływ na ocenę błędu niż obserwacje o niższych (co do modułu) wartościach.

Miary MAPE i HMAE nie mogą być stosowane gdy w szeregu obserwacji

zrealizowanych występuje zero (problem też dotyczy miar skorygowanych o

heteroskedastyczność, jak HMSE). Wykazują też tendencję do silniejszego

penalizowania błędów prognozy, gdy Yt < Ŷt, co przy porównaniu metod

prognostycznych skutkuje wyborem modelu dającego zaniżone prognozy (zob. Kim i

Kim [2016], Tofallis [2014]). Współczynnik R2 również nie penalizuje prognoz

obciążonych, przez co mogą charakteryzować się one wyższą wartością współczynnika

w stosunku do prognoz nieobciążonych (Fiszeder [2009]).

Ze względu na wspomniane problemy poszczególnych miar oceny prognoz,

w wynikach i wnioskach z badań zaprezentowanych w dalszej części pracy, wzięte pod

uwagę zostaną także dodatkowe aspekty umożliwiające szersze spojrzenie na uzyskane

wyniki, takie jak strategie inwestycyjne zbudowane na podstawie punktowych

prognoz zmienności, czy oszacowania poziomu ryzyka z wykorzystaniem prognoz

zmienności.

Ponieważ nawet znaczne różnice pomiędzy modelami w ocenie prognoz uzyskane

przez miary trafności mogą okazać się nieistotne statystycznie zaleca się dodatkowo

stosowanie testów badających istotność różnicy wartości miernika uzyskanych przez

dwa różne modele. W części empirycznej pracy wykorzystany zostanie test

Diebolda-Mariano [1995] w wersji zmodyfikowanej przez Harveya i in. [1997].

Hipoteza zerowa testu zakłada, że wartości danego miernika uzyskane w wybranych

dwóch modelach są jednakowe, natomiast hipoteza alternatywa zakłada konkretny

kierunek nierówności pomiędzy modelami lub nierówność w obydwie strony. Dokładny

opis procedury testowej można znaleźć we wspomnianych wyżej opracowaniach.

2.5.3 Ocena trafności predykcji punktowej stóp zwrotu

w kontekście strategii inwestycyjnych

Zdolności predyktywne badanych modeli ocenione zostaną dodatkowo

w kontekście strategii inwestycyjnych. Taka płaszczyzna oceny charakteryzuje się

konkretnym i wymiernym aspektem trafności prognoz punktowych.

Podstawowe miary trafności prognoz nie są w stanie jednoznacznie określić, w jaki

sposób zachowa się strategia inwestycyjna budowana na podstawie prognozowanych

stóp zwrotu. Do oceny jakości algorytmicznych strategii inwestycyjnych (ang.

Algorithmic Investment Strategies - AIS), wykorzystać można szereg miar wydajności





strategii (ang. performance metrics).8 Wykaz wybranych miar, zaproponowanych

przez Ślepaczuk i in. [2012], oraz Kość i in. [2019] przedstawiony został w tabeli 2.2.

Kluczowe przy ocenie strategii inwestycyjnych są nie tylko zannualizowane wskaźniki

skumulowanego zwrotu (ang. Annualized Return Compounded - ARC), ale przede

wszystkim wskaźniki informacyjne (ang. Information Ratio - IR), które oprócz

zwrotu biorą pod uwagę także zannualizowane odchylenie standardowe (ang.

Annualized Standard Deviation - ASD), maksymalną procentową wielkość obsunięcia

kapitału (ang. Maximum Drawdawn - MD) oraz długość straty z nią powiązaną (ang.

Maximum Loss Duration - MLD), stanowiącą liczbę dni pomiędzy lokalnymi

maksimami krzywej kapitałowej. Wynika to między innymi z faktu, że na strategiach

charakteryzujących się niewielkimi wskaźnikami MD i MLD, można przykładowo

stosować efekt dźwigni, co znacznie wpływa na poprawę uzyskiwanych zwrotów.

Tabela 2.2: Mierniki oceny strategii inwestycyjnej

Miernik Oznaczenie Wzór

Skumulowany zwrot roczny ARC
((

PT
P0

)N/T
− 1

)
·100%

Roczne odchylenie standardowe ASD
√

N
T

∑T
i=0(Rt−i − R̄)2 · 100%

Maksymalne obsunięcie kapitału MD maxτ∈[0,T ]

(
maxt∈[0,τ ](Rt,T −Rt,τ )

)
· 100%

Maksymalna długość straty MLD max mj−mi
N

Wskaźnik informacyjny IR* ARC
ASD

Zmodyfikowany wskaźnik informacyjny IR** IR∗ · ARC · sign(ARC)
MD

Zagregowany wskaźnik informacyjny IR*** ARC3

ASD·MD·MLD

Uwaga: PT to końcowa cena instrumentu finansowego dla okresu 0, ..., T , N oznacza liczbę okresów

sesyjnych w roku dla danej częstotliwości, zaś mj ,mi to liczby dni wskazujące kolejne lokalne

maksima krzywej kapitałowej.

Źródło: Ślepaczuk i in. [2012], oraz Kość i in. [2019].

Dla wskaźników ARC oraz IR preferowane są wartości wyższe.9 Natomiast,

w przypadku wskaźników ASD, MD, MLD, preferowane są wartości niższe, które

wskazują na niższe ryzyko związane z zastosowaniem badanej strategii.

Mierniki dokładności prognoz przedstawione w tabeli 2.1 często nie sprawdzają

8Wydajność strategii rozumiana jest tutaj jako miara jej opłacalności czy też dochodowości.
9Ujemne wartości IR są nieinterpretowalne.





się dobrze w roli funkcji straty10, której minimalizacja miałaby korzystnie wpłynąć

na zyskowność strategii inwestycyjnych (zob. Michańków i in. [2022]). Przykładowo,

funkcje MSE lub MAE mogą wskazywać bardzo małe wartości błędu, nie biorąc jednak

pod uwagę kierunku przewidywanego zwrotu. Z drugiej, strony istnieje grupa miar, jak

przykładowo miara MDA (ang. Mean Directional Accuracy), które biorą pod uwagę

jedynie kierunek zmian, nie zwracając uwagi na wartość oczekiwanej korzyści lub straty.

W odpowiedzi na ten problem autorzy wspomnianych badań zaproponowali funkcję

MADL (ang. Mean Absolute Directional Loss), zadaną poniższym wzorem:

MADL =
1
n

n∑
t=1

(−1) · sign(rt · r̂t|t−1) ·
∣∣∣rt∣∣∣, (2.65)

gdzie funkcja sign(rt · r̂t|t−1) zwraca znak iloczynu (wartość 1 jest zwracana gdy znak

obu czynników się zgadza a -1 w sytuacji niezgodności znaku). Dzięki takiej specyfikacji,

niższe wartości funkcji MADL oznaczają bezpośrednio lepsze wyniki uzyskane przez

strategie bazujące na prognozowaniu kierunku zmian.

2.5.4 Wyznaczanie i ocena trafności prognoz

probabilistycznych

Przedstawione w powyższych podrozdziałach metody służyły w dużej mierze do

uzyskiwania szacunków i prognoz punktowych. Nieco odmiennym, a zarazem

ogólniejszym podejściem jest prognozowanie całych rozkładów prawdopodobieństwa,

które przedstawiają całokształt niepewności związanej z kształtowaniem się danego

zjawiska w przyszłości, co wydaje się być bardziej naturalnym i kompleksowym

podejściem do problematyki związanej z prognozowaniem. W ostatnich latach

podejście to zyskuje na znaczeniu i coraz częściej wykorzystywane jest w pracach

badawczych. Gneiting i Katzfuss [2014] zwracają uwagę na pewną zmianę

paradygmatu w podejściu do prognozowania, polegającą właśnie na odchodzeniu od

prognoz punktowych w stronę prognoz probabilistycznych, dzięki czemu możliwe jest

lepsze uchwycenie niepewności związanej z prognozami, co z kolei może wpłynąć na

poprawę podejmowanych decyzji. Z tego względu, także w tej pracy zasadnym wydaje

się zastosowanie takiego podejścia. W poniższym podrozdziale opisane zostały

podstawowe metody prognozowania probabilistycznego finansowych szeregów

czasowych oraz sposoby oceny dokładności tych prognoz.

W tym miejscu można wspomnieć o statystyce bayesowskiej, na gruncie której to

10Rozumianej jako funkcję realizacji procesu i predyktora, reprezentującą ilościowo skutki błędu

predykcji (za Fiszeder [2009]).





właśnie probabilistyczne podejście do wyznaczania prognozy — w postaci tzw.

rozkładu predyktywnego — jest najbardziej naturalne. W dodatku, bayesowski

rozkład predyktywny w sposób w pełni formalny ujmuje w sobie niepewność

związaną z estymacją nieznanych parametrów modelu statystycznego, jak i tę

związaną z wyborem poprawnej specyfikacji modelowej (w kontekście porównywania

alternatywnych modeli bayesowskich). Szersze informacje na ten temat przedstawione

zostały w pracach Osiewalski [2001], Osiewalski i in. [2004].

Jednookresowe prognozy probabilistyczne z wykorzystaniem modeli

ARMA-GARCH

Rozważmy szereg czasowy stóp zwrotu (rt), modelowany za pomocą procesu

ARMA-GARCH, na który składają się następujące równania:

rt = µt + εt, (2.66)

εt = σtzt, (2.67)

(zt) ∼ iiD(η), (2.68)

gdzie proces (σ2
t ) ma specyfikację zadaną zgodnie z wybranym procesem klasy GARCH

i jest procesem Ψt−1-mierzalnym, czyli (σ2
t ) jest funkcją tylko i wyłącznie przeszłości,

zaś D jest zadanym typem rozkładu prawdopodobieństwa, o parametrach η.

Z powayższego wynika, że dla każdego t = 1, .., T (w próbie), warunkowy rozkład

bieżącej stopy zwrotu pod względem przeszłości, przy określonych wartościach

parametrów, θ):

p(rt|Ψt−1; θ) = f
(1)
D (rt; θ)), (2.69)

gdzie θ zawiera w sobie parametry z równań określających µt, σt oraz rozkładu

składnika losowego zt. W szczególności, w zależności od przyjętego rozkładu

warunkowego, rozkład (2.69) może przyjąć postać:

p(rt|Ψt−1; θ) =


f

(1)
N (rt;µt, σ2

t ), gdy D ≡ N(0, 1)

f
(1)
St (rt;µt, σ2

t , ν), gdy D ≡ St(0, 1, ν)

f
(1)
sSt(rt;µt, σ

2
t , ν, ξ), gdy D ≡ sSt(0, 1, ν, ξ)

(2.70)

Z 2.71 wynika, że rozkład przyszłej stopy zwrotu, rt+1, pod warunkiem informacji

dostępnej do chwili t włącznie (tj. jednookresowa prognoza probabilistyczna) przyjmuje





postać:

p(rt+1|Ψt; θ) =


f

(1)
N (rt+1;µt+1, σ

2
t+1), gdy D ≡ N(0, 1)

f
(1)
St (rt+1;µt+1, σ

2
t+1, ν), gdy D ≡ St(0, 1, ν)

f
(1)
sSt(rt+1;µt+1, σ

2
t+1, ν, ξ), gdy D ≡ sSt(0, 1, ν, ξ)

(2.71)

Czym jest µt+1 oraz σt+1 zostało wyjaśnione podczas omawiania prognoz punktowych

stóp zwrotu i zmienności w punkcie .

Ocena trafności prognoz probabilistycznych

Prognozy probabilistyczne wymagają stosowania odpowiednich narzędzi

pozwalających na ocenę ich trafności. Poniżej przedstawiono wybrane metody oceny

trafności prognoz rozkładów prawdopodobieństwa, które zastosowane zostały także

w części empirycznej prezentowanej w punkcie 5.6.1.

Główną klasę narzędzi oceny prognoz probabilistycznych stanowią tzw. proper

scoring rules.11 Gneiting i in. [2007] zwracają uwagę, że miary te powinny prawidłowo

oceniać zarówno kalibrację jak i ostrość (ang. sharpness) prognozowanego rozkładu,

przy czym przez ostrość rozumiana jest tu koncentracja prognozowanego rozkładu –

preferowane są prognozy o bardziej skoncentrowanym rozkładzie prawdopodobieństwa

i tym samym o wyższej ostrości. Ocenić ją można zarówno na podstawie analizy

graficznej, jak i numerycznej szerokości przedziałów predykcji. Oceny te są więc

pewnymi wskaźnikami błędu prognozy, który powinien być minimalizowany. Są one

właściwe (ang. proper), w przypadku kiedy przyjmują najmniejsze wartości gdy

zachodzi równość F = G, gdzie F oznacza dystrybuantę rozkładu prognozy, a G —

dystrybuantę prawdziwego rozkładu zmiennej w okresie prognozy.

Jedną z najpopularniejszych miar wykorzystywanych w ocenie trafności predykcji

probabilistycznych jest miernik LPS (ang. Log Predictive Score, zob. Good [1952],

Bernardo [1979], za Gneiting i in. [2007]), którą można opisać wzorem:

LPS = − ln p(rt+1 | Ψt; θ), (2.72)

gdzie Ψt oznacza dane wykorzystane do wyznaczenia rozkładu predyktywnego

w okresie t, zaś rt+1 jest realizacją zmiennej w okresie t+ 1. W przypadku rozważania

całej trajektorii prognoz wygasłych, oblicza się albo skumulowaną wartość LPS (ang.

Cummulative LPS - CLPS) albo wartość średnią (ang. Average LPS -ALPS), zadane

11Według najlepszej wiedzy autora nie istnieje polski przekład terminu „proper scoring rules”,

wobec czego, postanowiono zachować tu jego oryginalne, anglojęzyczne brzmienie.





wzorami:

CLPS = −
n∑
t=1

ln p(rt+1 | Ψt; θ), (2.73)

ALPS =
1
n
· CLPS. (2.74)

Do popularnych miar trafności prognoz probabilistycznych należy także miara

CRPS (ang. Continuous Ranked Probability Score), która zaproponowana została jako

alternatywa dla LPS (zob. Gneiting i Raftery [2007] i Gneiting i in. [2007]). Miarę

CRPS dla obserwacji x można przedstawić za pomocą wzoru

CRPS(F, x) =
∫ ∞
−∞

(
F (y)− 1(y ­ x)

)2
dy, (2.75)

gdzie 1 jest funkcją charakterystyczną zbioru.

Gneiting i Raftery [2007] wykazują, że można to zapisać także jako:

CRPS(F, x) = EF
∣∣∣X − x∣∣∣− 1

2
EF
∣∣∣X −X ′∣∣∣, (2.76)

gdzie X oraz X ′ są niezależnymi kopiami zmiennej losowej o dystrybuancie F

i skończonym pierwszym momencie. Korzystając z takiego zapisu, niższe wartości

CRPS oznacząją lepsze wyniki. Podobnie jak w przypadku miary LPS, dla ciągu

prognoz wygasłych z reguły oblicza się średnią wartość CRPS.

Główne zalety tej miary wynikają z faktu, że lepiej oceniane są wartości

z rozkładu predyktywnego, które są bliższe (choć niekoniecznie równe) wartościom

zaobserwowanym. W stosunku do miary LPS, miara ta jest też mniej wrażliwa na

obserwacje znajdujące się w ogonach rozkładu prognozy (zob. Clark i Ravazzolo

[2015]). Miara CRPS jest też pewnym uogólnieniem miary MAE, wykorzystywanym

w przypadkach gdy mamy do czynienia z prognozami w postaci rozkładów

prawdopodobieństwa, a nie prognozami punktowymi.

Jako komplementarne podejście stosowane jest także kryterium PIT (ang.

Probability Integral Transform), zaproponowane przez Dawida [1984] oraz Diebolda

i in. [1998] jako narzędzie stosowane do oceny kalibracji rozkładów predyktywnych:

PIT = F (rt+1). (2.77)

PIT określa zgodność rozkładu prognozowanego z domniemanym prawdziwym

rozkładem przyszłej wartości prognozowanego zjawiska G. W przypadku gdy rozkład

prognozy F jest zgodny rozkładem G, wtedy wartość PITt+1 ma rozkład jednostajny,





tj. PIT ∼ U(0, 1)).12 Co więcej, dla ciągu prognoz probabilistycznych, wartości PIT

powinny stanowić ciąg niezależnych zmiennych losowych (o tym samym,

jednostajnym rozkładzie prawdopodobieństwa).

Tematyka dotycząca miar CRPS oraz PIT, a także wielu innych metod oceny

trafności prognoz probabilistycznych należących do proper scoring rules, została

szerzej przedstawiona w Gneiting i in. [2007], Gneiting i Raftery [2007]. W praktyce

w dalszym ciągu jednak najpopularniejszymi sposobami oceny trafności prognoz

probabilistycznych są LPS oraz CRPS.

2.6 Ocena zdolności predyktywnych modeli

w kontekście szacowania ryzyka kapitałowego

Jedną z podstawowych dziedzin, w których wykorzystywane są metody oparte na

modelowaniu zmienności jest pomiar ryzyka na rynkach finansowych. Istnieje wiele

definicji i klasyfikacji ryzyka, z których poniżej przedstawione zostały jedynie

wybrane, związane z tematyką rynków finansowych. Knight [1921], (za Piontek

[2002]) przedstawił popularną definicję ryzyka, stosując rozróżnienie między

pojęciami ryzyka i niepewności. Niepewności określa jako odchylenie możliwość

odchylenia od stanu oczekiwanego, która nie jest mierzalna poprzez zastosowanie

rachunku prawdopodobieństwa. Z kolei ryzyko definiuje jako „niepewność mierzalną,

w której odpowiednim przyszłym stanom natury można przypisać określone

prawdopodobieństwa”. Piontek [2002] podaje także kilka definicji ryzyka finansowego,

według których jest ono „prawdopodobieństwem utraty przez organizację posiadanych

zasobów finansowych oraz prawdopodobieństwem utraty środków finansowych, które są

już w organizacji, oraz nieosiągnięcia spodziewanych zysków” (definicja wg.

Bizon-Górecka [2000]). Z kolei według Joriona 2006 ryzyko finansowe można określić

jako „ryzyko, które wiąże się z możliwością poniesienia strat na rynkach

finansowych”.

W dalszych rozważaniach skupiać się będziemy na ryzyku rynkowym, które

wyróżniane jest jako jeden z podstawowych rodzajów ryzyka finansowego, obok

przykładowo ryzyka kredytowego czy bankowego (zob. Piontek [2002]). Ogólnie,

ryzyko rynkowe rozumiane jest najczęściej jako ryzyko wynikające ze zmian cen

rynkowych (Małecka [2016]). Autorka przytacza kilka definicji ryzyka,

funkcjonujących obecnie w literaturze. Ryzyko rynkowe może więc być rozumiane

jako: „ryzyko strat na pozycjach bilansowych i pozabilansowych, wynikających ze

12Jednym z testów stosowanych w celu oceny zgodności rozkładów jest test Andersona-Darlinga,

szerzej opisany w pracy Anderson i Darling [1954].





zmian cen rynkowych” (definicja wg Komitetu Bazylejskiego, zob. Basel Committee

on Banking Supervision [2005]); „ryzyko straty w wyniku zmiany wartości aktywów

będących przedmiotem obrotu i znajdujących się w posiadaniu przedsiębiorstwa”

(definicja wg Tarczyńskiego i Mojsiewicza, zob. Tarczyński i Mojsiewicz [2001]);

ryzyko ceny jako możliwość „wystąpienia niekorzystnych zmian ceny rynkowej

w czasie, gdy bank zajmuje spekulacyjną lub związaną z obsługą klienta pozycję netto

w towarach, stopach procentowych czy też zmienności implikowanej w opcjach” (w

terminologii bankowej, zob. Riehl [2001]). W ramach ryzyka rynkowego wyróżnić

można dodatkowo: ryzyko cen akcji, ryzyko kursu walutowego, ryzyko cen towarów,

ryzyko stopy procentowej (zob. Jajuga [1999], Piontek [2002]). Opisane w poniższym

podrozdziale miary ryzyka są istotnym narzędziem wykorzystywanym zarówno przez

instytucje finansowe, jak i inwestorów.

Jajuga [1999] (za Fiszeder [2009], Piontek [2002]) wyróżnia trzy podstawowe

sposoby konstruowania miar ryzyka. Pierwsza grupa opiera się na głównych miarach

zmienności - wariancji i odchyleniu standardowym. Najczęściej stosowanym

narzędziem są tutaj modele klasy GARCH. Do drugiej grupy zalicza się miary

wrażliwości, wykorzystujące współczynniki beta. Miary te wykorzystywane są

najczęściej w optymalizacji ryzyka oraz przy zabezpieczaniu portfela akcji. Trzecią

grupę stanowią miary zagrożenia. Podstawowym narzędziem jest tutaj miara wartości

zagrożonej VaR, która w ciągu ostatnich lat stała się jedną z najpopularniejszych

miar ryzyka, oraz miara oczekiwanego niedoboru - ES (zob. Acerbi i in. [2001]). Do

zalet miary VaR zaliczyć można możliwość bezpośredniego wskazania rozmiaru

potencjalnych strat z określonym prawdopodobieństwem, możliwość szacowania

ryzyka dla całych portfeli, oraz zastosowania w ocenie ryzyka kredytowego (zob.

Małecka [2016]). W praktyce, jako poziomy tolerancji VaR zwykle przyjmuje się 5%,

2,5% lub 1% (Fiszeder [2009]), przy czym w ostatnich regulacjach Komitetu

Bazylejskiego (zob. Basel Committee on Banking Supervision [2017]) zalecane jest

ustalanie ich na poziomie 1%. Obok wartości zagrożonej, jako zalecana miara ryzyka,

coraz częściej wskazywana jest także miara szacowanego niedoboru (zob. Małecka

[2016]), stanowiąca oczekiwaną wartość straty przekraczającą poziom wartości

zagrożonej.

2.6.1 Wartość zagrożona - VaR

Wartość zagrożoną (inaczej: wartość narażoną na ryzyko) zdefiniować można (za

Fiszeder [2009]) jako oczekiwaną stratę wartości rynkowej instrumentu finansowego

lub portfela instrumentów, taką, że prawdopodobieństwo jej osiągnięcia lub

przekroczenia w danym przedziale czasowym jest równe zadanemu





prawdopodobieństwu (poziomowi tolerancji). Z kolei Małecka [2016] wskazuje, że VaR

należy do grupy tzw. kwantylowych miar ryzyka, których definicje oparte są na

pojęciach dolnego i górnego kwantyla zmiennej losowej X obrazującej stratę (stosując

ogólną konwencję notacyjną wykorzystywaną we wskazanych pracach),

oznaczanynych, odpowiednio, jako qα(X) i qα(X), α ∈ (0, 1) (zob. także Embrechts i

in. [1997]) 13:

qα(X) = inf{x ∈ R : P (X ¬ x) ­ α}, (2.78)

qα(X) = inf{x ∈ R : P (X ¬ x) > α}. (2.79)

Małecka [2016] oraz Artzner i in. [1999] definiują VaR na poziomie tolerancji α ∈
(0, 1) zmiennej losowej X jako

V aRα(X) = −qα(X), (2.80)

co można zapisać też jako

V aRα(X) = inf{x ∈ R : P (−X > x) ¬ α}. (2.81)

W ramach tematyki poruszanej w tej pracy, zmienną losową X należy utożsamić

z prostą lub logarytmiczną stopą zwrotu. Przykładowo, w celu wyznaczenia wartości

zagrożonej dla prostej stopy zwrotu (w próbie) można skorzystać z wzoru:

V aRα(Rt) = −qα(Rt). (2.82)

Ponieważ przedmiotem tej pracy są stopy zwrotu w postaci logarytmicznej,

w dalszych rozważaniach stosowana będzie właśnie postać logarytmiczna, pomimo, że

bardziej zasadne (od strony praktycznej) jest wyznaczanie wartości zagrożonej dla

prostych stóp zwrotu. Warto też wziąć pod uwagę, że w obu podejściach mogą

zachodzić znaczne rozbieżności (zob. Osiewalski i Pajor [2010]).

W celu uzyskania prognoz wartości zagrożonej, oznaczanych w dalszym ciągu jako

V aR
l/s
t+1(α) określających prognozę na jeden okres do przodu dla pozycji długiej

(oznaczanej indeksem górnym l) lub krótkiej (oznaczanej indeksem górnym s), można

skorzystać z wzorów:

13W oryginalnych pracach do oznaczenia rzędu kwantyla stosowany jest symbol p. Jednak z uwagi

na konwencję typowo stosowaną w opracowaniach z zakresu ekonometrii finansowej w dalszej części

pracy stosowane będzie oznaczenie α.





V aRl
t+1(α) : Pr{rt+1 ¬ V aRl

t+1(α)
∣∣∣Ψt} = α, (2.83)

V aRs
t+1(α) : Pr{rt+1 ­ V aRs

t+1(α)
∣∣∣Ψt} = α, (2.84)

gdzie Ψt oznacza informację dostępną do chwili t włącznie. Wobec (2.83) i (2.84) VaR

stanowi odpowiedni kwantyl w rozkładzie prognozowanej stopy zwrotu w okresie t+ 1,

pod warunkiem wszystkich informacji dostępnych do chwili t włącznie.

Można zauważyć (za Doman i Doman [2009]), że V aRs
t+1(α) dla instrumentu o

procesie zwrotu (rt) pokrywa się z V aRl
t+1(α) dla instrumentu o procesie zwrotu (−rt).

Z tego względu w części empirycznej pracy rozważane będą jedynie prognozy uzyskane

dla pozycji długich. W związku z tym, dla uproszczenia notacji, pomijany będzie indeks

górny l.14.

W celu obliczenia wartości zagrożonej zdefiniowanej wzorem (2.83) można

skorzystać z poniższego zapisu, który można wykorzystać w szczególności przy okazji

korzystania z modeli ARMA-GARCH:

V aRt+1(α) = −rt+1|t − σt+1q
z
α, (2.85)

gdzie rt+1|t oznacza prognozę punktową stopy zwrotu uzyskaną na jeden okres do

przodu, σt+1 – prognozę warunkowego odchylenia standardowego, zaś qzα oznacza α-

kwantyl zmiennej losowej zt.

Doman i Doman [2009] (s. 202) zwracają uwagę, że w powyższym sposobie

wyznaczania wartości zagrożonej bardzo duże znaczenie ma jakość prognoz

zmienności, która zależy od jakości przyjętego modelu zmienności. Jest to jeden

z powodów, dla których to podejście – oparte na prognozach zmienności uzyskanych

za pomocą modeli GARCH – stosowane będzie w dalszej części pracy do oceny

prognoz zmienności, wyznaczanych właśnie w ramach modeli GARCH, jak i modeli

hybrydowych, a także do oceny prognoz probabilistycznych.

2.6.2 Oczekiwany niedobór - ES

Jako uzupełnienie miary wartości zagrożonej, Acerbi i in. [2001] zaproponowali mirę

ES (ang. Expected Shortfall), należąca do tak zwanych miar koherentnych. 15 Miara ES

14Z definicji V aRl zadanej wzorem 2.83 wynika, że jest to wartość ujemna. W literaturze można

się spotkać także z odmienną konstrukcją, zgodnie z którą V aRl powinien być wyrażony jako wartość

dodatnia
15Własności miar koherentnych omówione zostały poniżej.





oznacza oczekiwaną wartość straty, pod warunkiem, że strata ta przekracza poziom

wartości zagrożonej. Acerbi i in. [2001] (za Małecka [2016]), definiują ES jako

ESα(X) = − 1
α

(
E(X1X¬qα(X))− qα(X)(P (X ¬ qα(X))− α)

)
, (2.86)

gdzie 1 oznacza funkcję charakterystyczną zbioru. Powyższe równanie można też

zapisać jako:

ESα(X) = − 1
α

∫ α

0
qu(X)du. (2.87)

Zbliżoną miarą jest warunkowa wartość zagrożona (ang. Conditional Value-at-Risk

- CVaR) zaproponowana przez Pfluga [2000] oraz Rockafellara i Uryaseva [2000] (za

Małecka [2016]):

CV aRα(X) = inf
{E((X − s)−)

α
− s : s ∈ R

}
, (2.88)

gdzie α to założony poziom tolerancji.

Acerbi i Tasche [2002] wykazali, że miary ES i CVaR są równe:

CV aRα(X) = ESα(X). (2.89)

Podobnie jak w przypadku wyznaczania wartości zagrożonej, do prognozowania

oczekiwanego niedoboru można także wykorzystać podejście parametryczne,

wykorzystujące prognozy uzyskane z modeli ARMA-GARCH. W takim podejściu,

prognoza na jeden okres do przodu, dla pozycji długiej uzyskana może być

w następujący sposób (za McNeil i Frey [2000], Osińska i Fałdziński [2007]):

ESlt+1(α) = E
(
rt+1|rt+1 < V aRl

t+1(α)
)

= rt+1|t + σt+1E(zt|zt < qzα). (2.90)

Miara oczekiwanego niedoboru (wraz z wartością zagrożoną) stanowi obecnie

fundament pomiaru ryzyka. Spełnia też podstawowe właściwości miar koherentnych,

do których należą: monotoniczność, niezmienniczość, dodatnia jednorodność oraz

subaddytywność. Można także zauważyć, że pomimo iż miara VaR nie jest

w ogólności miarą subaddytywną, to może taką miarą być, przy spełnionych pewnych

warunkach (zob. DDanielsson [2011]). Szersze informacje na temat miar koherentnych

i ich własności znaleźć można w Artzner i in. [1999], Dhaene i in. [2008], Doman i

Doman [2009] oraz Małecka [2016].





2.6.3 Testy weryfikacyjne modeli ryzyka

Ze względu na rosnącą popularność miar wartości zagrożonej i oczekiwanego

niedoboru w szacowaniu ryzyka, bardzo istotne jest odpowiednie zweryfikowanie

uzyskanych przez nie wyników. Ponieważ miary te nie są bezpośrednio obserwowalne,

konieczne jest stosowanie skonstruowanych specjalnie w tym celu testów

statystycznych, których podstawą jest zwykle analiza przekroczeń. Istnieją także inne

grupy testów modeli ryzyka, których szczegółowe omówienia znaleźć można w pracy

Małeckiej [2016].

Ilość przekroczeń wartości zagrożonej oraz szacowanego niedoboru można

testować na danych historycznych (ang. backtesting), porównując wyznaczone przez

model wartości VaR i ES ze zrealizowanymi zwrotami. Istnieje kilka opracowanych

w tym celu testów statystycznych, z których najpopularniejszy jest test Kupca

(Kupiec [1995]), należący do klasycznych testów rozkładu bezwarunkowego frakcji

przekroczeń VaR (lub inaczej testów bezwarunkowego pokrycia — ang. uncoditional

coverage). Hipoteza zerowa (H0) testu zakłada, że prawdopodobieństwo przekroczeń

jest równe przyjętemu poziomowi tolerancji α. Testowana wstecznie jest liczba

przekroczeń VaR w stosunku do ilości obserwacji dla których wyznaczono wartości

prognoz. W przypadku, kiedy występuje zbyt duża liczba przekroczeń, model

niedoszacowuje ryzyko (mówimy wówczas, że prognozy ryzyka są zbyt liberalne),

natomiast w sytuacji przeciwnej, liczba przekroczeń jest zbyt mała, a model

przeszacowuje ryzyko (mówimy, że prognozy ryzyka są zbyt konserwatywne). Test

może być stosowany zarówno dla pozycji długich, jak i krótkich, a hipoteza zerowa

jest odrzucana zarówno gdy liczba przekroczeń jest zbyt mała, jak i zbyt duża.

Statystyka testu ma postać (za Doman i Doman [2009]):

LR = 2
[

ln
(
(
Np

n
)Np(1− Np

n
)n−Np

)
− ln

(
αNp(1− α)n−Np

)]
, (2.91)

gdzie Np oznacza w tym przypadku liczbę przekroczeń VaR, zaś n to liczba obserwacji.

Jeżeli hipoteza zerowa jest prawdziwa, statystyka testowa ma asymptotyczny rozkład

χ2 o jednym stopniu swobody.

Test Kupca jednakże nie bierze pod uwagę możliwej zależności przekroczeń

w czasie, czyli sytuacji kiedy przekroczenia występują seriami w krótkich odstępach,

a nie są rozłożone równomiernie. W tym celu zastosować można, równie popularny,

test Christoffersena [1998], należący z kolei do grupy testów warunkowego rozkładu

liczby przekroczeń VaR. Kryterium testowe, nazywane własnością warunkowego

pokrycia (ang. conditional coverage), sprawdza zarówno częstotliwość przekroczeń,

jak i ich niezależność. Hipoteza zerowa (łącznego) testu zakłada, że pokrycie





warunkowe i bezwarunkowe jest równe przyjętemu poziomowi tolerancji α. Natomiast

hipoteza alternatywna zakłada, że mogą występować zależności o charakterze

jednorodnego łańcucha Markowa.

Obok wspomnianych testów Kupca i Christoffersena wśród sposobów testowania

wstecznego wartości zagrożonej stosowane są także inne podejścia, jak przykładowo

zaproponowany przez Engla i Manganelliego dynamiczny test kwantylowy (ang.

Dynamic Quantile Test, zob. Engle i Manganelli [2004], Dumitrescu i in. [2012]), czy

też przy pomocy pewnych funkcji strat, na podstawie których otrzymujemy

informację odnośnie różnie definiowanych strat ekonomicznych/finansowych

poniesionych z tytułu przekroczeń VaR (zob. Osiewalski i Pajor [2010]).

Testowanie wsteczne oczekiwanego niedoboru jest zdecydowanie trudniejsze niż

w przypadku VaR, przez co ilość metod stosowanych w tym celu jest ograniczona

(szerszy opis stosowanych metod przedstawiono w pracy Małecka [2016]). Jako jeden

z popularnych testów stosowanych do oceny jakości prognoz ES uzyskanych przez

model, wykorzystać można test McNeila i Fraya [2000], należący do grupy testów

nieparametrycznych. Test mierzy średnią różnic pomiędzy wartościami stóp zwrotu,

które przekroczyły poziom VaR, a oszacowaniami oczekiwanego niedoboru, która

powinna wynosić zero (H0) dla prawidłowo określonego modelu ryzyka. W

przypadku, gdy rozważane jest podejście oparte na warunkowych resztach procesu

przekroczeń VaR, statystyka testowa ma postać (za Małecka [2016]):

Ut =
rt −

(
ESlt(α)

)
σ̂t

, (2.92)

dla rt < V aRl
t(α), gdzie ESlt(α) jest oszacowaną wartością ES przy założonym poziomie

tolerancji α, dla pozycji długiej.

W teście dodatkowo generowana jest próba bootstrapowa, co pozwala uniknąć

silnych założeń dotyczących rozkładu bazowego reszt oczekiwanego niedoboru. Wynik

testu zależy jednak od wyników uzyskanych przez model VaR, ponieważ pod uwagę

brane są jedynie te obserwacje, dla których odnotowano przekroczenie poziomu

oszacowanego przez ten model.









Rozdział 3

Sieci neuronowe uczenia głębokiego

– koncepcja i wykorzystanie

w budowie modeli predykcyjnych

Analiza modeli wykorzystujących sieci neuronowe uczenia głębokiego stanowi

główny cel niniejszej rozprawy. W poniższym podrozdziale przedstawiono teoretyczne

wprowadzenie do zagadnień związanych z budową sieci neuronowych, a także

praktyczne aspekty związane procesem ich uczenia i optymalizacji poprzez

dostrajanie hiperparametrów. Informacje zawarte w tym rozdziale przedstawione

zostały w sposób umożliwiający intuicyjne zrozumienie koncepcji związanych

z sieciami uczenia głębokiego. Bardziej formalny opis przedstawionej poniżej

problematyki przedstawiony został m.in. w opracowaniach Murphy [2012],

Shalev-Shwartz i Ben-David [2014] oraz Deisenroth i in. [2020].

3.1 Wybrane architektury sieci neuronowych

W problematyce analizy danych dużą popularnością w ciągu ostatnich latach

cieszą się rozwiązania wykorzystujące metody sztucznej inteligencji, a w szczególności

sztuczne sieci neuronowe oraz uczenie maszynowe. Narzędzia te znajdują szerokie

zastosowanie w różnych dziedzinach nauki i technologii. Dzięki coraz większej ilości

dostępnych danych i łatwego dostępu do sprzętu komputerowego o wysokiej mocy

obliczeniowej, stosowanie tego typu technik staje się coraz bardziej powszechne.

Obszar zastosowania sztucznej inteligencji jest obecnie bardzo szeroki, jako

najważniejsze przykłady wymienić można m. in. rozpoznawanie obrazów oraz pisma

ręcznego, przetwarzanie mowy i budowa oprogramowania automatycznego

tłumaczenia, produkcję pojazdów autonomicznych oraz pracę z dużymi zestawami
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danych.

Ze względu na szeroką gamę struktur i typów sieci neuronowych, które dynamicznie

rozwijane są od lat 50-tych dwudziestego wieku, w części teoretycznej i praktycznej

pracy wybrane zostały trzy podstawowe architektury. Jako architekturę podstawową

zaprezentowano wielowarstwowe sieci perceptronowe, opisane szerzej w punkcie 3.1.1,

wykorzystaną także w części empirycznej jako narzędzie należące do klasycznych sieci

uczenia maszynowego.

W ciągu ostatniej dekady w ramach metod opartych na sztucznej inteligencji

szczególne uznanie zyskują sieci neuronowe uczenia głębokiego, które stanowią pewne

rozwinięcie klasycznych sieci wielowarstwowych. Bengio [2009] i Schmidhuber [2015]

definiują sieci uczenia głębokiego jako sztuczne sieci neuronowe z kilkoma warstwami

ukrytymi - czyli warstwami pomiędzy warstwą wejściową i wyjściową sieci. Spośród

architektur sieci uczenia głębokiego w badaniach wybrane zostały dwa typy sieci:

rekurencyjne sieci LSTM oraz sieci konwolucyjne, omówione w punktach 3.1.2 oraz

3.1.3.

Zaznaczyć jednak należy, że pojęcie uczenia głębokiego nie stanowi odmiennej

klasyfikacji sieci, a jedynie rozwinięcie metod klasycznego uczenia maszynowego.

Szerzej odnosi się ono także do dynamicznie rozwijanego nurtu w badaniach

naukowych nad sieciami neuronowymi i ich wdrożeniami praktycznymi. Obok nowych

rozwiązań związanych z rozwojem struktur sieci, w ramach tego podejścia silnie

rozwijane są także nowe narzędzia i metody wykorzystywane podczas uczenia sieci,

czy też w procesie doboru hiperparametrów sieci. Tematyce tej poświęcone zostały

podrozdziały 3.2 oraz 3.3.

3.1.1 Wielowarstwowe sieci MLP jako podstawowa forma sieci

neuronowych

Jedną z podstawowych architektur sieci neuronowych są sieci wielowarstwowe -

składające się z kilku warstw z gęsto połączonymi neuronami (ang. Densely

Connected Layers lub Fully Connected Layers). Oznacza to, że neurony w danej

warstwie są połączone ze wszystkimi neuronami w warstwie kolejnej (i poprzedniej).

Jako jeden z podtypów tej sieci można uznać sieci perceptronowe 1 MLP (ang. Multi

Layer Perceptron). Klasyczne sieci tego typu składały się najczęściej tylko z trzech

warstw: wejściowej, jednej warstwy ukrytej i wyjściowej (zob. Géron [2019]).

1Pojęcie perceptronu po raz pierwszy zaproponowane zostało w pracy Rosenblatt [1957].





Rysunek 3.1: Struktura sieci MLP.

Źródło: Opracowanie własne.

Rysunek 3.1 przedstawia strukturę podstawowej sieci MLP. Jako xn oznaczone są

wejścia sieci, wn,l oznaczają wagi połączeń pomiędzy neuronami sieci w warstwie l, b

oznacza wartość progową czyli inaczej tzw. bias (najczęściej ustawiany na wartość 1

lub 0), Σ jest sumą ważoną wejść poszczególnych neuronów, f ich wybraną funkcją

aktywacji, natomiast yn oznaczają wyjścia sieci. Podstawowe perceptrony składały się

z tzw. neuronów McCullocha-Pittsa (ang. McCulloch-Pitts neuron), nazywanych

również neuronami progowymi (ang. threshold neuron, zob. Géron [2019]). Wartość na

wyjściu takiego neuronu, o, obliczana jest następujący sposób:

s = b0 +
n∑
i=0

xiwi, (3.1)

o = f(s) =


1 jeśli s > 0

0 jeśli s ¬ 0
(3.2)

Wartość wyjściowa neuronu jest więc ewaluowana przez funkcję aktywacji f ,

której wartość zależy od sumy ważonej wejść x oraz wartości wag. Pierwotnie funkcje





aktywacji miały postać progową (przybierały postać funkcji Heavisidea lub funkcji

signum), w późniejszym czasie zaczęto jednak stosować także inne, liniowe oraz

nieliniowe, postaci funkcji aktywacji (zob. punkt 3.3.3). Charakter połączeń między

neuronami w sieciach tego typu zakłada jednokierunkowy przepływ sygnału (od

warstwy wejściowej do wyjściowej).2 Z czasem, rosnąca moc obliczeniowa

komputerów, pozwoliła na dodawanie kolejnych warstw ukrytych, co przyczyniło się

do rozwoju koncepcji uczenia głębokiego. Warstwy gęsto połączone (ang. densely

connected) są obecnie również często stosowane jako uzupełnienie architektur sieci

rekurencyjnych oraz konwolucyjnych, opisanych w kolejnych rozdziałach.

3.1.2 Rekurencyjne sieci LSTM i GRU

W pracy z danymi przedstawionymi w postaci szeregów czasowych często

wykorzystywanym typem sieci są sieci rekurencyjne, charakteryzujące się

występowaniem połączeń wstecznych. Ze względu na ich konstrukcję, sieci tego typu

bardzo dobrze radzą sobie z modelowaniem danych sekwencyjnych. W związku z tym

sieci rekurencyjne często znajdują zastosowanie m.in. w zadaniach związanych

z przetwarzaniem języka naturalnego: rozpoznawaniem pisma ręcznego,

automatycznymi tłumaczeniami i rozpoznawaniem mowy. Koncepcje sieci

rekurencyjnych po raz pierwszy w literaturze pojawiły się w pracach Hopfielda [1982]

(jako sieci Hopfielda), Rumelharta i in. [1986] oraz Jordana [1986].

W sieciach rekurencyjnych neurony mają możliwość modelowania relacji przeszłych

o dowolnym odstępie czasowym. Sygnał wejściowy w bieżącym momencie t zależy od

obliczeń z okresów t− 1 i wcześniejszych. Można więc powiedzieć, że posiadają pewną

pamięć, w której przechowywane są informacje o poprzednich obliczeniach, dzięki której

mogą zachowywać informacje o parametrach (wagach) na całej długości sekwencji.

Wzór 3.3 opisuje rekurencyjne połączenia między neuronami (zob. Goodfellow i in.

[2016]):

ht = f(ht−1, xt;ω). (3.3)

gdzie ht oznacza tzw. ukryty stan pamięci sieci (ang. hidden state), xt jest wektorem

wejściowym sieci, a ω jest wektorem parametrów sieci, na który składają się wagi,

aktywacje i wartości progowe (inaczej obciążenia, ang. bias) sieci. Schemat pojedynczej

2Sieć MLP z jedną warstwą ukrytą wykorzystywana jest w części empirycznej pracy jako przykład

klasycznej sieci uczenia maszynowego, choć w jej architekturze wykorzystane zostały także liczne

usprawnienia powstałe w wyniku rozwoju prac nad uczeniem głębokim, takie jak nowe typy funkcji

aktywacji oraz sposoby regularyzacji.





komórki podstawowej sieci rekurencyjnej przedstawiony został na rysunku 3.2.

Rysunek 3.2: Struktura podstawowej komórki w sieci rekurencyjnej.

Źródło: Opracowanie własne.

Wektory wejściowe, xt, oraz wyjściowe, yt, w sieciach rekurencyjnych mogą być

różnej długości, co pozawala modelować zależności typu sekwencja-wektor, wektor-

sekwencja lub sekwencja-sekwencja, szczególnie w sieciach typu enkoder-dekoder (zob.

podrozdział 3.1.4).

Sieci rekurencyjne w postaci głębokiej składają się najczęściej z kilku nałożonych

na siebie warstw rekurencyjnych (zob. Hihi i Bengio [1995], Pascanu i in. [2014], Géron

[2019]). Struktura takiej postaci sieci przedstawiona została na rys 3.3.

Obok klasycznych sieci rekurencyjnych szczególną popularnością w ostatnich latach

cieszą się ich rozwinięcia, w postaci sieci LSTM oraz GRU, przedstawione w kolejnych

podrozdziałach.





Rysunek 3.3: Struktura wielowarstwowych (głębokich) sieci rekurencyjnych.

Źródło: Opracowanie własne na podstawie Géron [2019].

Sieci LSTM

Podczas pracy z sieciami rekurencyjnymi zauważono, że dla obserwacji z okresów

odległych w czasie informacje zawarte w pamięci z tych okresów stopniowo zanikają.

W literaturze problem ten określany jest jako zanikający gradient (ang. vanishing

gradient, zob. Hochreiter i in. [2001] oraz punkt 3.2.2). W celu jego rozwiązania

Hochreiter i Schmidhuber [1997] zaproponowali sieci LSTM (ang. Long Short-term

Memory). Wprowadzona w nich została dodatkowa jednostka stanu (ang. cell state),

oznaczona jako Ct , zależna w sposób liniowy od stanu poprzedniego, Ct−1. Dzięki

takiemu rozwiązaniu udało się wprowadzić do sieci pamięć długoterminową (ang.

long-term memory), w której informacje o wcześniejszych obliczeniach nie zanikają,

nawet przy długich rekurencjach.

Na rys. 3.4 przedstawiona została struktura pojedynczej komórki sieci LSTM.

Wektor sygnału wejściowego w sieci oznaczony został jako xt, natomiast jako ht

oznaczony został stan krótkoterminowy (ang. short-term), zwany także stanem

ukrytym (ang. hidden state). Komórka składa się także z trzech typów kontrolerów

bramkowych, decydujące o tym które informacje należy zachować w pamięci

długoterminowej, a które mają zostać z niej usunięte. W poszczególnych bramkach

stosowane są sigmoidalne funkcje aktywacji (zob. punkt 3.3.3), określające czy dana

bramka powinna zostać otwarta czy zamknięta.





Rysunek 3.4: Pełna struktura komórki sieci LSTM.

Źródło: Opracowanie własne na podstawie Matsumoto [2020].

W pierwszej kolejności, informacje w postaci wektorów xt i ht−1 przechodzą przez

bramkę zapominania (ang. forget gate), w której przekształcane są z wykorzystaniem

następujących wzorów:

ft = σ(Ufxt +Wfht−1 + bf ), (3.4)

C ′t = ft ◦ Ct−1, (3.5)

gdzie b, U,W oznaczają kolejno obciążenia, wagi wejściowe i wagi rekurencyjne komórki

sieci, natomiast C ′t definiuje obecny stan komórki.

Bramka zapominania, za pomocą funkcji sigmoidalnej, kontroluje ile informacji,

pochodzących z bieżącego sygnału wejściowego xt oraz pamięci krótkoterminowej ht−1,

powinno zostać odrzuconych z pamięci długoterminowej. Wynikiem tej funkcji jest

liczba z zakresu pomiędzy 0 a 1 – wartości bliższe zera oznaczają, że większa część

informacji powinna zostać odrzucona, a bliższe 1 wskazują, że większa część informacji

powinna zostać przekazana dalej, do długoterminowego stanu komórki C ′t.

Kolejną bramką, przez którą przechodzą informacje w strukturze komórki sieci

LSTM, jest bramka wejściowa (ang. input gate). Podobnie jak w poprzednim kroku,

do tej bramki także przekazywane są informacje z wektorów ht (stan

krótkoterminowy) i xt (sygnał wejściowy z bieżącego okresu). Przy pomocy funkcji





sigmoidalnej (wzór 3.6), bramka ta decyduje o istotności informacji które mają zostać

przekazane do uaktualnionego stanu komórki Ct. Drugą funkcją aktywacji

występującą w tej bramce jest funkcja tangensu hiperbolicznego, zadana wzorem

(3.7), która przyjmuje te same informacje z wektorów xt i ht−1 i przekształca je do

wyniku w postaci liczby z przedziału między -1 a 1. W kolejnym kroku (wzór 3.8)

wartości wyjściowe funkcji sigmoidalnej i tangens przekazywane są do aktualnego

stanu komórki:

it = σ(Uixt +Wiht−1 + bi), (3.6)

C+
t = tanh(Ucxt +Wcht−1 + bc), (3.7)

Ct = C ′t + it ◦ C+
t . (3.8)

W ostatnim kroku, bramka wyjściowa (ang. output gate) decyduje jakie informacje

powinny znaleźć się w wektorze wyjściowym komórki, ht. W tym celu informacje

z wektorów ht−1 i xt przechodzą przez sigmoidalną funkcję aktywacji (wzór 3.9)

a następnie mnożone są przez funkcję tangens aktualnego stanu komórki (wzór 3.10):

ot = σ(Uoxt +Woht−1 + bo), (3.9)

ht = ot ◦ tanh(Ct). (3.10)

Utworzony w ten sposób wektor wyjściowy ht przekazywany jest do kolejnej komórki

w strukturze sieci. Ponieważ w sieciach LSTM funkcje aktywacji stosowane są tylko do

poszczególnych bramek, a nie całej komórki stanu, jak w przypadku tradycyjnych sieci

rekurencyjnych, nie pojawia się tutaj problem znikającego gradientu.

W sieciach rekurencyjnych, w tym w sieciach LSTM, poza podstawową funkcją

aktywacji stosowana jest także dodatkowo tzw. rekurencyjna funkcja aktywacji.

Podczas gdy podstawowa funkcja aktywacji odpowiada za transformację danych

w stanie krótkoterminowym (ukrytym, ht) i długoterminowym (Ct), aktywacja

rekurencyjna stosowana jest wewnątrz komórki pamięci, do transformacji przepływu

informacji wewnątrz poszczególnych bramek. W sieciach LSTM domyślnie jako

funkcję aktywacji stosuje się funkcję tangensu hyperbolicznego, natomiast do

aktywacji rekurencyjnej stosowana jest „twarda” funkcja sigmoidalna (ang. hard

sigmoid) ( zob. Courbariaux i in. [2016]).

Architekturę sieci LSTM można dodatkowo rozróżnić na bezstanową (ang.

stateless) oraz stanową (ang. statefull, zob. Géron [2019]). Rozróżnienie to dotyczy





długości okresu przez jaki przechowywane są informacje w pamięci długoterminowej.

W architekturze stanowej, istnieje możliwość dokładnego kontrolowania kiedy (np. co

ile epok) nastąpić ma reset długoterminowego stanu sieci. Natomiast w architekturze

bezstanowej, pamięć ta resetowana jest dla każdej nowej partii wsadowej (ang. batch).

Kontrolowanie stanu długoterminowego sieci wciąż jest jednak możliwe, poprzez

zwiększenie długości partii wsadowej (np. w przypadku gdy jest ona równa całemu

dostępnemu zbiorowi informacji, stan pamięci długoterminowej nie będzie

resetowany). Takie podejście może mieć jednak wpływ na czas uczenia sieci

i zwiększenie wykorzystania dostępnych zasobów, przede wszystkim pamięci

komputera.

Sieci rekurencyjne mogą być wykorzystywane także jako sieci dwukierunkowe

(ang. bidirectional networks). Rozwiązanie to, zaproponowane przez Schustera

i Paliwala [1997], dobrze sprawdza się w sytuacjach, kiedy obecna obserwacja może

zależeć także od obserwacji kolejnych. W takich przypadkach sieć przetwarza

sekwencje nie tylko do początku do końca, ale także wstecznie, łącząc i osadzając obie

interpretacje w stanie długoterminowym. Zastosowanie to szczególnie przydatne jest

w rozpoznawaniu mowy i pisma ręcznego, gdy do przewidzenia kolejnego słowa

w zdaniu przydatny jest cały kontekst wokół tego słowa, a nie tylko wyrazy

poprzedzające. Sieci tego typu znalazły także zastosowanie w prognozowaniu szeregów

czasowych, kiedy struktura dwukierunkowa może zostać wykorzystana w procesie

uczenia sieci na zbiorze treningowym (zob. Lu i in. [2021], Park i Ryu [2021]).

Sieci GRU

Architektura sieci rekurencyjnych GRU (ang. Gated Reccurent Unit),

zaproponowana przez Cho i in. [2014], stanowi pewne uproszczenie sieci LSTM. W

sieciach tego typu decyzję o odrzuceniu lub uaktualnieniu stanu pamięci podejmuje

pojedynczy mechanizm, oznaczony dalej jako zt, w przeciwieństwie do trzech

osobnych bramek używanych w sieciach LSTM. Aktualizacja stanu pamięci w sieciach

GRU przedstawiona jest wzorami 3.11 - 3.14 (za Goodfellow i in. [2016]):

zt = σ(Wzxt + Uzht−1 + bz), (3.11)

rt = σ(Wrxt + Urot−1 + br), (3.12)

h̃t = tanhh
(
Whxt + Uh(rt � ht−1) + bh

)
, (3.13)

ht = (1− zt)� ht−1 + zt � ĥt, (3.14)





gdzie zt oraz rt oznaczają funkcje aktualizacji stanu pamięci oraz funkcję zapominania,

W oraz U to matryce parametrów, b jest wektorem obciążeń, a σ i tanh to funkcje

aktywacji (sigmoidalna oraz tangensa hiperbolicznego).

Struktura komórki w sieciach GRU przedstawiona została na rysunku 3.5.

Rysunek 3.5: Pełna struktura sieci GRU.

Źródło: Opracowanie własne.

Sieci GRU wykazują zbliżoną efektywności do sieci LSTM (zob. Greff i in. [2017]),

jednak ze względu na ich prostszą budowę obliczenia zajmują często mniej czasu,

przez co sieci tego typu mogą stanowić dobry wybór w badaniach wymagających

dużych zasobów i mocy obliczeniowej. Spośród trzech podstawowych rodzajów sieci

rekurencyjnych, sieci LSTM są wykorzystywane najczęściej i uważa się że dają

najlepsze rezultaty (zob. Goodfellow i in. [2016]). Z tego względu to właśnie ta

architektura sieci rekurencyjnych użyta zostanie w badaniach opisanych w części

empirycznej.

3.1.3 Sieci konwolucyjne

Innym rodzajem sieci uczenia głębokiego, który znalazł szerokie zastosowanie

w praktyce, są sieci konwolucyjne (ang. Convolutional Neural Networks - CNN),

nazywane również sieciami splotowymi. Funkcja konwolucji, której idea bazuje na

badaniach neurobiologicznych dotyczących kory wzrokowej, wykorzystywana była już

wcześniej w matematyce i informatyce. Jedną z pierwszych prób wykorzystania tej





koncepcji w sieciach neuronowych była propozycja neocognitronu (zob. Fukushima

[1980]). Kolejną ważną pracą w tym zakresie była publikacja Lecun i in. [1998],

w której autorzy zaproponowali architekturę sieci LeNet-5, stanowiącą podstawy

współczesnych sieci konwolucyjnych.

Głównym obszarem zastosowania sieci konwolucyjnych było początkowo

rozpoznawanie obrazów, jednak okazało się, że ze względu na bardzo wysoką

wydajność tego typu sieci, można je sukcesywnie stosować także w innych obszarach,

w tym w modelowaniu szeregów czasowych.

Goodfellow i in. [2016] podstawową operację konwolucji opisują wzorem:

s(t) =
∫
x(a)w(t− a)da. (3.15)

gdzie x() oznacza funkcję sygnału wejściowego, zaś funkcja w() oznacza filtr (ang.

kernel) określający wagi połączeń neuronu, a wartości wyjściowe określane są jako

mapa cech (ang. feature map).

W formie dyskretnej, równanie przyjmuje postać opisaną wzorem:

s(t) = (x ∗ w)(t) =
∞∑

a=−∞
x(a)w(t− a). (3.16)

W przypadku gdy sygnałem wejściowym jest dwu-wymiarowy obraz I, oraz gdy

korzystamy z dwu-wymiarowego filtra K, funkcję tą można opisać wzorem:

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n). (3.17)

Przy projektowania warstwy konwolucyjnej sieci, należy ustalić przede wszystkim

za ilość stosowanych filtrów, ich rozmiar, oraz wielkość kroku przesunięcia (ang.

stride). Konieczne jest także ustalenie formy funkcji aktywacji. Przybiera ona

najczęściej postać funkcji ReLU (ang. Rectified Linear Unit), jednak niekiedy

stosowane są także inne typy funkcji takie jak softmax czy funkcja sigmoidalna (zob.

Glorot i in. [2010], Ramachandran i in. [2017]). Zastosowanie tych funkcji ma na celu

zwiększenie nieliniowości cech (lub zmniejszenie liniowości, która mogła powstać we

wcześniejszej fazie konwolucji).

Głównym celem warstwy konwolucyjnej, stanowiącej najczęściej pierwszą warstwę

w strukturze sieci CNN, jest redukcja ilości danych. Sieć zachowuje przy tym jedynie

najważniejsze informacje tworząc w ten sposób mapę cech (ang. feature map, zob.

Goodfellow i in. [2016]). Dzięki temu dalsze obliczenia wymagają mniejszej mocy

obliczeniowej i zasobów pamięciowych, co skraca czas potrzebny na trenowanie sieci.





Rysunek 3.6: Operacja konwolucji i funkcja aktywacji w sieci CNN.

Źródło: Opracowanie własne na podstawie superdatascience.com [2018].

Drugą warstwą najczęściej występującą w strukturze sieci konwolucyjnych jest tak

zwana warstwa łącząca (ang. pooling layer). Warstwa ta wykorzystuje funkcję która

zastępuje dane w określonej lokalizacji pewną statystyką danych z pobliskich

obszarów. W ramach parametrów tej warstwy należy ustalić rozmiar pola

recepcyjnego, wartość kroku (czyli wartość, o jaką to pole będzie przesuwane) oraz

sposób wypełnienia zerami (ang. zero padding). W warstwie łączącej wybrać należy

też sposób w jaki dane z poszczególnych obszarów będą redukowane. Najczęściej

stosowanym podejściem jest tzw. max pooling (zob. Zhou i Chellappa [1988]),

przedstawiony na rys. 3.7, w ramach którego, z określonego pola danych pobierane

i przekazywane dalej są jedynie maksymalne wartości. Można tu stosować także inne

statystyki, przykładowo pobierając z sąsiadujących obszarów sumę (sum pooling),

średnią (average pooling) lub normę (norm poling).

Rysunek 3.7: Funkcja max pooling.

Źródło: Opracowanie własne na podstawie commons.wikimedia.com.

Podstawowym zadaniem warstwy łączącej jest jest dalsza redukcja ilości informacji





poprzez próbkowanie obrazu wejściowego (zob. Boureau i in. [2010], Ciresan i in. [2011]).

W kolejnych warstwach sieci konwolucyjnch często stosuje się także warstwę

spłaszczającą (zob. Géron [2019]). Dane w tej warstwie przekształcone zostają do

postaci wektorowej. W ten sposób łatwiej jest je przekazać do kolejnych warstw sieci,

które z kolei najczęściej przybierają postać warstw gęsto połączonych (ang.

densely/fully connected layer), w których neurony połączone są z wszystkimi

neuronami z poprzedniej warstwy. Celem sieci zawartych w końcowych warstwach jest

przekształcenie uzyskanej mapy cech w atrybuty, które pomocne są podczas końcowej

klasyfikacji lub predykcji.

Jednowymiarowe sieci konwolucyjne i sieci TCN

Aby wykorzystać sieci CNN do pracy z szeregami czasowymi, warstwa konwolucji

musi mieć postać jednowymiarową, w przeciwieństwie do klasycznej postaci

dwuwymiarowej, stosowanej najczęściej gdy sygnałem wejściowym jest

dwuwymiarowy obraz (zob. Duerr i in. [2020], Géron [2019]). Przykładowa struktura

sieci konwolucyjnej, stosowanej do przetwarzania jednowymiarowych sekwencji

przedstawiona została na rys. 3.8.

Rysunek 3.8: Struktura jednowymiarowej sieci CNN.

Źródło: Opracowanie własne.

W przypadku gdy dane wejściowe mają strukturę sekwencyjną, filtr

w jednowymiarowej warstwie konwolucyjnej porusza się tylko w jednym kierunku —

z góry na dół, wykorzystując tylko okresy przeszłe. Taka konfiguracja nazywana jest

konwolucją przyczynową (ang. causal, zob. Duerr i in. [2020]) i może być wymuszona





poprzez odpowiednie ustawienie wartości parametru padding jak i odpowiednie

przygotowanie sekwencji wejściowych i oczekiwanych wartości wyjściowych sieci (zob.

Géron [2019]).

Początkowo idea wykorzystania sieci konwolucyjnych do przetwarzania sekwencji

bazowała na koncepcji sieci typu time-delay (zob. Waibel i in. [1989], Lang i in. [1990]).

Funkcja konwolucji pozwalała sieci na współdzielenie parametrów w kolejnych okresach

czasu, jednak w podstawowej postaci sieci takie zależności są płytkie, ponieważ brana

jest pod uwagę tylko niewielką liczbę obserwacji sąsiadujących wektora wejściowego

(zob. Goodfellow i in. [2016]).

Podejście to rozwinięte zostało przez van der Oorda i in. [2016], w proponowanej

przez nich sieci WaveNet. Architektura tej sieci składa się z wielu jednowymiarowych

warstw konwolucyjnych i stosowana jest przez Autorów do generowania dźwięku.

Interesującym rozwiązaniem wprowadzonym w architekturze tej sieci było

zastosowanie rozszerzonych (ang. dilated) połączeń pomiędzy warstwami

poszczególnych warstw, stopniowo zwiększając odstępy w poszczególnych warstwach.

Rozwiązanie to wprowadziło możliwość obserwowania zależności długoterminowych,

podobnie jak jest to możliwe w przypadku sieci rekurencyjnych, choć stosując inny

mechanizm działania. Porównanie klasycznych warstw konwolucyjnych z warstwami

konwolucji rozszerzonej przedstawione zostało na rys. 3.9.

Rysunek 3.9: Porównanie sieci konwolucyjnych.

Uwaga: Górna figura przedstawia sieć złożoną z wielu warstw konwolucyjnych, na dole

przedstawiona została sieć z konwolucjami rozszerzonymi.

Źródło: Opracowanie własne na podstawie van den Oord i in. [2016].





Bai i in. [2018] zaproponowali architekturę sieci TCN (ang. Temporal

Convolutional Networks), bazującą na podobnych rozwiązaniach jak sieci WaveNet.

Podstawową cechą architektury sieci TCN jest wykorzystanie przyczynowych

jednowymiarowych warstw konwolucyjnych przetwarzających dane wyłącznie z okresu

t i wcześniejszych.3 Co więcej, warstwy ukryte w sieciach TCN mają taką samą liczbę

neuronów wejściowych i wyjściowych.

Podstawową operacją wykorzystywaną w sieciach tego typu jest funkcja rozszerzonej

konwolucji (ang. dilated convolution), która umożliwia wykładnicze zwiększanie pola

recepcyjnego. Formalnie można zapisać ją jako (zob. Bai i in. [2018]):

F (s) = (x ∗d f)(s) =
k−1∑
i=0

f(i) · xs−d·i, (3.18)

gdzie x ∈ Rn jest wektorem wejściowym, f : {0, ..., k−1} −→ R jest filtrem o rozmiarze

k, d oznacza współczynnik rozszerzenia, natomiast s−d·i określa kierunek w przeszłości.

W zaprezentowanych we wspomnianej pracy badaniach empirycznych wykazano, że

sieci TCN lepiej radzą sobie z prognozowaniem danych sekwencyjnych, niż sieci LSTM.

Stosowanie sieci sieci CNN w modelowaniu i prognozowaniu finansowych szeregów

czasowych wciąż jest rozwijane, najczęściej wykorzystywane są w tym celu

jednowymiarowe postaci sieci, lub modele łączące sieci CNN z sieciami

rekurencyjnymi LSTM. Jako przykłady takich badań podać można prace Jin i in.

[2020], Livieris i in. [2020], Lu i in. [2021], Tang i in. [2021], Mehtab i Sen [2022].

3.1.4 Inne typy sieci głębokich

Obok przedstawionych powyżej struktur sieci, w ramach uczenia głębokiego

rozwijana jest szeroka gama innych typów sieci, często mających korzenie

w proponowanych już wcześniej rozwiązaniach. W poniższym punkcie przedstawione

zostały narzędzia i kierunki badań, które cieszą się obecnie dużą popularnością wśród

badaczy.

Sieci generatywne i uczenie niedazorowane

Przedstawione powyżej typy sieci służą przede wszystkim do uczenia

nadzorowanego (zob. punkt 3.2.1), czyli przypadków w których docelowe sygnały

wyjściowe sieci (klasa lub wartość zrealizowana) są określone. Istnieją także inne typy

sieci, wykorzystywane do rozwiązywania problemów uczenia nienadzorowanego

3Istnieją jednak wyjątki od tej zasady w postaci tzw. sieci Non-causal TCN, które wykorzystują

dane z okresów przyszłych, jednak mają one ograniczone zastosowanie.





i uczenia ze wzmocnieniem (ang. reinforcement learning). Jednymi z podstawach

typów sieci uczenia nienadzorowanego są ograniczone maszyny Boltzmana (ang.

Restricted Boltzman Manchines, zob. Smolensky [1986]). Ich zastosowanie w uczeniu

głębokim spopularyzowane zostało głównie dzięki pracą Hintona [2006, 2009, 2012]

w tzw. głębokich sieciach przekonań (ang. Deep Belief Networks - DBN), których

architektura stanowi najczęściej złożenie prostszych postaci sieci takich jak maszyny

Boltzmana czy autoenkodery, oraz w zaproponowanych przez Salakhutdinova

i Hintona [2009] głębokich maszynach Boltzmana (ang. Deep Boltzman Machines).

Sieci typu GAN (Generative Adversarial Network)

Do klasy sieci typu GAN zalicza się sieci umożliwiające generowanie nowych danych

(przykładowo obrazów, dźwięku, tekstu i innych). Prace nad sieciami generatywnymi

są obecnie jednym z głównych kierunków badań dotyczących rozwoju narzędzi uczenia

głębokiego. Wciąż powstają nowe rozwiania, często wykorzystujące „klasyczne” sieci

uczenia głębokiego (jak w przypadku konwolucyjnych sieci generatywnych). Przykłady

takich modeli i ich zastosowań przedstawione zostały w pracach Goodfellow i in. [2014],

Salimans i in. [2016], Creswell i in. [2018] oraz Yoon i in. [2019].

Autoenkodery

W zadaniach uczenia nienadzorowanego często wykorzystywane są także sieci typu

autoenkoder (zob. Hinton i Zemel [1993]). Sieci tego typu stosowane są przede

wszystkim do redukcji wymiarowości poprzez uczenie odpowiedniej reprezentacji

danych. Proces ten nazywany jest często uczeniem reprezentacji (ang. representation

learning) lub uczeniem cech (ang. feature learning).

Sieci wykorzystywane w przetwarzaniu języka naturalnego

Jednym z wiodących obszarów zastosowań sieci uczenia głębokiego, obok

rozpoznawania obrazów, są zadania związane z przetwarzaniem języka naturalnego,

takie jak rozpoznawanie mowy, zautomatyzowane tłumaczenie i analiza sentymentu.

Do takich narzędzi zaliczyć można sieci typu sekwencja do sekwencji (ang.

sequence-to-sequence, zob. Sutskever i in. [2014]), lub enkoder-dekoder (zob. Cho i in.

[2014]). Długość sekwencji wyjściowej w tych sieciach może być zmienna, i nie zależy

od długości sekwencji wejściowej, co pozwala na stosowanie ich np. przy tłumaczeniu

tekstu lub automatycznym odpowiadaniu na pytania. Sieci tego typu najczęściej

wykorzystują warstwy rekurencyjne (RNN, LSTM lub GRU). Warstwy kodujące

mają za zadanie mapowanie sekwencji wejściowej do reprezentacji wektorowej o





ustalonym lub zmiennym wymiarze (zwanej również kontekstem), która następnie

wykorzystywana jest jako wejście do dekodera, generującego sekwencję wyjściową

(zob. Alshemali i Kalita [2020]).

Sieci bayesoweskie

W prognozowaniu probabilistycznym, coraz większą popularnością cieszą się sieci

bayesowskie (ang. Bayesian Neural Networks - BNN), zaproponowane po raz

pierwszy w pracy Neal [1996]. Wartości wag i wyjść poszczególnych neuronów

w sieciach bayesowskich przyjmują podstać całych rozkładów prawdopodobieństwa,

podczas gdy w innych typach sieci są to najczęściej określone wartości punktowe (zob.

rys. 3.10). 4 Zdaniem sieci BNN jest znalezienie takich rozkładów tych parametrów,

które najlepiej pasują do danych uczących. Celem sieci jest określenie niepewności

w taki sposób, aby modele mogły przypisywać mniejsze poziomy ufności błędnym

prognozom. Źródłami niepewności mogą być zarówno słabej jakości dane jak

i nieprawidłowo dobrane przez model parametry. Jako metody wykorzystywane do

estymacji rozkładów najczęściej wykorzystywane są metody Monte Carlo łańcuchów

markowa (MCMC) oraz wnioskowanie wariacyjne (ang. variational inference).

Rysunek 3.10: Oceny parametrów w klasycznych sieciach neuronowych oraz w sieciach bayesowskich.

Uwaga: Figura (a) przedstawia schemat podstawowej sieci neuronowej z punktowymi ocenami

parametrów, (b) przedstawia schemat sieci bayesowskiej, w której parametry określają rozkłady

prawdopodobieństw.

Źródło: Opracowanie własne na podstawie Géron [2019].

Rozwiązania bazujące na wnioskowaniu bayesowskim nie są przedmiotem niniejszej

pracy, jednak w kontekście prognozowania finansowych szeregów czasowych i rozkładów

4Podobne podejście stosowane jest także w probabilistycznych sieciach neuronowych (ang.

Probabilistic Neural Networks - PNN, zob. Mohebali i in. [2020]).





prawdopodobieństw z pewnością zasługują na szerszą uwagę. Problematyka szerzej

opisana została w Duerr i in. [2020], Chang [2021] oraz Jospin i in. [2022].

Inne typy sieci uczenia głębokiego

Spośród pozostałych narzędzi rozwijanych w ramach uczenia głębokiego wymieć

w tym miejscu należy także:

– VAE - Variational Autoencoder (Kingma i Welling [2014], Kingma i Welling

[2019], Rezende i in. [2014])

– Representation Learning (Bengio i in. [2014]), Transfer Learning (Bozinovski

[2020]),

– Echo State Networks i Liquid State Machines (Jaeger i Haas [2004], Maass i in.

[2002])

– Sieci Hopfielda (Hopfield [1982]), Maszyny Helmholza (Dayan i in. [1995]),

– Transormery (Vaswani i in. [2017], Wolf i in. [2020]).

3.2 Podstawowe zagadnienia związane z uczeniem

sieci

3.2.1 Sposoby uczenia sieci neuronowych

Proces uczenia sieci głębokich, podobnie jak w przypadku klasycznego uczenia

maszynowego, przeprowadza się najczęściej na dwa sposoby (zob. Géron [2019]).

Ucznie nadzorowane, z nauczycielem, (ang. supervised learning) wymaga danych

w postaci par obiektu wejściowego (np. wektor obserwacji) i wyjściowego (oznaczone

wartości pożądane do których sieć jest uczona). Na tej podstawie można określić błąd

pomiędzy wartościami pożądanymi, a rzeczywistymi wygenerowanymi przez sieć

i minimalizować go w procesie uczenia. Do przykładów zastosowania uczenia

nadzorowanego zaliczyć można takie problemy jak regresja czy klasyfikacja. Podejście

to wykorzystywane jest także w algorytmach bazujących na drzewach decyzyjnych,

lasach losowych i maszynach wektorów nośnych (ang. Support Vector Machines -

SVM, zob. Cortes i Vapnik [1995]). Jest to także główny typ uczenia wykorzystywany

w badaniach przedstawionych w tej pracy.

Drugim typem uczenia jest uczenie nienadzorowane (ang. unsupervised learning,

zob. Hinton i Sejnowski [1999]). Głównym zadaniem tego typu procesów jest





odnajdywanie nowych wzorców, bez wcześniej określonych prawidłowych wartości

wyjściowych sieci, czyli np. poprawnych prognoz liczbowych lub etykiet klas

przynależności danego obiektu. Ucznie nienadzorowane najczęściej stosuje się podczas

analizy skupień, wykrywania anomalii, redukcji wymiarowości poprzez analizę

składowych oraz przy odkrywaniu asocjacji.

Obok tych dwóch podstawowych typów stosowane są także inne sposoby uczenia

sieci, takie jak uczenie częściowo nadzorowane, w których sieci otrzymują zarówno

dane oznaczone jak i nieoznaczone, wykorzystywane przykładowo w sieciach DBN

(ang. Deep Belief Networks), oraz uczenie wzmocnione (ang. reinforced learning, zob.

Kaelbling i in. [1996]) realizowane na podstawie interakcji z określonym

środowiskiem, do którego zaliczyć można przykładowo algorytmy stosowane do gry

w szachy lub Go rozwijane m.in. przez zespół DeepMind (zob. Silver i in. [2017]),

które przyczyniły się do znacznej popularyzacji uczenia głębokiego pokonując

w rozgrywkach mistrzów świata obu dyscyplin.

3.2.2 Algorytmy oparte na metodzie gradientu

Podstawową metodą używaną podczas minimalizacji błędu sieci, określonego przez

wybraną funkcję straty, jest algorytm oparty na metodzie gradientu prostego (ang.

gradient descent, zob. Lemaréchal [2012]). Podczas pracy algorytmu wagi

poszczególnych neuronów modyfikowane są na podstawie obliczonych pochodnych

zadanej funkcji straty. Wagi te modyfikowane są podczas każdej iteracji algorytmu, aż

do momentu odnalezienia minimum funkcji straty. Obecnie w uczeniu głębokim

stosuje się przede wszystkim metodę gradientu stochastycznego (ang. Stochastic

Gradient Descent - SGD, zob. Bottou [1998]), w której w każdym kroku uczenia

wykorzystywany jest tylko wycinek dostępnych danych, zwany wsadem lub partią

wsadową (ang. minibatch lub batch) (zob. Goodfellow i in. [2016]). Dzięki temu

algorytm działa znacznie szybciej i wykorzystuje mniej zasobów obliczeniowych.

Niektórzy badacze dokonują dodatkowego rozróżnienia między algorytmem gradientu

stochastycznego, a algorytmem gradientu Mini-Batch (zob. Géron [2019]). Długość

partii wsadowej (ang. batch size) w poszczególnych metodach określana jest

następująco:

– dla metody gradientu prostego (Batch Gradient Descent) batch size = cały zbiór

uczący,

– dla metody gradientu stochastycznego (Stochastic Gradient Descent) batch size =

1,





– dla metody gradientu Mini-Batch (Mini-Batch Gradient Descent)

1 < batch size < cały zbiór uczący.

Różnice w przebiegu algorytmów, w zależności od przyjętej wielkości partii

wsadowej, przedstawione zostały na rysunku 3.11.

Rysunek 3.11: Wizualizacja przebiegu poszczególnych algorytmów w przestrzeni parametrów ω.

Źródło: Opracowanie własne na podstawie Géron [2019].

Modyfikację wag w procesie uczenia algorytmami opartym na optymalizacji

gradientowej można przedstawić wzorem (zob. Goodfellow i in. [2016]):

ωt+1 = ωt − η∇J(ωt), (3.19)

gdzie ω jest wektorem parametrów (wag, obciążeń i aktywacji), η to ustalony

współczynnik uczenia (ang. learning rate) a J(ω) to wybrana funkcja straty,

natomiast t jest tutaj krokiem algorytmu. Gradient ∇J(ωt) w uczeniu maszynowym

obliczane jest z wykorzystaniem algorytmu wstecznej propagacji (ang.

backpropagation). W przypadku algorytmu SGD wartość η jest stała.

Jedną z głównych zalet uczenia głębokiego jest fakt, że wykorzystywany

w procesie uczenia optymalizator SGD nie musi znaleźć znaleźć minimum globalnego

funkcji. Minima lokalne najczęściej w zupełności wystarczają do uzyskania bardzo

dobrej jakości prognoz (dobrze generalizują, zob. Choromanska i in. [2015], Duerr i in.

[2020]).





Algorytm wstecznej propogacji błędu

Algorytm wstecznej propagacji błędu (Rumelhart i in. [1986], Werbos [1988]) jest

jedną z podstawowych metod służących do optymalizacji gradientowej podczas

uczenia sieci. Umożliwia on modyfikację wag neuronów w procesie uczenia sieci na

zbiorze treningowym, poprzez propagację błędu wyniku otrzymanego na wyjściu sieci

w stosunku do wyniku oczekiwanego, dostarczonego wraz z danymi uczącymi. W

ramach tej metody, sygnały w sieci przepływają w dwóch kierunkach: do przodu

(ang. forward propagation), kiedy dokonywana jest predykcja, oraz wstecz (ang. back

propagation), kiedy aktualizowane są wagi neuronów w poszczególnych warstwach.

Wagi dla każdego neuronu modyfikowane są w taki sposób aby wartość błędu była

zmniejszana. Z czasem powstały liczne usprawnienia podstawowego algorytmu,

z których dużą popularnością cieszył się adaptacyjny algorytm wstecznej propagacji

błędu z bezwładnością (ang. momentum) (zob. Qian [1999]). Funkcję aktualizacji

parametrów w tym algorytmie można zapisać następująco:

∆ωt = −η∇J(ωt) + β∆ωt−1, (3.20)

gdzie β jest stałym współczynnikiem bezwładności procesu uczenia.

Algorytm ADAM

ADAM (ang. Adaptive Moment Estimation) zaproponowany przez Kingma i Ba

[2017] jest kolejnym rozszerzeniem podstawowego algorytmu SGD. Powstał jako

połączenie koncepcji w proponowanych wcześniej metodach RMSProp (ang. Root

Mean Square Propagation) oraz ADAGrad (ang. Adaptive Gradient Algorithm) (zob.

Hinton i in. [2012b], Duchi i in. [2011]). Główną zaletą tych metod jest dynamiczne

dostosowywanie parametru η, czyli prędkości uczenia sieci (ang. learning rate).

Optymizator ADAM wykorzystuje w tym celu pierwsze i drugie momenty gradientu,

tworząc wykładnicze średnie ruchome (zob. Kingma i Ba [2017], Hansen [2019]):

ωt+1 = ωt −
η · m̂t√
v̂t + ε

, (3.21)

m̂t =
mt

1− βt1
, (3.22)

v̂t =
vt

1− βt2
, (3.23)

mt = β1mt−1 + (1− β1)gt, (3.24)





vt = β1vt−1 + (1− β2)g2
t , (3.25)

gdzie g oznacza gradient danej partii wsadowej g = ∇J(θt,i), m, v to wykładnicze

współczynniki zanikania, β to współczynnikii bezwładności algorytmu, zazwyczaj

ustawiane na wartości 0, 9 − 0, 999, natomiast ε jest niewielką wartością (zazwyczaj

10−8) stosowaną w celu uniknięcia dzielenia przez zero.

Powstały też liczne dodatkowe rozszerzenia algorytmu Adam, takie jak Adamax

(Kingma i Ba [2017]), Nadam ( Dozat [2016]) czy ND-Adam ( Zhang i in. [2018c]).

Pomimo dużej popularności algorytm ten nie jest jednak pozbawiony wad, wśród

których najczęściej wskazuje się problemu z generalizacją (Wilson i in. [2018]).

Problem zanikającego gradientu

Jednym z problemów pojawiającym się podczas uczenia sieci algorytmami SGD

jest zanikający gradient (ang. vanishing gradient) (zob. Hochreiter i in. [2001]). Polega

on na tym, że podczas procesu uczenia gradient funkcji straty staje się coraz mniejszy

wraz ze zbliżaniem się przepływu informacji do warstwo początkowych sieci (bliższych

warstwy wejściowej). Z tego powodu wagi neuronów w tych warstwach, przy bardzo

małym gradiencie nie są aktualizowane, przez co proces uczenia nigdy nie jest zbieżny

do dobrego rozwiązania. Odwrotnym problemem, choć występującym równie często,

jest gradient eksplodujący (ang. exploding gradient, zob. Géron [2019], Goodfellow i

in. [2016]), w którym gradient przyjmuje bardzo duże wartości, przez zmiany wielkości

wag sieci są bardzo duże, a uczenie staje się niestabilne. Oba problemy najczęściej

pojawiają się przy modelowaniu zależności długoterminowych. Badacze wciąż sugerują

nowe rozwiązania tych problemów (zob. He i in. [2015], Noel i in. [2021]), powstają

nowe typy sieci które lepiej mają radzić sobie z tymi problemami, stosowane są nowe

typy inicjalizacji wag oraz nowe funkcje aktywacji. Więcej informacji na ten temat

przedstawionych zostało w kolejnych podrozdziałach.

3.2.3 Generalizacja i regularyzacja

Zdolność sieci do modelowania zupełnie nowych zestawów danych (danych ze zbioru

testowego, lub z poza próby uczącej) nazywana jest generalizacją (zob. Géron [2019]).

Błąd funkcji straty sieci na zbiorze testowym nazywa się błędem generalizacji (ang.

generalization error) natomiast uzyskany na danych ze zbioru uczącego, błędem uczenia

(ang. training error). W celu poprawienia generalizacji sieci stosuje się najczęściej

przedstawione poniżej metody oparte na tzw. regularyzacji, przez którą rozumie się

takie zmiany wprowadzane do algorytmu uczenia, które poprawiają jego możliwości





generalizacji jednocześnie nie wpływając negatywnie na błąd uczenia (Goodfellow i in.

[2016]).

Formalnie, jako regulację w ujęciu sieciowym rozumieć możemy pewną modyfikację

funkcji straty poprzez wprowadzenie parametr regularyzacji Ω(w) :

J̄(ω) = J(ω) + αΩ(w), (3.26)

gdzie α ∈ [0,∞] jest hiperparametrem ustalającym wagę parametru regularyzacji.

Obok przedstawionych poniżej form regularyzacji, także opisany w podrozdziale 3.3

proces dostrajania hiperparametrów stosowany jest najczęściej właśnie w celu poprawy

możliwości generalizacji sieci oraz uniknięcia problemu przetrenowania.

Dropout

Bardzo istotną formą regularyzacji jest dropout, zaproponowany przez Hinton i

in. [2012a] oraz Srivastava i in. [2014], który określa ile neuronów z poszczególnych

warstw zostanie losowo pominiętych w procesie uczenia sieci.5 Dropout jest jednym

z najpopularniejszych i najbardziej efektywnych sposobów regularyzacji (zob. Géron

[2019]). Każdy neuron w sieci, z wyjątkiem neuronów warstwy wyjściowej, ma ustalone

prawdopodobieństwo p (określane przy pomocy parametru dropout rate), że zostanie

pominięty w bierzącym kroku w procesie uczenia, poprzez ustawienie wartości wejścia

takiego neuronu na zero.

Załóżmy, że w sieci o liczbie L warstw ukrytych, l ∈ 1, ..., L określa indeks

kolejnych warstw, a l = 0 jest warstwą wejściową sieci, z(l) oraz y(l) są wektorami

wejściowymi i wyjściowymi warstwy l, W (l) oraz b(l) są wektorami wag i obciążeń

warstwy l, natomiast f oznacza wybraną funkcję aktywacji. r(l) jest wektorem

niezależnych zmiennych losowych z rozkładem Bernoulliego, które

z prawdopodobieństwem p wynoszą 1, a z 1 − p wynoszą 0. W sieciach

jednokierunkowych (typu feed-forward) wyjście opisanej w ten sposób warstwy

możemy zapisać jako (zob. Srivastava i in. [2014]):

ỹl = rl � y(l), (3.27)

zl+1 = Wl+1ỹl + bl+1, (3.28)

yl+1 = f(zl+1), (3.29)

5Termin ten niekiedy jest tłumaczony w polskiej literaturze jako „porzucanie” (zob. Sawka [2022]),

jednak w dalszej części pracy stosowane będzie jego oryginalna, anglojęzyczna nazwa.





gdzie � oznacza iloczyn Hadamarda.

Neurony pomijane są tylko w pojedynczym kroku uczenia, i zostają włączone

ponownie w kolejnych krokach. W procesie testowania sieci, wagi poszczególnych

neuronów nie są wyłączane, natomiast są skalowane według formuły W test
l = pWl.

Wartość hiperparametru dropout rate zazwyczaj zwiększana jest w przypadkach

dochodzi do przeuczenia (ang. overfitting), czyli sytuacji w których sieć wykazuje

dużą efektywność na zbiorze uczącym, natomiast uzyskuje słabe wyniki na zbiorach

walidacyjnym i testowym. Hiperparametr ten najczęściej ustalany jest na wartości

z zakresu 0,001. do 0,5, przy czym wyższe wartości stosuje się częściej w sieciach

konwolucyjnych. Ponieważ odpowiednie ustalenie tej wartości może mieć bardzo duży

wpływ na uczenie sieci, często brana jest ona pod uwagę jako jedna

z optymalizowanych zmiennych w procesie dostrajania hiperparametrów. Metoda

regularyzacji wykorzystująca dropout opisana została szerzej w Srivastava i in. [2014]

oraz Warde-Farley i in. [2014].

Dodatkowym sposobem regularyzacji, stosowanym w sieciach rekurencyjnych, jest

dropout rekurencyjny (Moon i in. [2015], Gal i Ghahramani [2016] oraz Semeniuta i

in. [2016]). Podczas gdy zwykły dropout wyłącza połączenia pomiędzy

poszczególnymi warstwami sieci, dropout reukrencyjny wyłącza połączenia pomiędzy

zależnościami rekurencyjnymi w czasie (przykładowo, pomiędzy wektorami ukrytymi

ht−1 a ht) podczas obliczania wartości bramek i aktualizacji w bieżącym kroku

uczenia. Podobnie jak zwykły dropout, pełni on także funkcję regularyzacyjną

i zapobiega przetrenowaniu sieci.

Regularyzacja l1 i l2

Innym typem regularyzacji wykorzystywanym w sieciach są metody nakładające

ograniczenia na parametry modelu sieciowego, przede wszystkim z wykorzystaniem

tzw. regularyzacji l1 oraz l2 (zob. Goodfellow i in. [2016]).

Regularyzacja l1, nazywana również regresją LASSO (ang. Least Absolute Shrinkage

and Selection Operator) definiowana jest wzorem:

J̄(ω) = J(ω) + α
∑
i

= 1n|ωi|, (3.30)

gdzie ω oznacza w tym przypadku wagi sieci (obciążenia, b, nie są regularyzowane),

natomiast α jest ustalanym hiperparametrem regularyzacji. Wartość regularyzacji

zależy więc tylko od sign(ωi)6 i wpływa na gradient ze stałą wartością,

W regularyzacji tego typu niektóre parametry mogą przyjmować wartości zerowe

6Funkcja signum opisana została w rozdziale 2





i w takim wypadku są usuwane, co powoduje że znalezione rozwiązanie jest bardziej

rzadkie (ang. more sparse). Własność ta wykorzystywana jest często w procesie wyboru

zmiennych wejściowych sieci (ang. feature selection), gdy dzięki regularyzacji l1 można

wskazać, które cechy (zmienne wejściowe) mogą zostać usunięte, jeśli wartości ich wag

wyniosą zero (zob. Géron [2019]).

Regularyzacja l2 określana jest również jako regresja grzbietowa (ang. ridge

regression), weight decay lub regularyzacja Tichonova, i przyjmuje postać:

J̄(ω) = J(ω) +
1
2
α

n∑
i

ω2
i . (3.31)

Wprowadzenie tego typu regularyzacji powoduje, że wektor wag w każdym kroku

algorytmu optymalizacji gradientu jest pomniejszany o stały współczynnik (zob.

Goodfellow i in. [2016]). Podobnie jak w przypadku dropoutu, regularycje l1 i l2

wykorzystywane są tylko w procesie uczenia sieci.

Funkcje wczesnego zatrzymania i punktu kontrolnego modelu

Pewną formą regularyzacji są też dodatkowe funkcje wywołania zwrotnego (ang.

callback function), stosowane podczas procesu uczenia. Jedną z takich funkcji jest

funkcja wczesnego zatrzymania (ang. early stopping, (zob. Yao i in. [2007]),

umożliwiająca zatrzymanie procesu uczenia w najbardziej optymalnym momencie.

Rys. 3.16 przedstawia krzywe kształtowania się wartości funkcji straty (którą

przykładowo może być funkcja MSE) w procesie uczenia sieci na zbiorze uczącym

i walidacyjnym. Wartość funkcji straty maleje z każdym krokiem uczenia, jednak

w pewnych przypadkach, np. przy wystąpieniu efektu przeuczenia sieci, może dojść

do sytuacji, gdy wartość ta maleje na zbiorze uczącym ale zaczyna rosnąć na zbiorze

walidacyjnym. Moment w którym obie krzywe uzyskują najmniejszą wartość może

być interpretowany jako optymalny wynik, który może uzyskać sieć, i w którym

powinno nastąpić zatrzymanie uczenia (zob. Prechelt [2012]). W praktyce, ponieważ

linie te nie zawsze są gładkie, algorytm pozwala sieci uczyć się jeszcze przez klika

epok, po czym następuje powrót do zapisanego wcześniej punktu, z którego pochodzą

optymalne (finalne) są parametry modelu.

Na podobnej zasadzie działa funkcja punktu kontrolnego modelu (ang. model

checkpoint, zob. Géron [2019]). W każdej epoce (kroku uczenia) sprawdzana jest

wartość funkcji straty dla ustalonego zbioru (uczącego lub walidacyjnego). Jeżeli

wartość ta jest mniejsza niż w epoce poprzedniej to model zapisywany jest jako

najlepszy, natomiast nie jest zapisywany jeśli wartość ta jest wyższa. Zapisany model

następnie może zostać wykorzystany jako optymalny model do testowania sieci.





Różnica pomiędzy funkcją wczesnego zatrzymania a funkcją punktu kontrolnego

polega na tym, że w pierwszym przypadku proces uczenia jest całkowicie

zatrzymywany, a w przypadku punktu kontrolnego sieć uczy się dalej (do czasu

osiągnięcia ustalonej wcześniej liczby epok). Funkcja wczesnego zatrzymania pozwala

więc na skrócenie czasu uczenia sieci, jednak w przypadku gdy krzywe uczenia są

bardzo nierówne, optymalny wynik może zostać uzyskany znacznie później. W takich

przypadkach lepiej sprawdza się funkcja punktu kontrolnego.

Rysunek 3.12: Funkcja wczesnego zatrzymania.

Źródło: Opracowanie własne.

Normalizacja wsadowa

Ioffe i Szegedy [2015] jako formę regularyzacji zaproponowali metodę zwaną

normalizacją wsadową (ang. batch normalization). Pozwala ona na reparametryzację

modelu poprzez standaryzację i przeskalowanie wejść względem wartości średniej

i wariancji dla każdej partii wsadowej (minibatch) danych w procesie uczenia. Metoda

ta jest pomocna zarówno w regularyzacji jak i przy problemach związanych

z zanikającym (lub eksplodującym) gradientem, przeważnie w sieciach o dużej liczbie

warstw ukrytych.

3.2.4 Podział zbioru danych w procesie uczenia i testowania

sieci

Podczas budowy modeli bazujących na sieciach neuronowych, istotne jest także

odpowiednie przygotowanie danych. Jednym z podstawowych kroków, które należy





w tym procesie wykonać, jest podział danych na zbiór uczący i testowy. Podział taki

pozwala uniknąć problemu nadmiernego przeuczenia sieci (ang. overfitting), czyli

sytuacji, w której sieć dobrze radzi sobie na danych, z którymi zetknęła się wcześniej

w zbiorze uczącym natomiast wykazuje brak efektywności dla nowych przypadków

zawartych w zbiorze testowym (zob. Goodfellow i in. [2016]). W praktyce, dane

dzielone są na zbiór uczący i testowy najczęściej w proporcjach 70:30 lub 80:20.

Podczas procesu uczenia sieć wykorzystuje tylko dane dostępne w zbiorze uczącym.

Przykładowo, jeżeli dany szereg czasowy obejmuje okres dziesięciu lat, do uczenia

sieci wykorzystywanych jest tylko siedem pierwszych lat, a trzy kolejne

wykorzystywane są do testowania sieci.

W celu kontrolowania zdolności generalizacyjnych sieci, jeszcze na etapie jej

uczenia, często stosowaną metodą jest dodatkowe wydzielenie ze zbioru uczącego tzw.

zbioru walidacyjnego (ang. validation set), zawierającego ok 15-30% obserwacji (zob.

Xu i Goodacre [2018]). Zbiór walidacyjny ma na celu dodatkowe sprawdzanie

parametrów (wag) sieci już w trakcie procesu uczenia. Podczas każdego kroku w tym

procesie, oprócz dokonywania predykcji na podstawie danych uczących, dodatkowo

taka sama operacja wykonywana jest na danych walidacyjnych. Sieć przekazuje

informacje o błędzie zarówno z predykcji na danych uczących jak i walidacyjnych,

dzięki czemu lepiej ocenić można stopień ewentualnego przetrenowania sieci

i poprawić ewentualne problemy poprzez zmianę hiperparametrów.

Rysunek 3.13: Podział danych na zbiory uczący, testowy oraz walidacyjny.

Źródło: Opracowanie własne.

Po zakończeniu procesu uczenia, działanie sieci sprawdzane jest na zupełnie





nowym zestawie danych, czyli zbiorze testowym, na którym uzyskiwane przez sieć

wyniki są zazwyczaj nieco słabsze. Bardzo istotną kwestią jest, aby wyniki na

zbiorach testowych nie były brane pod uwagę podczas dostrajania hiperparametrów

sieci. Można więc założyć, że zbiór testowy nie jest dostępny (nie jest znany) w czasie

uczenia sieci i podczas dostrajania hiperparametrów.

Jednym ze sposób zapewniających poprawną ocenę testowanego modelu

sieciowego jest zastosowanie schematu rolowanego (przesuwanego) okna (zob.

Goodfellow i in. [2016]Bergmeir i Beńitez [2012]). W przypadku szeregów czasowych,

podejście to polega na przesuwaniu zbiorów uczącego, walidacyjnego i testowego o

określoną wartość (najczęściej równą długości zbioru testowego), z zachowaniem

kolejności (zob. rys. 3.14). Po przesunięciu okna, model jest uczony i testowany

ponownie na nowych zbiorach danych. Stosowanie takiego podejścia umożliwia

dokładniejszą weryfikację efektywności modelu na różnych zestawach danych. W

niektórych przypadkach stosować można także schemat rekursywny (określany także

jako schemat okna rozszerzanego, ang. expanding window), w której punkt

początkowy zbioru uczącego jest stały, zmienia się tylko jego długość oraz punkt

początkowy zbioru testowego (zob. Schnaubelt [2019]). Pozwala to na zweryfikowanie

czy długość okna treningowego (ilość danych w zbiorze uczącym) wpłynie na poprawę

wyników.

Rysunek 3.14: Wizualizacja podziału danych przy zastosowaniu okna rolowanego oraz okna

rozszerzanego.

Źródło: Opracowanie własne.

W pracy z danymi w formie szeregów czasowych, w procesie uczenia sieć dobiera

wagi tak, aby wykorzystując sekwencje wejściowe (ang. sample lub sequence) jak

najlepiej prognozować kolejne wartości pożądane (ang. target, zob. Brownlee [2018]).

Zbiór poszczególnych par sekwencji wejściowych i wartości pożądanych stanowi

z kolei paczkę wsadową. Jednokrotna prezentacja wszystkich przypadków uczących

(partii wsadowych), stanowiących zbiór uczący nazywana jest epoką (zob. Goodfellow





i in. [2016]). W procesie uczenia sieć przechodzi przez zbiór uczący nawet do kilku

tysięcy razy (długość procesu uczenia ustalana jest na kilka tysięcy epok), przy czym

po każdej epoce zwracana jest uzyskana wartość funkcji straty, tworząc w ten sposób

krzywą uczenia (por. rys. 3.12).

Zarówno sekwencje wejściowe jak i wartości pożądane, pobierane są ze zbioru

uczącego, w związku z czym sieć podczas uczenia może w uzyskać trafność predykcji

zbliżoną do poziomu 100%, co jednak nie oznacza, że tak samo dobrze będzie radzić

sobie z zupełnie nowymi obserwacjami (pochodzącymi ze zbioru walidacyjnego lub

testowego).

3.2.5 Przygotowanie danych

Duży wpływ na efektywność sieci ma także odpowiedni dobór i przygotowanie

danych. Wspomniany wcześniej podział danych na zbiory uczące i testowe musi być

dokonany w taki sposób, aby w jednym i drugim zbiorze znalazły się zbliżone

reprezentacje danych. Jeżeli zbiór uczący nie będzie reprezentatywny (będzie

znacząco różny) od zbioru testowego, sieć nie będzie w stanie dobrze wychwycić

zależności zachodzących na danych testowych. Ważne jest więc, aby wszystkie trzy

typy zbiorów (uczący, walidacyjny i testowy) były zbliżone jeśli chodzi o reprezentację

danych (zob. Goodfellow i in. [2016]).

Inną istotną czynnością jest odpowiedni dobór zestawów cech (ang. feature

selection) - czyli zestawu zmiennych wejściowych do sieci (zob. Cai i in. [2018]).

Przykładowo, w finansowych szeregach czasowych mogą to być takie zmienne jak

stopa zwrotu, cena, estymowana zmienność lub wolumen. Wszystkie cztery zmienne

mogą być użyte jako dane wejściowe do sieci, jednak należy rozważyć (lub zbadać)

czy wszystkie mają istotny wpływ przy prognozowaniu przykładowo stóp zwrotu lub

zmienności. Często okazuje się, że dodatkowe zmienne wprowadzają niepotrzebne lub

redundantne informacje zwiększając szum, co może wpłynąć negatywnie na proces

uczenia oraz predykcji dokonywanych przez sieć (zob. Géron [2019]). Upewnić się

trzeba także czy dane nie posiadają duplikatów lub brakujących wartości.

Innym często stosowanym zabiegiem podczas przygotowywania danych jest

transformacja danych (ang. feature scaling) polegająca najczęściej na standaryzacji

lub normalizacji (zob. Han i in. [2011], Brownlee [2018]). Zabiegi te stosowane są

najczęściej w przypadkach gdy zmienne wejściowe mają rożne skale wartości

(przykładowo stopy zwrotu i wolumen). Pomocne są także w przypadkach gdy

w danych występują wartości odstające. Normalizację i standaryzację stosuje się tylko

dla danych wejściowych sieci, z kolei oczekiwane wartości (np. zrealizowana stopa

zwrotu) powinny zawierać wartości oryginalne, gdyż w praktyce podczas eksploatacji





modelu są to wartości nieznane.

Odpowiednie przygotowanie danych może mieć bardzo duży wpływ na jakość

uzyskanych prognoz. Podobnie jak w przypadku dostrajania hiperparametrów proces

najczęściej jest dość czasochłonny, jednak nie powinien być pomijany.

3.3 Dostrajanie hiperparametrów sieci

Istotnym elementem, który należy brać pod uwagę podczas projektowania

struktury sieci neuronowych, a w szczególności sieci uczenia głębokiego, jest

odpowiedni dobór hiperparametrów. W zależności od typu sieci możemy mieć do

czynienia z różnymi zestawami parametrów, które należy ustalić. Doboru

hiperparametrów można dokonywać heurystycznie, na podstawie teoretycznych

przesłanek i wartości przekazanych w literaturze, lub eksperymentalnie, poprzez

dokładne „dostrajanie” hiperparametrów (ang. hiperparameter tuning) podczas

procesu uczenia sieci. Odpowiedni wybór hiperparametrów sieci może mieć duży

wpływ na jakość uzyskiwanych wyników, dlatego jest to proces któremu należy

poświęcić dużo uwagi. Ponieważ liczba kombinacji wartości poszczególnych

hiperparametrów może być duża, a sprawdzenie wydajności sieci wymaga

przynajmniej częściowego jej trenowania, jest to także proces bardzo czasochłonny.

Poniżej opisane zostały najważniejsze parametry, zarówno ogólne, występujące

w prawie wszystkich strukturach sieci, jak i bardziej szczegółowe, typowe dla

poszczególnych rodzajów sieci.

3.3.1 Liczba warstw i neuronów sieci

Do podstawowych parametrów, które najczęściej należy ustalić na początku

projektowania struktury sieci należą liczba warstw sieci, oraz liczba neuronów

w poszczególnych warstwach. W sieciach neuronowych uczenia głębokiego mówi się

najczęściej o liczbie warstw większej niż trzy (wliczając w to warstwę wejściową

i wyjściową), w praktyce najczęściej jest ich mniej niż 10. Z kolei liczba neuronów

może zależeć od funkcji jaką pełni dana warstwa. Ilość neuronów w warstwach

wejściowych i wyjściowych najczęściej uzależniona jest od wymiaru danych

wejściowych i danych oczekiwanych na wyjściu modelu. W przypadku

jednowymiarowych szeregów czasowych, warstwy wejściowe i wyjściowe mają tylko

jeden neuron (przykładowo, gdy na wejściu sieć otrzymuje informacje o wartości

w okresie t, a na wyjściu przekazuje wartość prognozowaną w okresie t + 1). Liczba

neuronów w warstwach ukrytych może być ustalana dowolnie. Zwiększenie liczby

neuronów i warstw ukrytych, może prowadzić do poprawy wydajności modelu, jednak





zazwyczaj wiąże się ze znacznym wydłużeniem czasu potrzebnego na wykonanie

obliczeń oraz większym użyciem zasobów pamięciowych (zob. Goodfellow i in. [2016]).

3.3.2 Optymalizatory i inicjalizatory

Optymalizator sieci (ang. optimizer) informuje sieć w jaki sposób aktualizować

parametry takie jak wagi, wykorzystując przy tym parametr prędkości uczenia

learning rate. Obecnie najczęściej stosowanym optymalizatorem jest ADAM i jego

odmiany, takie jak algorytm SGD, RMSProp czy Adagrad, opisane w punkcie 3.2.2.

Inicjalizator (ang. initializer) z kolei ustala jakie powinny być początkowe wartości

wag parametrów sieci, co ma bezpośredni wpływ na czas procesu uczenia - dobrane

odpowiednio wagi początkowe znacznie skrócą ten proces.

Niektóre parametry sieci, w szczególności początkowe wartości wag neuronów,

muszą zostać zainicjalizowane (zob. Skorski i in. [2020]). Istotne jest tutaj aby wagi

neuronów różniły się miedzy sobą (w przeciwnym razie ich wartości najczęściej

zmieniały by się jednakowo). Wartości wag najczęściej losowane są z rozkładu

normalnego lub jednostajnego, natomiast wartości parametrów bias najczęściej

ustawiane są domyślnie na 0 lub 1.

Glorot i Bengio [2010] zaproponowali nowy sposób inicjalizacji wag, mający przede

wszystkim pomóc przy problemie zanikającego i eksplodującego gradientu, określony

równaniem:

W ∼ N
(
0,

1
nj + nj+1

)
, (3.32)

lub dla rozkładu jednostajnego:

W ∼ U
(
−
√

6
nj + nj+1

,

√
6

nj + nj+1

)
, (3.33)

gdzie nj oznacza liczbę wejść w warstwie j. He i in (2015) zauważyli jednak, że

w przypadku neuronów z nieliniową funkcją aktywacji ReLU ten typ inicjalizacji nie

jest optymalny. W zamian zaproponowali rozwiązanie, nazywane inicjalizacją He,

w którym wariancja wag neuronów pomnożona jest dodatkowo przez 2, zgodnie

z równaniem:

W ∼ N
(
0,

2
nj

)
. (3.34)





3.3.3 Funkcje aktywacji

Jednym z najważniejszych parametrów każdej sieci jest funkcja aktywacji, której

wartości stanowią sygnały wyjściowe danego neuronu. Odpowiada ona z to w jaki

sposób neurony sieci przetwarzają dane wejściowe. Zdecydowana większość funkcji

aktywacji to funkcje nieliniowe. Rożne warstwy sieci mogą posiadać różne funkcje

aktywacji. Przykładowo, w warstwie wyjściowej sieci typ funkcji zazwyczaj

uzależniony jest od tego w jakiej formie dane mają być przekazane na wyjściu sieci

(czyli np. od tego co prognozujemy). W warstwach ukrytych najczęściej wybierane są

funkcje nieliniowe, takie jak ReLU (ang. Rectified Linear Unit), funkcja sigmoidalna

czy funkcja tangensu hiperbolicznego.

Tabela 3.1 oraz rysunek 3.16 przedstawiają wzory i przebieg podstawowych funkcji

aktywacji, najczęściej używanych w uczeniu głębokim. Dokładniejszy przegląd funkcji

aktywacji znaleźć można w pracach Nwankpa i in. [2018], oraz w Szandała [2021].

Jak wspomniano, duże znaczenie ma także wybór prawidłowej funkcji aktywacji

dla neuronów wyjściowych. Jej forma odpowiada w tym przypadku za dokładną

postać danych jaką otrzymamy na wyjściu sieci. Przykładowo dla typowych

problemów regresyjnych, używa się najczęściej liniowej funkcji aktywacyjnej, która

nie wprowadza już żadnych transformacji do otrzymanego wyniku. W problemach

klasyfikacyjnych używana jest najczęściej funkcja softmax (w przypadkach kiedy

zwracane jest prawdopodobieństwo przynależności do konkretnej klasy) lub

sigmoidalna (w przypadkach gdy wyniki nie są rozkładem prawdopodobieństwa i nie

muszą się sumować do 1). W zależności od potrzeb mogą tu też być stosowane inne

funkcje, jak np. funkcja ReLU w przypadku gdy ujemne wartości chcemy zastąpić

zerem.





Tabela 3.1: Podstawowe funkcje aktywacji.

Funkcja aktywacji Wzór

Linear f(x) = x

Sigmoid f(x) = σ(x) = 1
1+e−x

Tanh f(x) = tanh(x) = ex−e−x
ex+e−x

ReLU f(x) =


0, dla x < 0.

x, dla x ­ 0.

Softmax f(~x) =
exi∑K
j=1 e

xj

Uwaga: K oznacza liczbę klas klasyfikatora, exi i exi to funkcje wykładnicze wektorów wejściowego

i wyjściowego

Rysunek 3.15: Przebieg funkcji aktywacji.

Źródło: opracowanie własne





3.3.4 Pozostałe hiperparametry

Wybór i ilość hiperparametrów, których wartości należy ustalić zależy w dużej

mierze od specyfikacji problemu oraz wybranej architektury sieci. Poniżej

przedstawione zostały pozostałe hiperparametry, których optymalizację podjęto także

w części empirycznej pracy.

Funkcja straty rozumiana jako hiperparametr, jest wybraną funkcją

optymalizowaną przez sieć. Najbardziej typowe funkcje straty wykorzystywane

w sieciach uczenia głębokiego to MSE oraz funkcja entropii krzyżowej (ang.

cross-entropy), z których wybrane dokładniej opisane zostały w rozdz. 2.7 Dobór

odpowiedniej funkcji straty stanowi jeden z podstawowych kroków podczas

konstruowania sieci, dlatego należy zwrócić szczególną uwagę na wybór

odpowiedniego typu funkcji. Niektóre problemy wymagają także modyfikacji lub

stworzenia własnych funkcji straty w celu zoptymalizowania działania sieci

w kontekście danego problemu (zob. Michańków i in. [2022]).

Innym ważnym elementem jest współczynnik uczenia (ang. lerning rate), który

odpowiada za tempo uczenia się sieci (zob. Plagianakos i in. [2001], Liu i in. [2021]).

Parametr ten kontroluje, w jaki sposób wagi neuronów zmieniane są przez algorytm

uczenia gradientowego podczas optymalizacji funkcji straty (zob. wzór 3.19 ). Mniejsza

wartość tego parametru powoduje wydłużenie procesu trenowania, jednak ustalenie tej

wartości zbyt nisko może skutkować zakończeniem trenowania w minimum lokalnym

lub punkcie siodłowym (ang. saddle point). Z kolei ustawienie zbyt wysokiej wartości

może doprowadzić do pominięcia minimum globalnego (zob. rys. ).

Rysunek 3.16: Optymalizacja funkcji straty w zależności o wartości współczynnika uczenia.

Uwaga: Figura (a) przedstawia sytuację, w której wartość jest zbyt niska, figura (b): wartość

współczynnika jest optymalna, figura (c): wartość współczynnika jest zbyt duża. Źródło:

Opracowanie własne, na podstawie Jordan [2018].

7Funkcja entropii krzyżowej wykorzystywana jest przede wszystkim w problemach

klasyfikacyjnych.





Parametr batch size określa ilość danych (rozmiar partii wsadowej), które brane

są pod uwagę podczas kolejnych przejść przez dane zbioru uczącego sieci (epok)

podczas fazy uczenia. Optymalna wielkość tego hiperparametru zależy przede

wszystkim od architektury dostępnego sprzętu komputerowego, może jednak także

wpływać na zdolności generalizacyjne modelu (zob. Goodfellow i in. [2016]). W

sieciach bezstanowych sieciach LSTM, poprzez zmianę wartości tego hiperparametru

można kontrolować długość pamięci długoterminowej.

W modelowaniu danych sekwencyjnych ustalana jest także długość sekwencji

(określana również jako długość wektora wejściowego, sample, instance lub feature

vector) czyli przykładowo liczba obserwacji które brane są pod uwagę przy

dokonywaniu pojedynczej prognozy (zob. Chollet i Allaire [2018]). Poszczególne

partie wsadowe danych złożone są z określonej liczby takich sekwencji. Długość

sekwencji ustalana jest indywidualnie, w zależności od specyfikacji danego problemu.

Dodatkowo, poszczególne typy sieci mają swoje własne specjalistyczne

hiperparametry, które trzeba ustalić przed procesem uczenia. Przykładowo w sieciach

konwolucyjnych bardzo istotną rolę odgrywają takie parametry jak liczba filtrów i ich

rozmiar. Parametry szczegółowe dla tych typów sieci dokładniej opisane są

w punktach dotyczących poszczególnych architektur sieci: 3.1.2 i 3.1.3 oraz

w podrozdziale 5.3.

3.3.5 Automatyzacja procesu dostrajania

Proces dostrajania hiperparametrów można częściowo zautomatyzować,

korzystając z rozwiązań algorytmicznych. Jednym z popularnych narzędzi jest

KerasTuner, zaproponowany przez O’Malleya i in. [2019]. Narzędzie to pozwala na

zautomatyzowanie wyboru najlepszych wartości dla poszczególnych hiperparametrów

lub ich kombinacji. Wyszukiwanie wartości dokonywane może być losowo (poprzez

sprawdzenie wszystkich wartości i kombinacje parametrów) lub w sposób

algorytmiczny, np. przy pomocy algorytmu Hyperband (Li i in. [2018]). Algorytm ten

działa w sposób turniejowy, testując duża liczbę zestawów hiperparametrów na kilku

początkowych epokach, przenosząc następnie do kolejnego etapu tylko najlepiej

spisujące się kombinacje lub hiperparametry. Takie podejście pozawala na znaczne

skrócenie czasu potrzebnego na znalezienie optymalnych ustawień wartości

hiperparametrów.





3.4 Sieci uczenia głębokiego w prognozowaniu

szeregów czasowych

Poniżej, na podstawie wybranych publikacji omówiono badania, których autorzy

wykorzystywali podstawowe typy sieci neuronowych, w szczególności sieci

rekurencyjnych i konwolucyjnych, w modelowaniu szeregów czasowych instrumentów

finansowych.

Chen i in. [2015] zaproponowali model wykorzystujący sieci LSTM do

prognozowania stóp zwrotu spółek notowanych na giełdach SSE (ang. Shanghai Stock

Exchange) i SZSE (ang. Shenzhen Stock Exchange), na danych z lat od 1990 do 2015

roku. Badania wykazały, że metody z wykorzystujące sieci LSTM przynosiły znacząco

lepsze rezultaty w porównaniu z predykcją losową. W podobnych badaniach, również

z wykorzystaniem sieci LSTM, Zhang i in. [2018b] stworzyli model wieloczynnikowy,

służacy do prognozowania stóp zwrotu indeksu giełdowego CSI300. Model został

następnie wykorzystany do podejmowania decyzji klasyfikacyjnych, dotyczących

wyboru poszczególnych akcji podczas tworzenia strategii inwestycyjnej. Rezultaty

badań na danych spoza próby wskazywały na trafność predykcji nieznacznie powyżej

50%.

Fischer i Krauss [2018] wykorzystali modele uczenia głębokiego bazujące na

sieciach LSTM do prognozowania kierunku zmian cen akcji spółek indeksu S&P 500,

stosując w tym celu dane dotyczące dziennych zwrotów z lat od 1992 r. do 2015 r.

Przeprowadzono także analizę porównawczą z modelami wykorzystującymi regresję

logistyczną, sieciami DNN (ang. Deep Neural Networks i las losowy (ang. random

forest). Wyniki badań wykazały, że sieci LSTM osiągają najlepsze wyniki spośród

badanych narzędzi.

Chong i in. [2017] zbadali możliwości predykcyjne algorytmów stworzonych na

podstawie rekurencyjnych sieci uczenia głębokiego. Jako modelowany zbiór danych

użyte zostały pięciominutowe obserwacje 38 spółek koreańskiej giełdy KOSPI,

w postaci logarytmicznych stóp zwrotu, pochodzące z okresu od stycznia 2010 r. do

grudnia 2014 r. Badania wykazały, że wykorzystanie metod uczenia głębokiego

przyczyniło się do poprawienia możliwości predykcyjnych badanych modeli.

Sieci uczenia głębokiego LSTM wykorzystane zostały także do stworzenia strategii

opartej na sentymencie rynkowym w pracy Jiahong Li i in. [2017]. Badacze

wykorzystali naiwny klasyfikator bayesowski w celu oceny nastroju inwestorów na

podstawie tekstów pobranych ze źródeł internetowych. Wyniki następnie połączone

zostały z danymi giełdowymi, pochodzącymi z notowań spółek indeksu CSI300,

i użyte jako dane wejściowe w modelu wykorzystującym sieć LSTM. Zaproponowany





przez badaczy model dawał wyniki trafności predykcji znacząco lepsze niż pozostałe

testowane przez autorów metody, takie jak modele bazujące na maszynach wektorów

nośnych.

Dixon i in. [2017] z powodzeniem wykorzystali głębokie sieci neuronowe DNN do

budowy strategii algorytmicznego handlu towarami i kontraktami walutowymi. W

badaniach wykorzystane zostały dane dotyczące 43 różnych towarów i walut z lat

1991 do 2014. Uzyskane wyniki wykazały, że wykorzystanie sieci głębokich może

znacząco poprawić efektywność strategii inwestycyjnych.

Di Persio i Honchar [2016] porównali modele predykcyjne oparte na różnych typach

sieci neuronowych w prognozowaniu zmian kierunkowych indeksu giełdowego S&P 500.

Zbadane zostały klasyczne sieci MLP (ang. Multi-layer Perceptron) a także sieci uczenia

głębokiego CNN oraz LSTM. Spośród porównywanych typów sieci nieznacznie lepsze

rezultaty uzyskały sieci konwolucyjne. Badacze zwracają także uwagę na bardzo dobre

wyniki uzyskiwane przez modele łączące kilka typów sieci (ang. ensemble models).

Hansson [2017] wykorzystał modele bazujące na sieciach LSTM do porównania

możliwości predykcyjnych sieci tego typu na rynkach o różnej efektywności.

Wykorzystał do tego celu dane z lat od 2009 r. do 2017 r. pochodzące z indeksów

giełdowych USA (S&P500), Brazylii (Bovespa) oraz Szwecji (OMX). Rezultaty,

przedstawione w badaniu wykazały, że sieci LSTM charakteryzują się trafnością na

poziomie 51-52% przy prognozowaniu kierunku zmian i najlepiej spisywały się

w prognozowaniu rynków mniej efektywnych (OMX).

Cao i Wang [2019] analizowali modele bazujące na sieciach CNN służących do

predykcji wartości pięciu indeksów giełdowych. Zaproponowali także autorskie

rozwiązanie w postaci hybrydowego modelu CNN-SVM oraz przeprowadzili badania

wpływu zmiany wartości poszczególnych hiperparametrów na uzyskiwane rezultaty.

Badania wykazały, że modele CNN-SVM oraz CNN cechują się wyższą trafnością

prognoz w porównaniu z modelami SVM i BP (ang. back-propagation).

Kijewski i Ślepaczuk [2020] wykorzystali modele bazujące na sieciach LSTM do

prognozowania cen indeksu S&P 500 z okresu od 2000 r. do 2020 r. Uzyskane wyniki

porównali z modelami ARIMA oraz klasycznymi strategiami inwestycyjnymi. W

badaniach przeprowadzona została także dokładna analiza wrażliwości, w celu

zbadania wpływu zmian poszczególnych parametrów modeli (w tym hiperparametrów

sieci LSTM) na uzyskiwane przez nie prognozy.

W przedstawionym w powyższym podrozdziale zestawieniu badań, zauważyć

można, że sieci uczenia głębokiego wykazują wysoką efektywność podczas

rozwiązywania problemów związanych z predykcją stóp zwrotów różnych aktywów

finansowych. Szczególnie często wykorzystywane są w tym celu sieci sieci





rekurencyjne LSTM, a także sieci konwolucyjne. Te dwa rodzaje sieci posłużą jako

główne składowe modeli hybrydowych, które omówione zostaną w kolejnym rozdziale.





Rozdział 4

Predykcyjne modele hybrydowe

łączące metody ekonometryczne

i techniki uczenia głębokiego

Autorskie rozwiązania zaproponowane w ramach tej pracy opierają się przede

wszystkich na połączeniu metod ekonometrycznych z sieciami uczenia głębokiego, co

zdaniem autora przyczynić się może do poprawy prognoz uzyskiwanych

z wykorzystaniem tych narzędzi. W ramach tego rozdziału, przeanalizowane zostały

wybrane modele hybrydowe proponowane w literaturze, a następnie przedstawione

propozycje autorskich modeli hybrydowych służących do uzyskiwania punktowych

prognoz zmienności, a także sieciowe modele umożliwiające prognozowanie

parametrów całych rozkładów prawdopodobieństwa przyszłych stóp zwrotu.

4.1 Przegląd i analiza możliwości predykcyjnych

modeli hybrydowych

W pierwszej kolejności przedstawione zostały wybrane publikacje dotyczące badań

nad modelami hybrydowymi, wykorzystywanymi do punktowego prognozowania

zmienności. Prace te analizowane są zarówno pod kątem struktur proponowanych

modeli, jak i uzyskanych z ich wykorzystaniem wyników.

Monfared i Enke [2014] wykorzystali modele klasy GARCH w połączeniu

z sieciami neuronowymi do prognozowania zmienności indeksu giełdowego NASDAQ

Composite. Jako dane wejściowe użyte zostały prognozy zmienności dziesięciu

indeksów (dotyczących poszczególnych sektorów gospodarki, wchodzących w skład

NASDAQ), uzyskane przez model GJR-GARCH. Dane w postaci
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dziesięciowymiarowego wektora przekazane zostały kolejno do sieci FFBP (ang. Feed

Forward with Back Propagation), GR (ang. Generalized Regression) oraz RBF (ang.

Radial Basis Function). Dane źródłowe, pochodzące z okresu od 1997 do 2011 roku,

podzielone zostały na cztery okresy testowe, w ramach których oceniane były

poszczególne modele. Do ocen prognoz wykorzystana została miara MSE. Z pośród

badanych typów modeli, najlepsze rezultaty w trzech okresach testowych (1997-2000,

2002-2003 i 2005-2008) uzyskał model wykorzystujący sieć RBF. W ostatnim okresie,

2010-2011, najlepiej spisywał się model wykorzystujący sieć GR. Ogólnie, we

wszystkich okresach modele hybrydowe dawały lepsze wyniki niż model

GJR-GARCH, przy czym modele te najlepsze wyniki uzyskiwały w okresach

charakteryzujących się wysoką zmiennością.

W badaniach nad modelami hybrydowymi, Kim i Won [2018] jako wartości

wejściowych do sieci LSTM oraz sieci DFN (ang. Deep Feedforward Network) użyli

oszacowań poszczególnych parametrów modeli GARCH, EGARCH oraz EWMA

(oznaczanych dalej kolejno jako G,E,W). Dodatkowo na wejściu do sieci wykorzystane

zostały także logarytmiczne stopy zwrotu indeksu KOSPI, stopy procentowe, oraz

ceny surowców złota i ropy. Stworzone zostały w ten sposób modele hybrydowe

G/E/W - DFN/LSTM. Proponowane przez autorów modele wykorzystane zostały do

prognozowania zmienności koreańskiego indeksu giełdowego KOSPI 200.

Jednookresowe prognozy zmienności uzyskiwane były na podstawie sekwencji

wejściowej o długości 22 dni. Stosując miary MAE, MSE, HMAE i HMSE badacze

wykazali, że najlepsze wyniki uzyskał model GEW-LSTM, łączący sieci LSTM

jednocześnie z trzema modelami: GARCH, EGARCH oraz EWMA. W kolejnej części

badań modele przeanalizowane zostały także pod kątem różnych długości sekwencji

wejściowych (7, 15 i 22 dni) oraz długości prognoz (1, 14, 21 dni). Wartość błędu

malała wraz z wydłużaniem długości sekwencji wejściowej i rosła przy wydłużaniu

okresu prognozowanego.

Podobne badania, dotyczące prognozowania zmienności cen surowca miedzi,

przeprowadzili Hu i in. [2020]. W tym celu Autorzy stworzyli modele hybrydowe

łączące klasyczne sieci neuronowe, sieci rekurencyjne oraz model GARCH(1,1).

Spośród sieci rekurencyjnych zbadane zostały sieci LSTM oraz dwukierunkowe sieci

BLSTM (ang. Bidirectional LSTM ). Te ostatnie charakteryzują się wykorzystaniem

dodatkowej warstwy wstecznej, która przetwarza informacje w przeciwnym kierunku.

Jako dane wejściowe wykorzystane zostały 21 wskaźniki przedstawiające ceny

podstawowych metali, wybrane kursy walut indeksy giełdowe i futures, oraz wskaźnik

inflacji, z lat 2008 do 2018. Dane te wraz z prognozami zmienności uzyskanymi przy

pomocy modelu GARCH, służyły jako sygnały wejściowe do sieci LSTM-ANN. Do





sieci przekazywane były dane roczne (252 dni), a prognozowana była zmienność na

okres 10-dniowy oraz 40-dniowy. W badaniach porównane zostały wyniki sześciu

typów modeli: ANN, LSTM-ANN, BLSTM-ANN, GARCH-ANN,

GARCH-LSTM-ANN, oraz GARCH-BLSTM-ANN. Do oceny jakości prognoz

wykorzystane zostały w tym przypadku miary MSE, MAE, RMSE i MAPE. Na

podstawie wyników badań Autorzy stwierdzili, że zastosowanie modelu GARCH

w warstwie wejściowej sieci znacznie poprawia prognozy modelu w porównaniu

z modelami składającymi się wyłącznie z sieci neuronowych. Zauważono także, że

zastosowanie sieci LSTM oraz BLSTM przynosi lepsze wyniki w porównaniu

z klasycznymi sieciami ANN. Z pośród wszystkich badanych modeli, najlepsze wyniki

uzyskał model GARCH-LSTM-ANN.

Kristjanpoller i Hernández [2017] zastosowali podobne podejście w badaniach

dotyczących prognozowania zmienności cen metali szlachetnych. W strukturze

badanych przez nich modeli hybrydowych, jako dane wejściowe wykorzystane zostały

prognozy uzyskane przez modele ARCH, GARCH, NARCH, TARCH oraz APARCH.

Prognozy te, wraz z innymi zmiennymi wejściowymi, użyte zostały jako wejścia do

sieci ANN(l, n), gdzie l oznacza ilość warstw sieci, zaś n to liczba neuronów

w poszczególnych warstwach. Badania przeprowadzone były z wykorzystaniem

danych z okresu od 1999 roku do 2014 roku. Jako dodatkowe zmienne objaśniające

wykorzystane zostały: stopy zwrotu z indeksów SZSE, FTSE i SBSE, kursy walut

USD-EUR, USD-YEN oraz ceny ropy. Jako funkcja straty użyta została miara

HMSE, natomiast do testowania efektywności modeli — miara MCS (ang. Model

Confidence Set). Analizując przedstawione przez Autorów wyniki, można zauważyć,

że oceny błędów prognoz ulegały poprawie w zależności od ilości warstw

zastosowanych w sieci ANN — najlepsze rezultaty uzyskiwały sieci o architekturze

składającej się z 3-6 warstw. Na jakość prognoz wpływał także dobór odpowiedniej

podklasy modelu GARCH oraz ilości dodatkowych zmiennych użytych jako sygnały

wejściowe do sieci.

Liu i So [2020] wykorzystali modele hybrydowe do prognozowania zmienności cen

indeksu S&P500. Badacze skupili się na modelu wykorzystującym prognozy

uzyskanych przez model GARCH oraz sieć LSTM. Celem badań było przede

wszystkim znalezienie optymalnej architektury sieci. Jako dane wykorzystane zostały

dzienne stopy zwrotu z lat 2000-2020, natomiast do oceny trafności prognoz

zastosowana została miara MAE. W badaniach przetestowane zostały poszczególne

architektury sieci: LSTM(32), LSTM(32)+dense(16), LSTM(32)+dense(16-8),

LSTM(32)+Dense(16-8-4), LSTM(32)+Dense(32-16-8),

LSTM(32)+Dense(64-32-16-8), gdzie w nawiasach podane zostały liczby neuronów na





poszczególnych warstwach. Spośród testowanych architektur najlepsze wyniki

uzyskała sieć LSTM(32)+Dense(32-16-8). Autorzy zwrócili także uwagę na fakt, że

sieci o większej liczbie warstw, charakteryzujące się większą liczbą parametrów, są

bardziej podatne na przeuczenie.

Na podstawie opisanych powyżej struktur modeli hybrydowych, można

wnioskować, że w proponowanych w literaturze modelach hybrydowych

wykorzystywanych do prognozowania zmienności spośród specyfikacji modeli GARCH

zwykle wybierane są modele asymetryczne, takie jak EGARCH oraz GJR-GARCH.

Prognozy wykorzystane z użyciem tych modeli są następnie wykorzystywane jako

sygnały wejściowe w sieciach neuronowych w celu uzyskania ostatecznych prognoz

zmienności. Przedstawione wyniki badań pokazują, że modele hybrydowe można

z powodzeniem wykorzystywać do prognozowania zmienności instrumentów

finansowych, a uzyskane w ten sposób prognozy najczęściej są lepsze w porównaniu

z wynikami klasycznych modeli GARCH.

W tym miejscu odnieść można się także do literatury dotyczącej modeli

wykorzystujących sieci uczenia głębokiego w prognozowaniu parametrów rozkładu

prawdopodobieństwa. W tym zakresie wskazać należy przede wszystkim pracę Chen i

in. [2020] oraz monografię 2020. Ponieważ publikacje te nie dotyczą jednak

prognozowania finansowych szeregów czasowych, prezentowane w nich wyniki nie

będą tutaj dokładnie omawiane. Zaznaczyć jednak należy, że przedstawione w nich

koncepcje stanowią pewne podstawy, na których zaproponowane zostały autorskie

rozwiązania sieciowych modeli probabilistycznych, omówione w punkcie 4.2.2.

4.2 Propozycja nowych modeli

Bazując na przedstawionych w powyższym podrozdziale rozważaniach, można

stwierdzić, że sieci uczenia głębokiego, zarówno te z grupy sieci rekurencyjnych, jak

i konwolucyjnych, można z powodzeniem stosować jako dodatkowe uzupełnienie

modeli zmienności, takich jak modele klasy GARCH, w prognozowaniu zmienności

oraz przy szacowaniu ryzyka. Na tej podstawie, w dalszej części pracy przedstawione

zostały propozycje rozwiązań, łączących metody ekonometryczne oraz sieci

neuronowe w modele hybrydowe.

Główną zaletą modeli hybrydowych wykorzystujących sieci uczenia głębokiego

jest przede wszystkim ich elastyczność. Sieci pozwalają na stosowanie jako zmiennych

wejściowych dowolnych danych, w tym przypadku wygasłych prognoz zmienności

uzyskanych przez dowolne modele i estymatory. Duże możliwości daje także wybór

odpowiedniej wartości pożądanej sieci. Taka elastyczność sprawia, że tworzyć można





w zasadzie dowolne połączenia metod statystycznych lub ekonometrycznych

z modelami sieciowymi. W podobny sposób można tutaj wykorzystać także prognozy

uzyskane przez inne modele zmienności, takie jak modele SV, oraz przeprowadzić

analizę wielowymiarową. Dodatkowo, większość prezentowanych w literaturze badań

wskazuje na zauważalną poprawę prognoz zmienności w przypadku modeli

hybrydowych.

Do słabości modeli prezentowanych w publikacjach przedstawionych

w podrozdziale 4.1 zaliczyć można: wykorzystywanie tylko jednej specyfikacji

GARCH, porównanie z zmiennością historyczną jako estymatorem zmienności,

skupianie się wyłącznie na jednym typie rozkładu warunkowego (często nawet nie

wspominano jaki rozkład został wybrany), badanie zmienności tylko na jednym

szeregu, nie stosowanie ruchomego okna. Dodatkowo, w zasadzie w żadnych spośród

wymienionych badań dotyczących modelowania finansowych szeregów czasowych nie

próbowano prognozować (zmiennych w czasie) parametrów całych rozkładów

warunkowych.

W poniższych punktach zaprezentowane zostały autorskie rozwiązania,

a w szczególności modele oparte na architekturze ARMA-GARCH-LSTM,

wykorzystywane do punktowych prognoz zmienności, oraz modele NN-D stosowane

do przede wszystkim do prognozowania probabilistycznego. 1

4.2.1 Hybrydowy model punktowych prognoz zmienności

Pierwszy spośród proponowanych modeli hybrydowych służy do uzyskiwania

jednookresowych punktowych prognoz zmienności. Składa się on z trzech

zasadniczych komponentów, wykorzystujących kolejno metody ekonometryczne, sieci

uczenia głębokiego oraz estymator zmienności GKYZ.

W pierwszej części modelu wykorzystywane są struktury ARMA-GARCH do

uzyskania jednookresowych prognoz zmienności. Opóźnienia części AR oraz MA w tej

strukturze ustalane są na podstawie kryteriów informacyjnych AIC oraz BIC (zob.

punkt 2.4.2) dla każdego z badanych aktywów finansowych. Z kolei do modelowania

warunkowej wariancji wykorzystywane są następujące specyfikacje: GARCH(1,1),

EGARCH(1,1), GJR-GARCH(1,1) oraz APARCH(1,1) o zadanych rozkładach

warunkowych: normalnym, t-Studenta i skośnym t-Studenta (zob. tabela 4.1).

1Choć ich struktura umożliwia także prognozowanie punktowe.





Tabela 4.1: Wybrane specyfikacje modeli klasy GARCH i oraz użyte typy rozkładów warunkowych.

Specyfikacje modelowe Rozkłady warunkowe

GARCH (1,1)

EGARCH (1,1)

GJR-GARCH (1,1)

APARCH (1,1)

normalny

t-Studenta

Skośny t-Studenta

Źródło: Opracowanie własne.

W drugiej części modelu, prognozy uzyskane przy pomocy wymienionych powyżej

modeli wykorzystane są jako dane wejściowe do rekurencyjnej sieci LSTM.

Zastosowanie komponentu sieciowego ma za zadanie poprawę prognoz zmienności

poprzez modelowanie ewentualnych dodatkowych zależności nieliniowych. Z kolei na

wyjściu sieci, w celu oceny stopnia zgodności generowanych prognoz z wartościami

pożądanymi, stosowany jest jeden z estymatorów bazujących na zakresie cen —

estymator Garmana-Klassa zmodyfikowany o skoki między cenami otwarcia

i zamknięcia (zob. punkt 2.3.2 oraz Yang i Zhang [2000]). Struktura proponowanego

modelu przedstawiona została na rysunku 4.1.





Rysunek 4.1: Schemat modelu hybrydowego ARMA-GARCH-LSTM.

Uwaga: σg1:t oznacza wygasłe prognozy zmienności, uzyskane z wykorzystaniem modelu

ARMA-GARCH, σht+1 prognozę zmienności z modelu hybrydowego, natomiast σGKY Zt+1 jest wartością

pożądaną, czyli zmiennością uzyskaną przy pomocy estymatora GKYZ.

Źródło: Opracowanie własne.

Specyfikacje modelu sieciowego (struktura sieci i wartości poszczególnych

hiperparametrów) oraz informacje dotyczące danych wejściowych (wybrane aktywa

finansowe oraz sposób podziału danych wejściowych) zostały dokładnie przedstawione

w podrozdziałach 5.3 oraz 5.5.

Zaproponowana konstrukcja modelu hybrydowego umożliwia wykorzystanie

różnych specyfikacji modeli klasy GARCH, także o różnych typach rozkładów

warunkowych. Elastyczność takiej architektury umożliwia także stosowanie innych

typów modeli zmienności (jak przykładowo modele SV). Dodatkowo, poprzez zmianę

wartości pożądanych sieci możliwe jest także użycie dowolnego estymatora

zmienności, do którego komponent sieciowy modelu jest uczony. Możliwa jest także

zmiana typu wykorzystywanej sieci neuronowej, przykładowo na jednowymiarową sieć

konwolucyjną lub rekurencyją sięć GRU.

Ponieważ, jak przedstawiono w poprzednim podrozdziale, sama koncepcja

łączenia modeli GARCH z sieciami neuronowymi nie jest nowa, należy wskazać

elementy, które w proponowanym podejściu zostały usprawnione. Pierwszą rzeczą, na

którą warto zwrócić uwagę w dotychczas publikowanych badaniach jest fakt, że jako





estymator służący do wskazania wartości pożądanych sieci najczęściej

wykorzystywany jest estymator bazujący na zmienności historycznej, HV (zob. np.

Kim i Won [2018], Kristjanpoller i Minutolo [2018]). W przypadku proponowanego

w niniejszej dysertacji modelu hybrydowego korzystamy z estymatora GKYZ –

znacznie efektywniejszego w stosunku do oszacowań HV. Decyzja o użyciu tego

estymatora podyktowana jest przede wszystkim tym, że jest on stosunkowo prosty

w konstrukcji, a przy tym nie zakłada stałości zmienności w czasie (jak ma to miejsce

w przypadku estymatora HV). Nie wymaga też stosowania danych o częstotliwości

wyższej niż dzienna (tak jak estymatory zmienności zrealizowanej, RV), dzięki czemu

jest mniej narażony na efekty mikrostruktury rynku. Łatwy dostęp do historycznych

notowań o częstotliwości dziennej pozwala także na testowanie wsteczne modeli na

relatywnie długim okresie czasu i dla dużej liczby aktywów. Fiszeder [2020] podkreśla

także, że estymatory bazujące na zakresie cen coraz częściej stosowane są jako miara

służąca do oceny modeli zmienności.

Kolejna zmiana dotyczy danych wejściowych użytych w komponencie sieciowym.

Zamiast stosowania dodatkowych zmiennych wejściowych do sieci, takich jak np.

oceny poszczególnych parametrów modelu GARCH (jak w pracy Kim i Won [2018]),

rozważone zostały prognozy uzyskane z różnych specyfikacji modeli GARCH

wykorzystujących dodatkowo różne typy warunkowych rozkładów

prawdopodobieństwa, co zdaniem autora w większy sposób może przyczynić się do

poprawy uzyskiwanych prognoz. W niektórych badaniach (zob. np. Hu i in. [2020]),

jako dane wejściowe do sieci używane były również dane z estymatorów zmienności.

W tym przypadku jednak zdecydowano się na użycie estymatora tylko jako wartości

pożądanych sieci, nie wykorzystując go jako zmiennej wejściowej. W ten sposób

wyniki uzyskane za pomocą modeli hybrydowych można bezpośrednio porównać

z wynikami otrzymanymi w modelach GARCH, które służyły jako dane wejściowe do

sieci, aby sprawdzić, czy element sieciowy faktycznie poprawia jakość uzyskanych

prognoz2.

Proponowany model hybrydowy, poprzez wprowadzenie wskazanych powyżej

modyfikacji, powinien lepiej uwzględniać specyficzne własności danych finansowych,

co w rezultacie może przyczynić się do poprawy uzyskiwanych z jego wykorzystaniem

prognoz. Wyniki punktowych prognoz zmienności uzyskane przez poszczególne

specyfikacje model hybrydowego przedstawione zostały w punkcie 5.5.1, natomiast

wyniki dotyczące prognoz ryzyka w punkcie 5.5.2. Analiza porównawcza modeli

2We wspomnianych badaniach sprawdzana była sytuacja odwrotna, mianowicie sprawdzano, czy

dodanie prognoz uzyskanych przy pomocy modeli GARCH jako danych wejściowych do sieci wpłynie

pozytywnie na prognozy modelu sieciowego.





hybrydowych z wybranymi specyfikacjami modeli klasy GARCH przedstawiona

została w punkcie 6.1.2.

4.2.2 Model prognoz probabilistycznych

Jako drugi typ modelu zaproponowany został model służący do predykcji

probabilistycznych. Pozwala on na prognozowanie całych rozkładów

prawdopodobieństwa przyszłych stóp zwrotu, poprzez modelowanie poszczególnych

parametrów zadanego typu rozkładu. Dzięki temu wyniki uzyskane przez taki model

można bezpośrednio wykorzystać np. w prognozowaniu ryzyka kapitałowego, bez

konieczności wykorzystywania dodatkowych parametrów (średniej, liczby stopni

swobody czy skośności) z modeli GARCH, jak miało to miejsce w przypadku modeli

hybrydowych, omawianych w poprzednim punkcie. Specyfikacja modelu

wykorzystująca wyłącznie zadaną sieć neuronową do uzyskania prognoz całego

rozkładu prawdopodobieństwa pozwala więc na lepszą (bardziej bezpośrednią) ocenę

możliwości predykcyjnych modeli opartych wyłącznie na sieciach neuronowych.

Poniżej przedstawiony został sposób konstrukcji sieciowego modelu

probabilistycznego, wychodząc od założeń ekonometrycznych.

Niech xt oznacza wektor danych wejściowych do sieci, zawierający przeszłe

informacje o stopach zwrotu i oszacowania zmienności (zob. rysunek 4.2),

wykorzystywany do modelowania bieżącej wartości rt. Proponowany model można

zapisać za pomocą następujących równań:

rt = µ(xt) + εt, (4.1)

εt = σ(xt)zt, (zt|xt) ∼ iiD
(
η(xt)

)
, (4.2)

σ2
t = σ2(xt), (4.3)

gdzie D oznacza zadany z góry typ rozkładu prawdopodobieństwa o parametrach η(xt):

fD(zt;xt) =


f

(1)
N (zt; 0, 1), gdy D ≡ N

f
(1)
St

(
zt; 0, 1, ν(xt)

)
, gdy D ≡ St

f
(1)
sSt

(
zt; 0, 1, ν(xt), ξ(xt)

)
, gdy D ≡ sSt

(4.4)

Funkcje µ(xt), σ2(xt), ν(xt) oraz ξ(xt) są Ψt−1-mierzalne, czyli są pewnymi

funkcjami tylko i wyłącznie przeszłości, na które nałożone są restrykcje w postaci:

σ2(xt) > 0, ν(xt) > 0, ξ(xt) > 0. Zależności zadane tymi funkcjami nie są definiowane





w żaden formalny sposób, co świadczy o wysokim poziomie ogólności proponowanego

modelu.

Równania 4.1-4.3 definiują (wysoce) nieliniowy model klasy ARMA-GARCH,

w którym dodatkowo zmienne w czasie są parametry νt oraz ξt. Ze względu na taką

specyfikację, do wyznaczenia parametrów poszczególnych rozkładów konieczne jest

użycie sieci neuronowej.

Parametry modelu sieciowego, ω, wyznaczać można poprzez minimalizację wartości

przeciwnej do logarytmu funkcji wiarygodności (ang. Negative Log-Likelihood - NLL,

zob. Duerr i in. [2020]), w postaci:

NLL(ω) = −
n∑
t=1

ln fD
(
rt;ω

)
. (4.5)

Zgodnie z powyższym, w wyniku minimalizacji funkcji NLL, otrzymujemy:

ω̂ = argminωNLL(ω). (4.6)

Łatwo pokazać, że postaci funkcji NLL dla poszczególnych rozważanych typów

rozkładu prawdopodobieństwa (o funkcjach gęstości zadanych wzorami 2.40, 2.42 oraz

2.44), są następujące:

– przy założeniu D ≡ N :

NLL(ω) =
n

2
ln(2π) +

1
2

n∑
t=1

lnσ2
t −

n∑
t=1

(rt − µt)2

2σ2
t

, (4.7)

– przy założeniu D ≡ St :

NLL(ω) = −
n∑
t=1

ln

Γ(νt+1
2 )

Γ(νt2 )

+
1
2

n∑
t=1

ln(νtπ)

+
1
2

n∑
t=1

lnσ2
t +

n∑
t=1

νt + 1
2

ln

1 +
(rt − µt)2

νtσ2
t

,
(4.8)

– przy założeniu D ≡ sSt :

NLL(ω) = −
n∑
t=1

ln

 2
ξt + ξ−1

t

+
n∑
t=1

lnσt

− ln
[
fSt(ξtzt; 0, 1, νt)H−(−zt) + fSt(ξ−1

t zt; 0, 1, νt)H+(zt)
]
.

(4.9)

Wartości parametrów ω są w istocie estymowane metodą największej





wiarygodności (zob. Duerr i in. [2020]), jednak z uwagi na bardzo ogólną postać

modelu, nie dają się udowodnić własności estymatora. Podobnie, nie dają się

wyprowadzić warunki ścisłej czy kowariancyjnej stacjonarności procesu

zdefiniowanego za pomocą równań (4.1 - 4.1). Z uwagi na wysoce nieliniową postać

modelu, „estymacja” jego parametrów (uczenie sieci) przeprowadzana może być tylko

za pomocą sieci neuronowych.

W modelu probabilistycznym prognozy jednookresowe przyjmują następującą

postać:

p(rt+1|Ψt;ω) =


f

(1)
N (rt+1;µt+1, σ

2
t+1), gdy D ≡ N

f
(1)
St (rt+1;µt+1, σ

2
t+1, νt+1), gdy D ≡ St

f
(1)
sSt(rt+1;µt+1, σ

2
t+1, νt+1, ξt+1), gdy D ≡ sSt

(4.10)

Typ sieci w modelu probabilistycznym nie musi być z góry określony, można

skorzystać z dowolnego typu sieci dostosowanego do pracy z danymi w postaci

finansowych szeregów czasowych. W ramach niniejszej rozprawy zastosowane zostały

w tym wypadku jednowymiarowe sieci konwolucyjne (CNN) lub sieci rekurencyjne

typu LSTM.

Zadaniem modelu NN-D jest prognozowanie całych rozkładów

prawdopodobieństwa (o określonym z góry typie) poprzez prognozowanie wartości

parametrów tych rozkładów. Za pomocą opisanych powyżej funkcji straty jesteśmy

w stanie prognozować wartości parametrów w chwili t + 1, dla wybranych rozkładów

(normalnego, t-Studenta i skośnego t-Studenta).3 Dla rozkładu normalnego

prognozowane są dwa parametry: µt oraz σt. Dla rozkładu t-Studenta dodatkowo

prognozowana jest wartość parametru νt, oznaczającego liczbę stopni swobody,

natomiast dla skośnego rozkładu t-Studenta dodatkowym, czwartym parametrem jest

ξt odpowiedzialny za modelowanie skośności tego rozkładu. Aby uzyskać takie wyniki,

na wyjściu sieci określona musi być także odpowiednia ilość neuronów: dwa dla

rozkładu normalnego (ponieważ prognozowane są wartości dwóch parametrów), trzy

dla rozkładu t-Studenta, i cztery neurony dla skośnego rozkładu t-Studenta.

Struktura modelu, dla jednowymiarowej sieci konwolucyjnej, prognozującego cztery

parametry skośnego rozkładu T-studenta przedstawiona została na rysunku 4.2.

3W nazwie modelu NN oznaczać będzie sieć neuronową, w tym przypadku sieć CNN lub LSTM,

zaś D oznaczać będzie typ konkretny rozkładu.





Rysunek 4.2: Model probabilistyczny CNN-SSTD, z czterema neuronami wyjściowymi zwracającymi

wartości parametrów skośnego rozkładu t-Studenta.

Źródło: Opracowanie własne.

Zwróćmy uwagę, że w hybrydowym modelu stosowanym do punktowego

prognozowania zmienności (zob. punkt 4.2.1), jako dane wejściowe do sieci służyły

prognozy uzyskane za pomocą specyfikacji modeli GARCH. Z kolei w przypadku

modelu probabilistycznego, na wejściu sieci, obok szeregu stóp zwrotu, wykorzystane

zostały oszacowania zmienności uzyskane z wykorzystaniem estymatora GKYZ.

Wynika to przede wszystkim z faktu, że w przypadku modelu stosowanego do

prognozowania punktowego wartości pożądane sieci musiały odpowiadać ustalonemu

„faktycznemu” poziomowi zmienności, w tym przypadku były to dane z estymatora.

W przypadku modelu probabilistycznego takie podejście nie jest konieczne — jako

wartości pożądane sieci wykorzystywane są jedynie zrealizowane stopy zwrotu, przez

co dane z estymatora mogą być wykorzystane także na wejściu sieci. Oczywiście, ze

względu na elastyczność sieci, estymator można było także wykorzystać na wejściu

sieci w modelu punktowym, a prognozy uzyskane za pomocą modeli GARCH jako

wejścia w modelu probabilistycznym, jednak spowodowało by to powstanie bardzo

dużej liczby podklas modelu do oceny w badaniach empirycznych.

Do podstawowych zalet zaproponowanego tu modelu NN-D zaliczyć należy przede

wszystkim możliwość prognozowania całego zadanego rozkładu prawdopodobieństwa

poprzez prognozowanie parametrów tego rozkładu, wyłącznie przy użyciu sieci





neuronowych. Co prawda podejście to nie jest nowe, jednak stosowane było

najczęściej do prognozowania parametrów rozkładu normalnego (jak w przypadku

pracy Duerr i in. [2020], w której autorzy prezentują podobną koncepcję na

przykładzie danych o charakterze medycznym, lub Chen i in. [2020], gdzie

wykorzystano dane sprzedażowe). Proponowany model skonstruowany został z myślą

o dodatkowych typach rozkładu, często wykorzystywanych w modelowaniu

finansowym, takich jak rozkład t-Studenta i skośny rozkład t-Studenta. W tym celu

wyznaczone zostały postaci funkcji straty (NLL) dla wspomnianych rozkładów. O ile

wśród gotowych narzędzi programistycznych dostępne są pakiety umożliwiające

prognozowanie parametrów rozkładu normalnego i t-Studenta (zob. Dillon i in.

[2017]), to wyznaczenie i implementacja funkcji NLL dla skośnego rozkładu

t-Studenta jest elementem nowości. Niewiele jest też badań wykorzystujących

podejście sieciowe do prognozowania rozkładów prawdopodobieństwa dla finansowych

szeregów czasowych. Także na tym gruncie proponowany model jest rozwiązaniem

nowatorskim.

Wykorzystanie w modelu komponentu sieci neuronowej pozwala na modelowanie

wysoce nieliniowych zależności. Dodatkowo, umożliwia także elastyczne szacowanie

i prognozowanie zmiennych w czasie parametrów liczby stopni swobody, νt, oraz

skośności, ξ. Takie rozwiązanie może przyczynić się do poprawy jakości prognoz

wartości tych parametrów, w stosunku do oszacowań uzyskanych przy pomocy modeli

kasy GARCH z warunkowym rozkładem prawdopodobieństwa, gdzie wartości tych

parametrów są stałe w czasie.

Prognozy uzyskane z wykorzystaniem probabilistycznych modeli sieciowych można

także wykorzystać w celu oszacowania poziomów wartości zagrożonej oraz

szacowanego niedoboru, analogicznie do tego jak zostało to opisane z podrozdziale

2.6. W tym kontekście, zaletą podejścia sieciowego, w stosunku do przedstawionych

w punkcie 4.2.1 modeli hybrydowych ARMA-GARCH-LSTM, jest niezależność

modelu od wyników uzyskanych przez modele GARCH. Ponieważ rezultatem prognoz

są parametry całego rozkład prawdopodobieństwa, a nie tylko punktowe oceny

zmienności, podczas szacowania VaR oraz ES nie jest koniecznie korzystanie

z prognoz wartości oczekiwanej (oraz ewentualnie liczby stopni swobody i skośności),

uzyskanych wcześniej przy pomocy modeli klasy GARCH.

Zaznaczyć należy także, że struktura opisywanych w tym punkcie modeli, pozwala

również na uzyskanie prognoz punktowych stóp zwrotu (rt+1|t) i zmienności (σt+1|t)

jednak nie będzie to przedmiotem rozważań w niniejszej pracy.

Minusem przedstawionej powyżej struktury modelu jest konieczność założenia

danego typu rozkładu warunkowego. Ponieważ rozkład nie jest znany, lepszym





podejściem byłoby takie, które nie wymagałoby zakładania z góry typu rozkładu.

Takie rozwiązanie dopuszczają przykładowo modele umożliwiające prognozowanie

poszczególnych kwantyli rozkładu (zob. Chen i in. [2020]). Naturalnym wydaje się

także zastosowanie w tym miejscu sieci bayesowskich (zob. podrozdział 3.1.4), jednak

wykracza to poza tematykę poruszaną w tej pracy.

Modele prognoz probabilistycznych ocenione zostały przy pomocy mierników

prognoz rozkładów prawdopodobieństwa, opisanych w punkcie 2.5.4, natomiast

wyniki empiryczne zaprezentowano w punkcie 5.6.1. Wyniki dotyczące szacowania

ryzyka, uzyskane przez modele prognoz probabilistycznych, przedstawione zostały

w punkcie 5.6.2, natomiast porównanie wyników modeli prognoz probabilistycznych

w zestawieniu z modelami punktowymi i GARCH pod względem szacowania ryzyka

przedstawione zostało w punkcie 6.1.2.





Rozdział 5

Empiryczna ewaluacja modeli

predykcyjnych

Szeroko zakrojone badania empiryczne stanowią istotny element niniejszej

rozprawy, pozwalający na dokładną ocenę możliwości predykcyjnych analizowanych

modeli. Szczegółowa prezentacja rezultatów badań przedstawiona została

w poniższym rozdziale, zaś w rozdziale 6 przeprowadzona została analiza

porównawcza poszczególnych specyfikacji modelowych. Wyniki omówione zostały

także w odniesieniu do celów i hipotez badawczych.

5.1 Charakterystyka analizowanych zbiorów

danych

Podstawę badań empirycznych przeprowadzonych w niniejszej pracy stanowią

dane dotyczące wybranych indeksów giełdowych, reprezentujących rynki o różnych

stopniach rozwoju gospodarczego. Podział na rynki rozwinięte i wschodzące dokonany

został na podstawie klasyfikacji MSCI (ang. Morgan Stanley Capital International

zob. MSCI [2021]). W wyborze poszczególnych kierowano się także położeniem

geopolitycznym. Spośród rynków rozwiniętych wybrane zostały indeksy giełdowe:

S&P 500 (Stany Zjednoczone Ameryki), DAX (Niemcy) oraz NIKKEI 225 (Japonia).

Natomiast z rynków wschodzących wybrane zostały indeksy: Bovespa (Brazylia),

WIG (Polska), oraz KOSPI (Korea Południowa). W badaniach wykorzystane zostały

dzienne notowania poszczególnych indeksów, z okresu od 3 stycznia 2000 roku do 31

grudnia 2021 roku, pochodzące z serwisu finansowego Stooq (zob. stooq.com).

Wykresy dziennych notowań wspomnianych indeksów giełdowych przedstawione

zostały na rysunku 5.1.
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Rysunek 5.1: Dzienne notowania wybranych indeksów giełdowych w okresie od 3.01.2000 do końca

31.12.2021 roku.

Źródło: Opracowanie własne.

Na wykresach daje się zauważyć trend wzrostowy dla notowań wszystkich

indeksów, ale także duże spadki notowań w latach 2008 (związane z globalnym

kryzysem finansowych) oraz w roku 2020 (w związku z początkiem pandemii

COVID-19), przy czym zauważyć można, że załamanie notowań trwało znacznie

dłużej w przypadku kryzysu globalnego, co szczególnie widoczne jest na przykładzie

indeksu NIKKEI.

Wartości indeksów przekształcone zostały do postaci logarytmicznych stóp

zwrotu, wyrażonych w punktach procentowych i w takiej postaci wykorzystywane

były jako dane wejściowe do poszczególnych modeli. Kształtowanie się szeregów stóp

zwrotu przedstawione zostało na rysunku 5.2. W zaprezentowanych na rysunku

szeregach zwrócić można uwagę na występowanie obserwacji odstających

(nietypowych) zauważyć można także zgrupowania zmienności, widoczne szczególnie

w okresach kryzysowych. Okresy o zwiększonej zmienności lepiej widoczne są na

rysunku 5.3, przedstawiającym kwadraty stóp zwrotu.





Rysunek 5.2: Logarytmiczne stopy zwrotu wybranych indeksów giełdowych, wyrażone w punktach

procentowych.

Źródło: Opracowanie własne.

Rysunek 5.3: Kwadraty stóp zwrotu wybranych indeksów giełdowych.

Źródło: Opracowanie własne.

Wspomniane powyżej okresy o podwyższonej zmienności w latach 2008-2009 oraz

2020-2021 zauważyć można na wszystkich wykresach, przy czym najniższe wahania

w okresie 2008-2009 zanotował indeks WIG. W przypadku indeksu KOSPI, zauważyć

można także okres dużej zmienności w latach 2000-2004, związany prawdopodobnie

z azjatyckim kryzysem finansowym. Z kolei załamanie rynków związane z początkiem

pandemii w 2020 roku charakteryzuje się bardzo dużymi wahaniami występującymi

w krótkim okresie czasu. W tym przypadku, rynki azjatyckie (NIKKEI oraz KOSPI)

wykazują niższe wahania niż dla pozostałych indeksów.





Rysunek 5.4 przedstawia rozkłady empiryczne stóp zwrotu poszczególnych

indeksów, z dopasowanym rozkładem normalnym. Na wykresach można zauważyć, że

rozkłady empiryczne charakteryzują się występowaniem ilości odstających oraz

znacznie większą koncentracją wokół średniej.

Rysunek 5.4: Rozkłady wybranych instrumentów finansowych z naniesionym rozkładem normalnym.

Źródło: Opracowanie własne.

Dokładny opis statystyczny danych przedstawiony został w tabeli 5.1,

przedstawionej poniżej. Zaprezentowane w niej charakterystyki opisowe rozważanych

szeregów czasowych potwierdzają właściwości zaobserwowane na podstawie analizy

wykresowej. Dla wszystkich szeregów wartości średniej zbliżone są do zera, natomiast

wartości minimalne oraz maksymalne są na poziomie 10-13%, co wskazuje na istnieje

wartości znacząco odstających od średniej. Ujemny współczynnik skośności wskazuje

z kolei na lewostronną asymetrię rozkładu. Wysoki współczynnik kurtozy świadczy

natomiast o leptokurtyczności i grubych ogonach rozkładów, zaś wysokie wartości

współczynników zmienności wskazują na ogólnie wysoki poziom zmienności badanych

szeregów. 1 Na tej podstawie można stwierdzić, że rozważane szeregi czasowe

przejawiają typowe własności stóp zwrotu (zob. punkt 2.2.3).

1Współczynnik zmienności obliczono jako iloraz odchylenia standardowego i średniej, bez mnożenia

wyniki przez czynnik 100.





Tabela 5.1: Opis statystyczny danych.

Charakterystyka S&P N225 DAX WIG KOSPI IBOV

Ilość obs. 5283 5148 5329 5256 5163 5196

Średnia 0,0179 0,0071 0,0133 0,0209 0,0173 0,0375

Odch. std. 1,2554 1,4895 1,4909 1,2651 1,4938 1,8124

Wsp. zmien. 70,1340 209,7887 112,0977 60,5311 86,3468 48,3306

Min -12,7652 -12,1110 -13,0549 -13,5265 -12,8047 -15,9938

Maks 10,9572 13,2346 10,7975 6,0834 11,2844 13,6782

Skośność -0,3931 -0,3736 -0,1643 -0,5923 -0,5710 -0,3732

Kurtoza 10,9462 6,3532 5,7466 5,8565 7,0621 6,4722

Źródło: Opracowanie własne.

Zaprezentowane powyżej charakterystyki opisowe rozważanych szeregów

czasowych potwierdzają właściwości zaobserwowane na podstawie analizy

wykresowej. Dla wszystkich szeregów wartości średniej zbliżone są do zera, natomiast

wartości minimalne oraz maksymalne są na poziomie 10-13%, co wskazuje na istnieje

wartości znacząco odstających od średniej. Ujemny współczynnik skośności wskazuje

z kolei na lewostronną asymetrię rozkładu. Wysoki współczynnik kurtozy świadczy

natomiast o leptokurtyczności i grubych ogonach rozkładów, zaś wysokie wartości

współczynników zmienności wskazują na ogólnie wysoki poziom zmienności badanych

szeregów. 2 Na tej podstawie można stwierdzić, że rozważane szeregi czasowe

przejawiają typowe własności stóp zwrotu (zob. punkt 2.2.3).

W kolejnym kroku analizie poddane zostaną funkcje ACF oraz PACF dla stóp

zwrotu oraz ich kwadratów. Wykresy tych funkcji dla stóp zwrotu badanych indeksów

przedstawione zostały kolejno na rysunkach 5.5 i . Liczba opóźnień ograniczona

została w tym przypadku do dziesięciu, natomiast poziom istotności przekroczeń

ustalony został na 5%.

Analizując funkcję ACF można przede wszystkim zaobserwować istotne pierwsze

opóźnienia dla indeksów S&P 500 oraz WIG. Dodatkowo, w przypadku indeksu S&P

500 można zauważyć nieznaczne zwiększenie istotności przy opóźnieniach rzędów 6, 7,

8 oraz 9, podobnie dla indeksu DAX na piątym opóźnieniu i dla indeksu BOVESPA

na opóźnieniach rzędów 1, 3, 6 oraz 9.

2Współczynnik zmienności obliczono jako iloraz odchylenia standardowego i średniej, bez mnożenia

wyniki przez czynnik 100.





Rysunek 5.5: ACF dla stóp zwrotu poszczególnych indeksów.

Źródło: Opracowanie własne.

W sposób bardzo zbliżony do wykresów ACF, prezentują się także przebiegi

funkcji autokorelacji cząstkowych (PACF, zob. rys. 5.6). Według tradycyjnego

podejścia Boxa i Jenkinsa do ustalenia rzędów opóźnień modeli ARMA(k,m) na

podstawie wykresów ACF i PACF wydaje się, że do opisu stóp zwrotu indeksów S&P

500 oraz WIG należełoby ustalić k = 1,m = 0, zaś dla pozostałych indeksów

k = m = 0.

Rysunek 5.6: PACF dla stóp zwrotu poszczególnych indeksów.

Źródło: Opracowanie własne.

Przebiegi funkcji ACF i PACF przeanalizować można także dla kwadratów oraz

wartości bezwzględnych stóp zwrotu. Wykresy dla kwadratów przedstawione zostały

na rysunkach 5.7 oraz 5.8. Liczba opóźnień w tym przypadku ustalona została na 50.





Rysunek 5.7: ACF dla kwadratów stóp zwrotu.

Źródło: Opracowanie własne.

Przebiegi ACF dla kwadratów stóp zwrotu wskazują na istotne, stopniowo

wygasające autokorelacje. W przypadku indeksów S&P 500, NIKKEI oraz BOVESPA

początkowo wyższa istotność opóźnień wygasa w okolicach 20-30 opóźnienia. Dla

indeksów DAX, WIG oraz KOSPI początkowa istotność opóźnień jest niższy,

a wygasanie znacznie wolniejsze. Niemniej jednak, dla wszystkich badanych indeksów

zaobserwować można silne, powolnie wygasające autokorelacje dla kwadratów stóp

zwrotu, co może świadczyć o pewnej persystencji zmienności.

Z kolei na podstawie funkcji PACF dla kwadratów stóp zwrotu, zaprezentowanej

poniżej, zaobserwować można znacznie szybsze wygasanie istotności opóźnień

w przypadku indeksów S&P 500, NIKKEI oraz BOVESPA w okolicach piątego

opóźnienia, natomiast dla indeksów DAX, WIG oraz KOSPI w okolicach 8-10

opóźnienia, co potwierdza występowanie autokorelacji dla tych szeregów.

Funkcje ACF oraz PACF dodatkowo przeanalizowane zostały dla wartości

bezwzględnych stóp zwrotu oraz dla oszacowań zmienności uzyskanych

z wykorzystaniem estymatora GKYZ. Wyniki zamieszczone zostały w Aneksie

(kolejno na rysunkach A.1, A.2 oraz A.3 i A.4). W przypadku wartości bezwzględnych

oraz estymatora GKYZ wyniki są bardzo zbliżone do omówionych powyżej wyników

dla kwadratów stóp zwrotu, z tym wyjątkiem, że wygasanie w przypadku funkcji

ACF jest nieco wolniejsze.





Rysunek 5.8: PACF dla kwadratów stóp zwrotu.

Źródło: Opracowanie własne.

W kolejnym kroku zbadano korelacje pomiędzy szeregami stóp zwrotu badanych

indeksów. W pierwszej kolejności, na rysunku 5.9 wyniki zaprezentowane zostały

w postaci wykresów punktowych dla par poszczególnych aktywów.

Wartości współczynników korelacji Pearsona, również dla par poszczególnych

indeksów, zawarto w tabeli 5.2. Analizując przedstawione wyniki, można przede

wszystkim zauważyć, że wszystkie pary charakteryzują się korelacją dodatnią.

Indeksy S&P 500 i BOVESPA, oraz S&P 500 i DAX wykazują najsilniejszą korelację

(współczynniki na poziomie odpowiednio 0,6186 oraz 0,6137). Indeksy NIKKEI

i KOSPI wykazują dodatnią korelację na poziomie 0,5787, natomiast indeksy WIG

oraz DAX na poziomie 0,5343. Takie wartości współczynników wskazują na korelację

zauważalną, jednak nie szczególnie silną. Zależności pomiędzy tymi parami indeksów

można zaobserwować także na przedstawionych wykresach.





Rysunek 5.9: Wykresy punktowe dla par poszczególnych indeksów.

Źródło: Opracowanie własne.

Tabela 5.2: Wartości współczynników korelacji Pearsona

S&P N225 DAX WIG KOSPI IBOV

S&P 1,0000 0,1490 0,6137 0,3748 0,1828 0,6186

N225 0,1490 1,0000 0,2826 0,3099 0,5787 0,1643

DAX 0,6137 0,2826 1,0000 0,5343 0,3108 0,4708

WIG 0,3748 0,3099 0,5343 1,0000 0,3592 0,3675

KOSPI 0,1828 0,5787 0,3108 0,3592 1,0000 0,2125

IBOV 0,6186 0,1643 0,4708 0,3675 0,2125 1,0000

Źródło: Opracowanie własne.





Analizując przedstawione wyniki, można przede wszystkim zauważyć, że wszystkie

pary charakteryzują się korelacją dodatnią. Indeksy S&P 500 i BOVESPA, oraz S&P

500 i DAX wykazują najsilniejszą korelację (współczynniki na poziomie odpowiednio

0,6186 oraz 0,6137). Indeksy NIKKEI i KOSPI wykazują dodatnią korelację na

poziomie 0,5787, natomiast indeksy WIG oraz DAX na poziomie 0,5343. Takie

wartości współczynników wskazują na korelację zauważalną, jednak nie szczególnie

silną. Zależności pomiędzy tymi parami indeksów można zaobserwować także na

przedstawionych wykresach.

Na tej podstawie zauważyć można, że silną korelacją charakteryzują się indeksy

krajów pochodzących z tego samego obszaru geograficznego (S&P 500 i BOVESPA,

DAX i WIG, NIKKEI i KOSPI). Można zatem wnioskować, że duży wpływ na

korelację pomiędzy indeksami poszczególnych krajów ma ich położenie geopolityczne,

natomiast w mniejszym stopniu klasyfikacja rynków ze względu na rozwój

gospodarczy – w tym wypadku co prawda silną korelację wykazują indeksy S&P 500

i DAX, jednak niską korelacją charakteryzują się indeksy S&P 500 i NIKKEI (wartość

współczynnika 0,1490) oraz DAX i NIKKEI (0,2826). Niska korelacja (na poziomie

0,2 - 0,36) występuje także w przypadkach par indeksów z rynków wschodzących.

5.2 Budowa oprogramowania i algorytmów

testujących

W celu budowy oprogramowania wykorzystanego przy implementacji metod

ekonometrycznych i sieci uczenia głębokiego wykorzystane zostały języki Python

w wersji 3.7.10 oraz R w wersji 4.1.0, wraz z dostępnymi wybranymi pakietami oraz

bibliotekami.

W środowisku Python wykorzystane zostały przede wszystkim biblioteki:

– TensorFlow (wersje 2.5-2.8) oraz Tensorflow Probability (wersja 0.16.0) -

podstawowe biblioteki implementujące mechanizmy uczenia głębokiego,

– Keras (wersja 2.4) - wysokopoziomowe API (ang. Application Programming

Interface) dla bibliotek TensorFlow,

– KerasTuner - biblioteka stosowana do dostrajania hiperparametrów sieci,

– Numpy oraz Pandas - biblioteki wykorzystywane do przetwarzania danych,

– Statsmodels oraz SciPy - biblioteki wykorzystywane do modelowania i obliczeń

statystycznych,





– Matplotlib oraz Seaborn - biblioteki wykorzystywane do opracowania wykresów.

Z kolei w środowisku programistycznym R wykorzystane zostały biblioteki:

– rugarch - biblioteka umożliwiająca estymację i prognozowanie z wykorzystaniem

jednowymiarowych modeli ARMA-GARCH,

– tidyverse oraz xts - biblioteki wykorzystywane do przetwarzania danych3,

– TTR oraz FinTS - blibioteki stosowane do pracy z danymi finansowymi

– tensorflow oraz keras - pakiety umożliwiające korzystanie z tych bibliotek

w środowisku R (wymagają środowiska Python),

– scroingRules oraz scoringutils - pakiety umożliwiające ocenę trafności prognoz

probabilistycznych.

Obliczenia wykonywane były na komputerze wyposażonym w podzespoły:

– procesor: AMD Ryzen 7 3700X 3,6GHz,

– pamięć: 16GB RAM,

– karta graficzna: NVIDIA GeForce RTX 2060, wyposażona w rdzenie tensorowe.

Taka konfiguracja maszyny umożliwiała stosunkowo szybkie wykonywanie obliczeń,

bez konieczności wprowadzania ograniczeń dotyczących danych wejściowych

w sieciach neuronowych (np. wielkości partii wsadowej). Rdzenie tensorowe

umożliwiały dodatkowo wykorzystanie procesora graficznego do przyspieszenia

obliczeń w procesie uczenia sieci. Czas obliczeń dla modeli sieciowych dla pełnego

zbioru danych (ok. 5000 obserwacji) wynosił w granicach od 5-30 minut, w zależności

od struktury sieci, wartości hiperparametrów oraz liczby epok. W przypadku modeli

ARMA-GARCH czas potrzebny na estymację oraz prognozowanie wynosił około 5

minut dla pojedynczej specyfikacji modelu.

W ramach badań przygotowane zostały autorskie kody, w których

zaimplementowano wyżej wymienione biblioteki w celu rozwiązania zadanych

problemów badawczych oraz prezentacji wyników. Zaprogramowane zostały narzędzia

umożliwiające uczenie, estymację oraz prognozowanie przy pomocy sieci uczenia

głębokiego modeli ekonometrycznych oraz modeli hybrydowych.

W kontekście prognozowania punktowego stóp zwrotu, zaproponowano autorskie

algorytmy testujące modele sieci neuronowych, umożliwiające podział danych na okna

3Tidyverse jest zbiorem bibliotek (zob. tidyverse.org)





treningowe, walidacyjne oraz testowe (z wykorzystaniem okna rolowanego), oraz ocenę

uzyskanych prognoz w ramach testu wstecznego, przy pomocy mierników trafności

prognoz. Algorytmy te służyły także do budowy prostych strategii inwestycyjnych,

bazujących na uzyskanych prognozach, oraz ich ocenę z wykorzystaniem mierników

oceny strategii.

Zaimplementowane zostały także narzędzia umożliwiające budowę i wykorzystanie

modeli hybrydowych ARMA-GARCH-LSTM, w celu uzyskania punktowych prognoz

zmienności. Algorytmy te umożliwiały estymację i prognozowanie z wykorzystaniem

12 specyfikacji modeli ARMA-GARCH, połączenie ich w 12 kolejnych modelach

hybrydowych oraz ocenę prognoz uzyskanych za pomocą tych modeli

z wykorzystaniem mierników oceny prognoz, a także w kontekście szacowania

wartości zagrożonej i oczekiwanego niedoboru.

Następnie zaprogramowane zostały zaproponowane przez autora algorytmy

testujące dla modeli prognoz probabilistycznych NN-D opartych na sieciach uczenia

głębokiego. Jako dodatek do algorytmów opisanych powyżej (służących do uczenia

sieci, oceny prognoz z wykorzystaniem odpowiednich miar oraz oceny prognoz

ryzyka), w celu umożliwienia poprawnego prognozowania rozkładów

prawdopodobieństwa zaimplementowane zostały także funkcje straty (zob. wzory 4.7,

4.8, 4.9), umożliwiające prognozowanie parametrów rozkładów normalnego,

t-Studenta oraz skośnego rozkładu t-Studenta.

W celu usprawnienia procesu dostrajania hiperparametrów, przygotowane zostały

autorskie kody umożliwiające częściową automatyzację tego procesu (z

wykorzystaniem gotowych bibliotek). Dodatkowo przygotowane zostały kody

umożliwiające zaprezentowanie wyników prowadzonych badań w formie wykresów

graficznych. Opisane powyżej algorytmy i narzędzia tworzone były w dużej mierze od

podstaw, z myślą o ich skalowalności oraz możliwości późniejszego wykorzystania

w kolejnych badaniach.

5.3 Optymalizacja hiperparametrów modeli

sieciowych

Kluczowym aspektem podczas projektowania architektury każdej sieci neuronowej

jest odpowiedni dobór hiperparametrów. Proces dostrajania hiperparametrów może

mieć duże znaczenie na wyniki uzyskiwane przez sieć, dlatego warto poświęcić mu

dużo uwagi podczas przygotowywania struktury sieci. Najczęściej stosowane są dwa

podejścia: heurystyczne, w którym dobór poszczególnych parametrów sieci odbywa się

na podstawie wartości podanych w badaniach opublikowanych w literaturze naukowej,





lub poprzez proces dostrajania poszczególnych hiperparametrów (ang. hiperparameters

tuning).

Dobór hiperparametrów poprzez ich dostrajanie jest procesem czasochłonnym,

głównie ze względu na ilość hiperparametrów oraz zakres wartości, które mogą one

przyjmować. Pomocne w tym procesie mogą okazać się zautomatyzowane algorytmy

pozwalające na dobór optymalnych wartości w sposób znacznie szybszy niż

manualnie. Do podstawowych narzędzi stosowanych w tym celu należy biblioteka

KerasTuner (zob. rozdział 3). Jednym z proponowanych w zakresie tego narzędzia

algorytmów, jest tzw. algorytm hyperband. Sposób działania algorytmu

w szczególności dobrze nadaje się do sytuacji, w których zoptymalizowane muszą być

liczne konfiguracje wartości hiperparametrów. Działa on na zasadzie turniejowej –

wartości parametrów sprawdzane są w zestawach (ang. brackets), z których na

niewielkiej liczbie epok testowane są optymalne wartości hiperparametrów. Wartości

te przekazywane są do kolejnego etapu, w którym dostrajanie jest powtarzane dla

większej ilości epok. Proces ten można powtarzać dla dowolnego zestawu

hiperparametrów (nie tylko jednego), co pozwala na jednoczesne sprawdzenie w jaki

sposób pary (lub większe ilości) hiperparametrów wpływają na poprawienie wyników

uzyskiwanych przez sieć.

Ponieważ nawet z pozoru niewielkie zmiany w wartościach mogą znacząco

przyczynić się do poprawy lub pogorszenia wyników, warto sprawdzić wpływ zmian

wartości dla możliwie szerokiego zakresu hiperparametrów. Sprawdzanie zmian

wartości powinno odbywać jedynie na części dostępnych danych uczących, a także bez

sprawdzania zmian na zbiorze testowym, aby uniknąć problemu wychodzenia

w przyszłość (ang. look ahead bias). Z tego względu, w przypadku stosowania metod

walidacji krzyżowej (takich jak schemat rolowany lub rekursywny), zmian dokonywać

należy jedynie na pojedynczym wybranym oknie. Ze względu na to, że jest to proces

czasochłonny, wielu badaczy pomija go stosując wartości parametrów wybrane

heurystycznie. W tych badaniach zdecydowano się jednak na przeprowadzenie bardzo

dokładnego dostrajania, w celu uzyskania możliwie najlepszych wyników. Proces ten

był jednym z najbardziej czasochłonnych zadań praktycznych wykonanych w ramach

przedstawionych w tu badań. Proces dostrajania hiperparametrów przeprowadzony

został po części „ręcznie” (poprzez samodzielne zmiany wartości poszczególnych

parametrów w kodzie), a częściowo z wykorzystaniem narzędzia KerasTuner. Tabela

5.3 przedstawia zestawienie dostrajanych parametrów, przedziały testowanych

wartości, wartości wybrane jako optymalne, oraz sposób wyboru tych wartości.

Dostrajanie hiperparametrów wykonano w pierwszej kolejności dla sieci

wykorzystywanych do uzyskania punktowych prognoz stóp zwrotu. Wartości uzyskane





w tym procesie stanowiły punkt wyjściowy także dla modeli hybrydowych i modeli

prognozowania probabilistycznego, jednak wobec zmiany struktury modelu (i

prognozowanych danych), wymagały dalszych usprawnień.

Tabela 5.3: Dostrajanie hiperparametrów dla sieci wykorzystywanych w prognozowaniu punktowym

stóp zwrotu.

Hiperparametr Wartości testowane Wartość wybrana Narzędzie

Ilość warstw ukrytych 1-5 3 Ręcznie

Ilość neuronów w warstwie 8-700 512/256/128 KerasTuner

Dropout 0-0,5 0,0002 KerasTuner

Regularyzacja l2 0-0,5 0,00001 KerasTuner

Optymalizator Adam/RMSProp/SGD Adam Ręcznie

Prędkość uczenia 0,0001-0,5 0,0015 KerasTuner

Długość sekwencji 1-200 10 Ręcznie

Długość okna 252-Ex./21-1008 2016/756 Ręcznie

Rozmiar partii wsadowej 1-Exp. 756 Ręcznie

Liczba epok 10-100 200 (MC) Ręcznie

Kernel size* 1-5 2 Ręcznie

Liczba filtrów* 10-512 256 KerasTuner

Pool size* 1-5 2 Ręcznie
Uwaga: Oprócz optymalizatora Adam przetestowane zostały także jego wariacje. Exp. oznacza zbiór

okna rozszerzanego, zaś MC oznacza zatrzymanie uczenia przy wykorzystaniu punktu kontrolnego

modelu. * - dotyczy sieci CNN.

Źródło: Opracowanie własne.

Dodatkowe zmiany, które wprowadzone zostały w strukturze sieci LSTM

wykorzystanej w modelu hybrydowym, służącym do punktowego prognozowania

zmienności:

– liczba neuronów: 128/512/128 (KerasTuner),

– l2: 0,00002,

– prędkość uczenia: 0,005,

– długość sekwencji: 3,

– długość zbiorów: Exp.(od 1008)/504,

– rozmiar partii wsadowej: Exp.





– epoki: 150(MC).

Z kolei w modelu prognozowania probabilistycznego zmienione zostały następujące

hiperparametry architektury sieci LSTM oraz CNN:

– liczba neuronów: 128/64/32,

– l2: 0,002,

– dropout : 0,02,

– prędkość uczenia: 0,002,

– długość sekwencji: 3,

– długość zbiorów: Exp.(od 1008)/504,

– rozmiar partii wsadowej: 128,

– epoki: 300(MC).

Warto podkreślić, że finalnie wybrane wartości hiperparametrów mogą nie być

wartościami optymalnymi. Wynika to przede wszystkim z faktu, że zmiany tych

wartości sprawdzane powinny być w różnych konfiguracjach dla zestawów

hiperparametrów (osobno, parami, trójkami itd.). Jednak ze względu na dużą ilość

kombinacji i zakresu wartości, przetestowanie wszystkich kombinacji nie byłoby

możliwe w ramach tych badań. Problem ten częściowo rozwiązuje stosowanie

wspomnianego algorytmu KerasTuner, który sprawdza możliwie dużą ilość

poszczególnych kombinacji, jednak nawet jego wykorzystanie do analizy wszystkich

kombinacji nie byłoby czasowo możliwe. Ponieważ wyniki uzyskane przez sieci,

przedstawione w poniższych podrozdziałach, są w dużym stopniu zależne od wartości

hiperparametrów, należy założyć, że mogą one nie być jednoznacznie optymalne

i istnieje możliwość ich poprawy.

5.4 Prognozowanie punktowe stóp zwrotu

W poniższym podrozdziale przedstawione zostały wyniki prognoz punktowych

stóp zwrotu, uzyskanych przez modele oparte na wybranych typach sieci

neuronowych: klasyczne sieci MLP, oraz sieci uczenia głębokiego typu LSTM oraz

CNN. Wyniki zaprezentowane zostały dla wszystkich badanych indeksów,

przedstawionych w podrozdziale 5.1, i dotyczą ocen trafności prognoz punktowych





z wykorzystaniem poszczególnych mierników, a także w kontekście strategii

inwestycyjnych.

W tej części badań jako dane wejściowe do sieci, a także jako jej wartości pożądane,

wykorzystane zostały dane w postaci dziennych logarytmicznych stóp zwrotu, opisane

w podrozdziale 5.1. W przypadku modeli wykorzystujących jako funkcję straty miernik

MSE, dane zostały znormalizowane do zakresu [-1; 1], natomiast w przypadku, gdy jako

funkcja straty stosowana była miara MADL, normalizacja nie była stosowana, przede

wszystkim ze względu na sposób konstrukcji tej miary.4

W procesie uczenia sieci stosowane było podejście walidacji krzyżowej,

z wykorzystaniem okna rolowanego. Dane podzielone zostały na zbiory uczące, o

długości 2056 obserwacji (8 lat), z których dodatkowo wydzielane były zbiory

walidacyjne o długości 665 obserwacji, co stanowi 33% danych w zbiorze uczącym.

Długość zbioru testowego, i zarazem okna rolowanego wynosiła w tym przypadku 756

obserwacji (3 lata). Łączna ilość prognoz dla pojedynczego indeksu wyniosła około

3267 obserwacji, co odpowiada okresowi od 3 stycznia 2008 roku do 31 grudnia 2020

roku. Wartości poszczególnych hiperparametrów sieci przedstawione zostały w tabeli

5.3.5

W pierwszej kolejności, w tabeli 5.4, przestawione zostały wartości poszczególnych

metryk (MSE, MAE, MAPE, MADE oraz trafność procentowa) dla trzech typów sieci,

uczonych z wykorzystaniem miernika MSE jako funkcji straty (zob. punkt 2.5.2).

W wynikach zaprezentowanych w tabeli zauważyć można, że obie sieci uczenia

głębokiego spisują się nieznacznie lepiej od klasycznych sieci MLP pod względem

niemalże wszystkich mierników trafności. Pod względem miernika MSE, który

wykorzystywany był jako funkcja straty, sieci LSTM uzyskały najlepsze wyniki dla

czterech spośród sześciu badanych aktywów, co daje najlepszy wynik. Także pod

względem trafności prognoz nieznacznie lepiej spisywały się sieci LSTM. Z kolei dla

miary MADL, nieznacznie lepiej spisywały się sieci CNN, które najniższe wartości

uzyskały dla trzech spośród badanych indeksów.

Dodatkowo zauważyć można, że wyniki nie są jednoznaczne. Jedynie w przypadku

miar MSE oraz MAE wyniki są zbliżone (z wyjątkiem indeksu KOSPI), głównie ze

względu na bardzo zbliżoną konstrukcję tych mierników. W pozostałych przypadkach

niskie wyniki dla jednego miernika, przykładowo MSE, nie przekładają się na niskie

wyniki miary MADL, czy też wysoką trafność procentową. Warto mieć ten fakt na

4Dane normalizowane byłby według wzoru r′t = a + (rt−min(rt))(b−a)
max(rt)−min(r1) , gdzie, w tym przypadku,

a = −1, b = 1.
5Ilość dostępnych danych dla wybranych aktywów była różna, różna jest też ilość dni sesyjnych

w ciągu roku. Ponieważ użyte zostały wszystkie dostępne dane, a długości okien są stałe, powstały

niewielkie różnice w ilości prognozowanych obserwacji.





uwadze podczas wyboru funkcji straty, która optymalizowana jest podczas procesu

uczenia sieci. Z tego względu, w dalszej części badań, sieci uczone będą także

wykorzystując jako funkcję straty miarę MADL.

Tabela 5.4: Prognozowanie punktowe stóp zwrotu: mierniki błędu dla sieci trenowanych

z wykorzystaniem MSE

Indeks MSE MAE MADL TRAFNOŚĆ

Sieci MLP

S&P 1,8384 0,8378 -0,0238 50,902%

NKX 2,3771 1,0530 0,0141 49,904%

DAX 2,1450 0,9959 0,0141 51,071%

WIG 1,5936 0,8711 -0,0103 50,586%

KOSPI 1,5671 0,8189 0,0114 49,539%

BVP 3,2845 1,2520 0,0036 50,062%

Sieci CNN

S&P 1,7904 0,8269 -0,0527 52,8007%

NKX 2,3747 1,0519 -0,0091 50,766%

DAX 2,1385 0,9910 0,0008 50,558%

WIG 1,5804 0,8656 0,0196 49,506%

KOSPI 1,5630 0,8133 -0,0390 52,430%

BVP 3,2488 1,2443 -0,0428 50,911%

Sieci LSTM

S&P 1,8046 0,8275 -0,0381 52,372%

NKX 2,3569 1,0465 -0,0275 51,628%

DAX 2,1725 0,9882 -0,0327 51,946%

WIG 1,5763 0,8629 0,2510 50,185%

KOSPI 1,5541 0,8145 0,0177 49,857%

BVP 3,2427 1,2411 -0,0199 51,006%
Uwaga: Pogrubione zostały wartości najniższe dla mierników MSE oraz MADL, oraz wartości

najwyższe dla trafności.

Źródło: Opracowanie własne.

Podsumowując powyższe rezultaty, spośród sieci badanych w kontekście oceny

punktowej za pomocą wybranych miar trafności prognoz, najlepsze wyniki uzyskały

sieci LSTM, generując nieznacznie lepsze wyniki w porównaniu z siecią CNN. Sieci

MLP w tym przypadku uzyskały najsłabsze rezultaty. Dokładniejsza analiza





porównawcza wyników uzyskanych przez modele bazujące na poszczególnych typach

sieci przedstawiona została w rozdziale 6. Z kolei w poniższych podrozdziałach

prognozy uzyskane przez poszczególne sieci ocenione zostaną pod kątem możliwości

ich wykorzystania przy tworzeniu strategii inwestycyjnych.

5.4.1 Wyniki dla strategii wykorzystującej sieci MLP

W pierwszej kolejności, w tabeli 5.5, przedstawione zostały wyniki prognoz

uzyskanych przez sieć MLP, w kontekście strategii inwestycyjnych. W tabeli

zestawione zostały wyniki dla strategii pasywnej (ang. Buy and Hold - B&H),

strategii opartych na prognozach stóp zwrotu uzyskanych przez sieci, gdzie

prognozowany kierunek zmiany oznaczał sygnał kupna lub sprzedaży (ang.

Long-Short - LS), oraz strategii, w której wykorzystane zostały jedynie sygnały

kupna, a ujemny kierunek prognozy oznaczał wyjście z pozycji (ang. Long Only -

LO). 6 Do oceny efektywności strategii inwestycyjnych zastosowano mierniki

przedstawione w punkcie 2.5.3.

Na podstawie zaprezentowanych wyników można zauważyć, że pod względem

skumulowanego zwrotu wynik lepszy od strategii pasywnej udało się uzyskać jedynie

w przypadku indeksu WIG dla strategii LO, natomiast w pozostałych przypadkach

nie udało się uzyskać lepszych rezultatów. Zauważyć można także, że strategie LO

cechują się mniejszą zmiennością (mają mniejsze wartości mierników aSD, MD oraz

MLD). Dzięki temu, w przypadku indeksu S&P 500, wskaźniki IR są wyższe niż

przypadku strategii pasywnej, mimo niższego skumulowanego zwrotu (aRC).

Rysunek 5.10 przedstawia zestawianie wizualnego przebiegu poszczególnych

strategii dla wszystkich rozważanych aktywów. Zaobserwować na nim można, że dla

indeksów S&P 500, WIG oraz BOVESPA, strategie LS i LO przez większość czasu

utrzymywały się na podobnym (lub wyższym jak przypadku S&P 500) poziomie do

strategi pasywnej, natomiast w przypadku pozostałych indeksów — przynosiły straty,

przy czym krzywa kapitałowa dla strategii LO jest w większości przypadków

nieznacznie wyżej niż dla strategii LS.

6Użycie strategii wykorzystującej tylko sygnały kupna znajduje uzasadnienie jedynie w przypadku

aktywów charakteryzujących się stałym długoterminowym wzrostem, tak jak ma to miejsce

w przypadku większości indeksów giełdowych.





Tabela 5.5: Prognozowanie punktowe stóp zwrotu: wyniki strategii dla sieci MLP trenowanych na

MSE

Strategia aRC aSD MD MLD IR* IR** IR***

Indeks S&P500

B&H 7,74 21,12 52,58 4,30 0,37 0,05 0

LS 4,13 21,13 35,18 3,04 0,20 0,02 0

LO 6,98 15,69 24,91 1,17 0,45 0,12 0,01

Indeks NIKKEI 225

B&H 6,62 24,33 51,31 4,78 0,27 0,04 0

LS -5,92 24,34 68,52 9,00 -0,24 -0,02 0

LO 1,42 18,46 41,01 3,63 0,08 0,00 0

Indeks DAX

B&H 4,34 22,97 54,6 5,43 0,19 0,02 0

LS -5,65 22,98 73,8 12,28 -0,25 -0,02 0

LO 0,35 17,36 35,57 6,46 0,02 0,00 0

Indeks WIG

B&H 1,74 19,74 57,62 3,13 0,09 0 0

LS 0,99 19,74 43,21 9,29 0,05 0 0

LO 2,15 15,36 47,38 2,90 0,14 0,01 0

Indeks KOSPI

B&H 3,86 19,67 50,30 5,88 0,20 0,02 0

LS -4,32 19,67 56,63 12,37 -0,22 -0,02 0

LO 0,38 15,75 43,78 5,08 0,02 0,00 0

Indeks BOVESPA

B&H 4,94 28,47 59,96 9,15 0,17 0,01 0

LS -4,43 28,47 66,26 5,12 -0,16 -0,01 0

LO 1,96 21,24 51,03 5,75 0,09 0,00 0

Źródło: Opracowanie własne.





Rysunek 5.10: Krzywe kapitałowe dla sieci MLP trenowanych na MSE.

Źródło: Opracowanie własne.

5.4.2 Wyniki dla strategii wykorzystującej sieci CNN

W tej części przedstawione zostały wyniki strategii zbudowanych

z wykorzystaniem prognoz uzyskanych przy pomocy sieci CNN. Wskaźniki oceny

strategii inwestycyjnych przedstawione zostały w tabeli 5.6. Oznaczenia

poszczególnych strategii oraz wykorzystanych mierniki są analogiczne do tych

przedstawionych w poprzednim podrozdziale, dotyczącym wyników uzyskanych

z wykorzystaniem sieci MLP.

W przypadku sieci CNN, analizując wskaźnik skumulowanego zwrotu aRC, wyniki

lepsze niż strategia pasywna udało się uzyskać dla trzech indeksów: S&P 500, KOSPI

oraz BOVESPA (zarówno dla strategii LS oraz LO). W pozostałych przypadkach

wartości skumulowanego zwrotu były niższe, dodatkowo, w przypadku indeksu WIG,

strategie bazujące na modelu sieciowym przynosiły straty, podobnie jak w przypadku

strategii LS dla indeksu DAX.





Tabela 5.6: Prognozowanie punktowe stóp zwrotu: wyniki strategii dla sieci CNN trenowanych na

MSE

Strategia aRC aSD MD MLD IR* IR** IR***

Indeks S&P500

B&H 7,74 21,12 52,58 4,30 0,37 0,05 0,00

LS 13,01 21,11 28,52 4,08 0,62 0,28 0,01

LO 10,95 18,34 29,34 1,1 0,60 0,22 0,02

Indeks NIKKEI 225

B&H 6,62 24,33 51,31 4,78 0,27 0,04 0

LS 0,15 24,34 60,91 8,75 0,01 0,00 0

LO 4,48 19,30 39,31 2,74 0,23 0,03 0

Indeks DAX

B&H 4,34 22,97 54,6 5,43 0,19 0,02 0

LS -1,47 22,98 60,87 8,10 -0,06 0,00 0

LO 2,26 18,92 43,48 5,40 0,12 0,01 0

Indeks WIG

B&H 1,74 19,74 57,62 3,13 0,09 0 0

LS -6,29 19,74 66,18 12,83 -0,32 -0,03 0

LO -1,55 15,01 43,61 9,20 -0,10 0 0

Indeks KOSPI

B&H 3,86 19,67 50,30 5,88 0,20 0,02 0

LS 9,20 19,66 39,44 2,48 0,47 0,11 0

LO 6,99 17,16 43,13 1,85 0,41 0,07 0

Indeks BOVESPA

B&H 4,94 28,47 59,96 9,15 0,17 0,01 0

LS 8,56 28,46 47,96 2,52 0,30 0,05 0

LO 8,11 23,52 52,84 6,03 0,34 0,05 0

Źródło: Opracowanie własne.

Dla indeksów na których strategie przynosiły zyski większe od strategii pasywnej

(S&P 500, KOSPI, BOVESPA), nieznacznie lepiej spisywały się strategie LS. Dla

pozostałych trzech indeksów lepsze wyniki uzyskano stosując strategie LO. Także

w przypadku tego modelu, zauważyć można, że strategia LO cechuje się niższymi





wskaźnikami zmienności, w szczególności odchylenia standardowego (aSD) oraz

maksymalnej długości straty (MLD), choć w tym wypadku nie zawsze przekłada się

to na wyższe wartości wskaźników IR, co może być spowodowane większymi

wartościami wskaźnika maksymalnego obsunięcia kapitału (MD).

Wizualizacja wyników w postaci krzywej kapitałowej, w zestawieniu dla wszystkich

aktywów, zaprezentowana została na rysunku 5.11.

Rysunek 5.11: Krzywe kapitałowe dla sieci CNN trenowanych na MSE.

Źródło: Opracowanie własne.

W przypadku indeksów S&P 500 oraz BOVESPA, krzywe kapitałowe strategii LS

i LO mają zbliżoną trajektorię do strategii pasywnej, przy czym ich poziom jest

nieznacznie wyższy, a silniejszy wzrost zaobserwować można w roku 2020 (po

załamaniu związanym z początkiem pandemii COVID-19). Dla indeksu KOSPI

krzywe kapitałowe strategii LS i LO przewyższają strategię pasywną niemal w całym

testowanym okresie, natomiast w przypadku indeksów NIKKEI, DAX i WIG

załamanie tych strategii następuje w okolicach lat 2012-2014.

5.4.3 Wyniki dla strategii wykorzystującej sieci LSTM

W kolejnym kroku sporządzone zostały strategie bazujące na prognozach

otrzymanych z modelu wykorzystującego sieci LSTM. Oceny strategii uzyskane przy

pomocy tego modelu przedstawione zostały w tabeli 5.7, z zachowaniem tych samych

oznaczeń poszczególnych strategii oraz mierników.





Tabela 5.7: Prognozowanie punktowe stóp zwrotu: wyniki strategii dla sieci LSTM trenowanych na

MSE

Strategia aRC aSD MD MLD IR* IR** IR***

Indeks S&P500

B&H 7,74 21,12 52,58 4,30 0,37 0,05 0

LS 9,07 21,12 34,50 2,75 0,43 0,11 0

LO 8,92 18,70 34,03 3,05 0,48 0,13 0

Indeks NIKKEI 225

B&H 6,62 24,33 51,31 4,78 0,27 0,04 0

LS 5,68 24,34 42,65 4,28 0,23 0,03 0

LO 6,89 21,28 42,76 4,56 0,32 0,05 0

Indeks DAX

B&H 4,34 22,97 54,60 5,43 0,19 0,02 0

LS 7,04 22,97 47,11 2,92 0,31 0,05 0

LO 6,47 19,49 39,89 2,93 0,33 0,05 0

Indeks WIG

B&H 1,74 19,74 57,62 3,13 0,09 0 0

LS -1,83 19,74 49,59 9,29 -0,09 0 0

LO 0,50 16,67 42,64 2,90 0,03 0 0

Indeks KOSPI

B&H 3,86 19,67 50,30 5,88 0,20 0,02 0

LS -5,20 19,67 55,29 12,44 -0,26 -0,02 0

LO -0,41 17,68 43,12 8,83 -0,02 0,00 0

Indeks BOVESPA

B&H 4,94 28,47 59,96 9,15 0,17 0,01 0

LS 2,87 28,47 48,37 3,40 0,10 0,01 0

LO 5,07 24,24 52,48 4,56 0,21 0,02 0

Źródło: Opracowanie własne.

Dla sieci LSTM, lepsze wartości wskaźnika skumulowanego zwrotu (aRC),

w stosunku do strategii pasywnej, model uzyskał dla czterech indeksów: S&P 500

(strategie LS oraz LO), NIKKEI 225 (strategia LO), DAX (strategie LS oraz LO)

a także BOVESPA (strategia LO). W przypadku indeksu KOSPI obie strategie





przyniosły straty (ujemna wartość wskaźnika aRC), podobnie jak strategia LS dla

indeksu WIG. Także w przypadku tego modelu, dla większości aktywów zauważyć

można, że strategie LO cechują się mniejszym ryzykiem (niższe wartości mierników

aSD, MD), oraz, co za tym idzie, większymi wartościami współczynników IR – dla

indeksów S&P 500 oraz DAX wskaźniki IR dla strategii LO są wyższe w stosunku do

strategii LS, mimo niższego skumulowanego zwrotu.

Wizualizacja wyników uzyskanych przy pomocy modelu LSTM dla wszystkich

aktywów przedstawiona została na rysunku 5.12.

Rysunek 5.12: Krzywe kapitałowe dla sieci LSTM trenowanych na MSE.

Źródło: Opracowanie własne.

W przypadku sieci LSTM krzywe kapitałowe strategii LS oraz LO mają bardzo

zbliżony przebieg do strategii pasywnej. Pewne różnice zaobserwować można dla

indeksu DAX, gdzie krzywe charakteryzują się wyższym poziomem od strategii

pasywnej, przy czym nieco lepsze wyniki uzyskuje strategia LS. Dla indeksu KOSPI

sytuacja jest odwrotna – krzywe kapitałowe strategii LS i LO mają niższy poziom niż

krzywa strategii pasywnej, a poziom krzywej LS jest w tym przypadku niższy.

Podsumowując wyniki dla wszystkich rozważanych modeli, zauważyć należy, że sieci

LSTM uzyskały lepsze wyniki niż strategia pasywna dla czterech aktywów, a więc

najlepiej spośród analizowanych do tej pory modeli. Strategie bazujące na prognozach

uzyskanych przez model wykorzystujący sieć CNN, w stosunku do strategii pasywnej

uzyskały lepsze wyniki dla trzech aktywów, natomiast w przypadku sieci MLP jedynie

dla indeksu WIG strategia LO uzyskała lepszy wynik niż strategia pasywna.

Porównując wyniki strategii LS i LO, dla sieci MLP strategia LO uzyskała lepsze





wyniki od strategii LS we wszystkich przypadkach. Dla sieci CNN I LSTM wyniki

uzyskane przez obie strategie są zbliżone, natomiast strategia LO charakteryzuje się

znacznie niższymi wartościami wskaźników aSD, MD oraz MLD, a co za tym idzie,

najczęściej także lepszymi wskaźnikami IR. Świadczy to o niższym poziomie zmienności

strategii LO, co może być spowodowane mniejszym marginesem błędu, który uzyskiwać

może strategia bazująca jedynie na sygnałach kupna.

Sieci LSTM, ze względu na to, że do tej pory przynosiły najlepsze rezultaty,

dodatkowo wykorzystane zostały do budowy modelu, w którym sieć uczona jest przy

użyciu funkcji straty minimalizującej miarę MADL (zob. rozdział 2 oraz Michańków i

in. [2022]). Wyniki dla tego modelu zaprezentowane zostały w tabeli 5.8.

Dla sieci LSTM trenowanych na z wykorzystnaiem funkcji straty MADL, lepsze

wyniki udało się uzyskać dla indeksów S&P 500, DAX oraz BOVESPA, przy czym

wyniki dla WIG i KOSPI były zbliżone do strategii pasywnej, w szczególności dla

strategii LO. W przypadku indeksu KOSPI strategia LS przyniosła stratę, uzyskując

wartość wskaźnika skumulowanego zwrotu (aRC) na poziomie -6,73 oraz dodatnią

wartość miary MADL wynoszącą 0,0199. Zaobserwować można także, że również

w tym przypadku wyniki dla strategii LO cechowały się znacznie mniejszym ryzykiem

w przypadku wszystkich indeksów, oraz większymi wartościami IR. Wizualizacja

wyników dla tego modelu w postaci krzywej kapitałowej przedstawiona została na

rysunku 5.13.

Na podstawie analizy przebiegu krzywych kapitałowych dla strategii LS i LO,

zauważyć można, że ich przebieg w większości przypadków nie odbiegał znacznie od

strategii pasywnej. Wyjątki stanowią tutaj: strategia LS dla indeksu DAX, gdzie

w latach 2012-2015 zaobserwować można znaczny wzrost, a następnie powrót do

poprzedniego poziomu, oraz strategia LS dla indeksu KOSPI, dla której odnotowano

wyraźny spadek w latach 2010-2012.

Dla modelu sieci LSTM trenowanej z funkcją straty w postaci MADL, strategie LO

cechują się znacznie lepszymi wynikami i znacznie mniejszą zmiennością niż strategie

LS, które są bardziej niestabilne. Ze względu na niskie wskaźniki ekspozycji na ryzyko

i większe wartości IR, można założyć, że uzasadnione byłoby zastosowanie dźwigni dla

tego modelu, co przyczyniło by się do poprawy wyników pod względem zwrotów dla

poszczególnych aktywów.





Tabela 5.8: Prognozowanie punktowe stóp zwrotu: wyniki strategii dla sieci LSTM trenowanych na

MADL

Strategia aRC aSD MD MLD IR* IR** IR*** MADL

Indeks S&P500

B&H 7,74 21,12 52,58 4,30 0,37 0,05 0,00

LS 4,23 21,13 38,90 5,96 0,20 0,02 0 -0,03534

LO 9,26 15,69 29,69 1,55 0,59 0,18 0,01 -0,0402

Indeks NIKKEI 225

B&H 6,62 24,33 51,31 4,78 0,27 0,04 0

LS 0,29 24,34 50,26 11,81 0,01 0,00 0 -0,0152

LO 3,27 15,81 30,00 4,43 0,21 0,02 0 -0,0175

Indeks DAX

B&H 4,34 22,97 54,6 5,43 0,19 0,02 0

LS 8,06 22,97 57,47 8,11 0,35 0,05 0 -0,0391

LO 5,31 17,79 38,45 4,59 0,30 0,04 0 -0,0267

Indeks WIG

B&H 1,74 19,74 57,62 3,13 0,09 0 0

LS 0,00 19,74 48,91 7,24 0,00 0 0 -0,00084

LO 1,14 12,80 38,85 7,09 0,09 0 0 -0,00739

Indeks KOSPI

B&H 3,86 19,67 50,30 5,88 0,20 0,02 0

LS -6,73 19,67 75,57 11,87 -0,34 -0,03 0 0,0199

LO 3,29 14,55 38,97 4,62 0,23 0,02 0 -0,0170

Indeks BOVESPA

B&H 4,94 28,47 59,96 9,15 0,17 0,01 0

LS 1,32 28,47 57,92 6,45 0,05 0,00 0 -0,0202

LO 7,08 22,18 44,08 7,80 0,32 0,05 0 -0,0367

Źródło: Opracowanie własne.





Rysunek 5.13: Krzywe kapitałowe dla sieci LSTM trenowanych na MADL.

Źródło: Opracowanie własne.

Testowanie modelu LSTM w czasie rzeczywistym

Przedstawione do tej pory wyniki dotyczyły testów wstecznych oceniających

skuteczność poszczególnych modeli na danych z wybranych indeksów giełdowych. W

celu uzupełnienia oceny stosowanych narzędzi przeprowadzona została także

ewaluacja na danych pozyskiwanych w czasie rzeczywistym. W tym przypadku ocenie

poddany został model LSTM minimalizujący funkcję MADL, stosowany do budowy

strategii bazującej tylko na sygnałach kupna. Badanie przeprowadzone zostało na

danych pochodzących z funduszu inwestycyjnego SPDR S&P 500 trust - SPY,

bazującego na indeksie S&P 500. Okres testowy dotyczył w tym wypadku dni

pomiędzy 10 stycznia 2021 r. a 31 marca 2022 r. Model uczony był na danych

z okresu od 8 stycznia 2014 r. do 9 stycznia 2022 r. (2016 obserwacji). Struktura sieci,

wartości hiperparametrów oraz podział sposób wydzielenia danych do zbioru

uczącego pozostał bez zmian w stosunku do opisywanego powyżej. Zmianie uległ

natomiast sposób ewaluacji modelu. Zamiast oceny modelu na zbiorze testowym,

model wykorzystany został do prognozowania wartości oczekiwanej stopy zwrotu na

koniec każdego dnia sesyjnego, bazując na danych z ostatnich 10 dni sesyjnych.

Wygenerowane na tej podstawie sygnały służyły do otwarcia pozycji długich (jeżeli

prognozowana stopa zwrotu była dodatnia) lub zamknięcia pozycji (jeżeli

prognozowana stopa zwrotu była ujemna lub zerowa). Model nie był reestymowany

w okresie testowym, a ewaluacja modelu nastąpiła po zakończeniu badania. Uzyskane





wyniki przedstawione zostały w tabeli 5.9 oraz na rysunku 5.14.

Rysunek 5.14: Krzywe kapitałowe dla sieci LSTM trenowanych na MADL — probieranie danych

w czasie rzeczywistym.

Źródło: Opracowanie własne.

Tabela 5.9: Prognozowanie punktowe stóp zwrotu: wyniki strategii dla sieci LSTM trenowanych na

MADL — pobieranie danych w czasie rzeczywistym.

Strategia aRC aSD MD MLD IR* IR** IR*** MADL

SPY

B&H -5,09 (-1,15) 22,22 (5,02) 11,63 (2,63) 0,21 (0,04) -0,23 (0,05) -0,10 (0,02) -0,02 (0,004)

LS -11,97(-2,70) 22,21 (5,02) 10,75 (2,43) 0,19 (0,04) -0,54 (-0,12) -0,6(-0,13) -0,38(-0,08) 0,06701

LO 9,86 (2,23) 11,95 (2,70) 4,05 (0,91) 0,13 (0,02) 0,83 (0,18) 2,01 (0,45) 1,56 (0,35) -0,00962

Uwaga: Współczynniki podane są w skali rocznej (252 dni), zaś w nawiasach – w skali 57 dni.

Źródło: Opracowanie własne.

Analizując wyniki badań przeprowadzonych na danych pobieranych w czasie

rzeczywistym można zauważyć, że najlepsze wyniki uzyskała strategia bazująca tylko

na pozycjach długich, która jako jedyna przynosiła w tym wypadku zyski.

Charakteryzowała się także znacznie lepszymi wskaźnikami aSD, MD, MLD oraz IR

w stosunku do strategii pasywnej. Obserwując krzywą kapitałową przedstawioną na

rysunku 5.14 zaobserwować można, że strategia ta przez większość czasu miała

pozycję zamkniętą, głównie w okresach charakteryzujących się dużymi spadkami, co

zabezpieczało przed dużymi obsunięciami kapitału. Otwarcie pozycji długiej

w końcowym okresie, pozwoliło na wzbicie się ponad poziom zerowy, przez co finalnie

wynik strategii był dobry.

5.5 Prognozowanie zmienności i ryzyka

W poniższym podrozdziale zaprezentowane zostaną wyniki uzyskane przez modele

punktowych prognoz zmienności stóp zwrotu, rozumianej jako warunkowe odchylenie





standardowe. W tym zakresie rozważone zostały modele ekonometryczne klasy

ARMA-GARCH, z wybranymi specyfikacjami struktury GARCH (GARCH,

EGARCH, GJR-GARCH oraz APARCH) i różnymi typami rozkładu warunkowego

(rozkład normalny, t-Studenta oraz skośny rozkład t-Studenta), a także modele

hybrydowe, łączące wymienione specyfikacje z rekurencyjnymi sieciami LSTM.

W badaniach dotyczących prognozowania zmienności, jako podstawowe dane

wykorzystane zostały procentowe logarytmiczne stopy zwrotu. Na ich podstawie

dokonano estymacji poziomów zmienności z wykorzystaniem estymatora GKYZ (zob.

punkt 2.3.2) a także estymacji i prognoz w ramach wspomnianych modeli

ARMA-GARCH. Prognozy zmienności uzyskane przy pomocy tych modeli posłużyły,

wraz z wartościami bezwzględnymi stóp zwrotu, jako dane wejściowe do komponentu

sieciowego w modelach hybrydowych. Struktura tych modeli opisana została szerzej

w punkcie 4.2.1.

Modele ARMA-GARCH estymowane były w ramach schematu rolowanego o

długości okna równej 504 obserwacji (2 lata). Długość szeregu, który następnie

przekazany był jako dane wejściowe do sieci ustalona została na 3495 obserwacji (w

przybliżeniu 14 lat).7. Komponent sieciowy modelu hybrydowego uczony był

z wykorzystaniem okna rozszerzanego8 (zob. rys. 3.14). Początkowa długość zbioru

uczącego wynosiła 1008 obserwacji (4 lata), natomiast długość zbioru testowego

wynosiła 504 obserwacje, i o taką długość powiększany był także zbiór uczący

w każdej iteracji. Z danych w zbiorze uczącym wydzielane dodatkowo były zbiory

walidacyjne, stanowiące 33% danych dostępnych w zbiorze uczącym.

Dla rozważanych danych przeprowadzone zostały analizy wskazujące optymalne

wartości opóźnień struktury autoregresyjnej dla modeli ARMA-GARCH. W tym celu

wykorzystano kryterium informacyjne Schwarza (BIC). Dla dwóch indeksów: S&P500

oraz BOVESPA optymalne wartości wyniosły (1,0), natomiast dla pozostałych

indeksów wartości te wyniosły (0,0). 9

Struktura i wartości poszczególnych hiperparametrów sieci LSTM w modelu

hybrydowych ustalona została w wyniku procesu dostrajana hiperparametrów,

którego wyniki zaprezentowane zostały w podrozdziale (5.3). Model uczony był

7W przypadku modeli hybrydowych ilość obserwacji była taka sama dla wszystkich badanych

aktywów, co umożliwiło bezpośrednie porównanie liczby przekroczeń wartości zagrożonej. Zakres dat

natomiast mógł się w tym przypadku nieznacznie różnić, ze względu na rożne ilości dni sesyjnych

w ciągu roku.
8Badania wstępne wykazały w tym zakresie, że zastosowanie okna rozszerzanego przyniosło w tym

wypadku lepsze rezultaty niż podejście oparte na schemacie rolowanym.
9W dalszej części dla poprawienia czytelności przedrostek ARMA w nazwach modeli będzie

najczęściej pomijany.





z wykorzystaniem funkcji straty minimalizującej miernik błędu MSE.

5.5.1 Ocena trafności prognoz punkowych zmienności

W pierwszej kolejności zaprezentowane zostało zestawienie poszczególnych

badanych modeli, pod względem zgodności prognoz z poziomem zmienności

uzyskanym przy pomocy estymatora GKYZ, z wykorzystaniem miernika oceny

prognoz MSE. Wyniki przedstawione zostały w tabeli 5.10. Tabela zwiera wyniki

zarówno dla poszczególnych specyfikacji modeli GARCH z róznymi badanymi typami

rozkładów warunkowych, jak i modeli hybrydowych wykorzystujących te specyfikacje

w połączeniu z sieciami LSTM (zob. rozdział 4).

Tabela 5.10: Oceny trafności prognoz zmienności — wartości MSE.

Indeks/Model G(N) G(N)-LSTM G(STD) G(STD)-LSTM G(SSTD) G(SSTD)-LSTM

S&P 0,3285 0,3281 0,3251 0,3240 0,3353 0,3315

NIKKEI 0,7190 0,6296 0,7156 0,6413 0,7232 0,6445

DAX 1,0697 0,7849 1,0517 0,7771 1,0753 0,7910

WIG 0,5017 0,4807 0,4898 0,4648 0,4919 0,4899

KOSPI 0,7378 0,5530 0,7188 0,5574 0,7388 0,5594

BOVESPA 0,7934 0,6666 0,7988 0,6707 0,8114 0,6784

E(N) E(N)-LSTM E(STD) E(STD)-LSTM E(SSTD) E(SSTD)-LSTM

S&P 0,3576 0,3519 0,3517 0,3449 0,3633 0,3605

NIKKEI 0,7293 0,6421 0,7186 0,6293 0,7181 0,6454

DAX 1,2148 0,8233 1,1960 0,8740 1,1949 0,8505

WIG 0,5110 0,4883 0,5081 0,4868 0,5032 0,4993

KOSPI 0,7896 0,5862 0,7751 0,5751 0,7710 0,5626

BOVESPA 0,8487 0,6504 0,8181 0,6579 0,8024 0,6735

GJR(N) GJR(N)-LSTM GJR(STD) GJR(STD)-LSTM GJR(SSTD) GJR(SSTD)-LSTM

S&P 0,3026 0,2915 0,3012 0,2809 0,3063 0,2946

NIKKEI 0,7043 0,6496 0,6901 0,6344 0,6962 0,6277

DAX 1,0180 0,7593 0,9778 0,7556 0,9763 0,7446

WIG 0,4802 0,4320 0,4727 0,4331 0,4729606 0,4336

KOSPI 0,7034 0,5403 0,6913 0,5533 0,7065 0,5603

BOVESPA 0,7888 0,6736 0,7942 0,6760 0,8232 0,6914

AP(N) AP(N)-LSTM AP(STD) AP(STD)-LSTM AP(SSTD) AP(SSTD)-LSTM

S&P 0,3423 0,3345 0,3242661 0,3180 0,3265 0,3162

NIKKEI 0,7258 0,6386 0,7014102 0,6341 0,7013 0,6347

DAX 1,0802 0,7755 1,03333 0,7596 1,0486 0,7690

WIG 0,4952 0,4778 0,4825994 0,4723 0,5063 0,4659

KOSPI 0,7496 0,5318 0,7233 0,5512 0,7324 0,5664

BOVESPA 0,8060 0,6740 0,8054 0,6695 0,8800 0,7010

Uwaga: W tabeli zastosowane zostały następujące oznaczenia: G – GARCH, E – EGARCH, GJR –

GJR-GARCH, AP – APARCH, N – rozkład normalny, STD – rozkład t-Studenta, SSTD - skośny

rozkład t-Studenta. Pogrubione zostały najniższe wartości miernika MSE dla poszczególnych

indeksów.

Źródło: Opracowanie własne.





Na podstawie zaprezentowanych wyników zauważyć można, że modele hybrydowe,

w porównaniu z „czystymi” modelami klasy GARCH, przyczyniły się do poprawy

prognoz zmienności w stosunku do estymatora GKYZ w zasadzie w każdym

przypadku. W tym zestawieniu najlepsze wyniki uzyskały modele

GJR-GARCH-LSTM, które uzyskały najniższe wartości miernika MSE dla czterech

aktywów: S&P 500 (z rozkładem normalnym), NIKKEI 225 (z rozkładem

t-Studenta), DAX (ze skośnym rozkładem t-Studenta) oraz WIG (z rozkładem

t-Studenta). Dla indeksu KOSPI najlepszy wynik uzyskał model APARCH-LSTM

z rozkładem normalnym, a dla BOVESPA — model EGARCH-LSTM, również

z rozkładem normalnym. Wyniki te pokrywają się zatem z opublikowanymi do tej

pory badaniami (zob. 4.1), które wykazywały, że łączenie modeli klasy GARCH

z sieciami neuronowymi przyczynia się do poprawy punktowych prognoz zmienności

(przy danej metodzie oceny zmienności oraz przy wybranej funkcji straty).

Porównując przekrojowo wyniki pod kątem wykorzystanych specyfikacji modeli

GARCH, najniższe wartości współczynnika MSE uzyskały modele wykorzystujące

specyfikację GJR-GARCH, dla zdecydowanej większości badanych typów rozkładów

oraz indeksów. Jeśli zaś chodzi o badane typy rozkładów, można zauważyć, że modele

wykorzystujące rozkład t-Studenta oraz skośny rozkład t-Studenta wykazują niższe

wartości miernika MSE niż modele wykorzystujące rozkład normalny.

Wizualne przedstawienie prognoz zmienności dla wszystkich sześciu aktywów

zaprezentowane zostało na rysunku 5.15. Wybrane zostały tutaj modele hybrydowe,

które uzyskały najlepsze wyniki dla poszczególnych aktywów, wraz z odpowiednimi

specyfikacjami bazowych modeli GARCH o tym samym rozkładzie.

Analiza graficzna pokazuje, że modele hybrydowe (oznaczone czerwonym kolorem)

nieznacznie lepiej dopasowywały poziom (średnią) prognoz zmienności do danych

uzyskanych z wykorzystaniem estymatora (kolor szary), w stosunku do (nieznacznie

zaniżonych) oszacowań zmienności uzyskanych w modelach GARCH (kolor zielony).

Największa różnica w poziomach zmienności występuje w przypadku indeksu

NIKKEI 225; nieco mniejsza, choć wciąż widoczna, w przypadku indeksów KOSPI

oraz DAX. Pozostałe indeksy są pod tym względem bardziej zbliżone. Na wykresach

zaobserwować można także, że oszacowania zmienności uzyskane za pomocą

estymatora GKYZ odznaczają się większą wahliwością oraz występowaniem

gwałtownych skoków zmienności (co wynika z faktu, że zmienność ta szacowania jest

dla każdego z dni osobno, bez uwzględnienia persystencji zmienności jak ma to

miejsce w przypadku modeli GARCH czy stosowania technik wygładzania, jak

w przypadku estymatora zmienności historycznej).





Rysunek 5.15: Prognozy zmienności dla poszczególnych aktywów.

Źródło: Opracowanie własne.

Tabela 5.11: Współczynniki korelacji Pearsona pomiędzy najlepszymi specyfikacjami modeli GARCH

i GARCH-LSTM dla poszczególnych aktywów

Index Specyfikacje Wsp. korelacji

S&P 500
GJR(STD)

GJR(STD)-LSTM
0,9519

NIKKEI 225
GJR(SSTD)

GJR(SSTD)-LSTM
0,9064

DAX
GJR(SSTD)

GJR(SSTD)-LSTM
0,9517

WIG
GJR(N)

GJR(N)-LSTM
0,9444

KOSPI
AP(N)

AP(N)-LSTM
0,9301

BOVESPA
E(N)

E(N)-LSTM
0,9058

Źródło: Opracowanie własne.

Tabela 5.11 prezentuje współczynniki korelacji pomiędzy oszacowaniami

zmienności uzyskanymi dla najlepszych specyfikacji modelowych. Zauważyć w niej





można, że najwyższe wartości współczynnika korelacji występują w przypadku

indeksów S&P 500 oraz DAX, zaś najniższe dla indeksów BOVESPA i NIKKEI 225,

co odpowiada także różnicą w wartościach oceny prognoz z wykorzystaniem miernika

MSE, przedstawionych w tabeli 5.10.

5.5.2 Ocena trafności prognoz ryzyka uzyskanych przy

pomocy modeli hybrydowych

Aby lepiej ocenić badane modele, punktowe prognozy zmienności uzyskane za

pomocą modeli GARCH oraz modeli hybrydowych zastosowane zostały także do

pomiaru ryzyka kapitałowego z wykorzystaniem wartości zagrożonej oraz

oczekiwanego niedoboru. Wartość zagrożona szacowna była dla pozycji długiej,

z wykorzystaniem wzoru 2.83 (zob. punkt 2.6.1). W przypadku modeli hybrydowych,

oceny parametrów µt (oraz ewentualnie parametrów ν i ξ) pochodziły z wartości

oszacowanych przez modele ARMA-GARCH, natomiast wartości parametru σt

zastąpione zostały przez prognozy zmienności uzyskane z wykorzystaniem podejścia

hybrydowego. Tego typu zabieg jest uzasadniony z tego względu, że to właśnie

prognozy zmienności mają największy wpływ na oszacowany poziom wartości

zagrożonej, natomiast prognozy wartości oczekiwanej oraz parametry rozkładu

odgrywają w tym przypadku znacznie mniejszą rolę10. Wartości oczekiwanego

niedoboru obliczane były analogicznie, na podstawie wzoru 2.90 (zob. punkt 2.6.2).

W pierwszej kolejności, w tabeli 5.12 przedstawione zostały wyniki procentowych

przekroczeń VaR dla poszczególnych modeli, w zestawieniu dla wszystkich aktywów,

dla 5% i 1% poziomu tolerancji.

10Wyniki bazujące na podejściu, w którym wszystkie te parametry pochodzą z sieciowych modeli

prognozowania probabilistycznego przedstawione zostały w kolejnym podrozdziale.





Tabela 5.12: Procentowe udziały przekroczeń oszacowań VaR(0,05)/VaR(0,01) w modelach ARMA-

GARCH i hybrydowych ARMA-GARCH-LSTM

Indeks/Model G(N) G(N)-LSTM G(STD) G(STD)-LSTM G(SSTD) G(SSTD)-LSTM

S&P 6,35/2,73 4,34/1,65 7/1,81 5,11*/1,13 6,35/1,49 4,22/0,97*

NKX 5,47*/2,33 3,22/1,05* 6,15/1,81 3,62/0,72* 5,39*/1,49 3,1/0,44

DAX 7/2,61 2,73/0,68* 7,4/1,61 3,14/0,36 6,88/1,49 2,69/0,28

WIG 5,71/1,85 3,94/1,13* 6,03/1,33* 4,3*/0,84* 5,67/1,17* 3,62/0,76*

KOSPI 6,71/2,53 2,57/0,64 7,24/1,89 3,18/0,44 6,27/1,45* 2,37/0,2

BVP 5,35*/1,45* 2,73/0,72* 5,83*/1,17* 2,77/0,52 5,51*/1,21* 2,69/0,64*

E(N) E(N)-LSTM E(STD) E(STD)-LSTM E(SSTD) E(SSTD)-LSTM

S&P 6,55/2,57 4,42/1,45 7,2/1,85 4,74/1,33 6,23/0,88* 3,94/0,88

NKX 5,59*/2,13 2,85/0,8* 5,95*/1,73 3,34/0,52 5,43*/1,13* 3,06/0,4

DAX 6,39/2,29 2,69/0,72* 6,88/2,05 3,1/0,6* 6,03/1,53 2,41/0,36

WIG 6,03/1,97 3,34/1,13* 6,35/1,65 3,98/0,97* 5,79*/1,25* 3,46/0,64*

KOSPI 6,88/2,73 2,65/0,68* 7,16/2,05 2,98/0,6* 6,35/1,17* 2,13/0,32

BVP 5,23*/1,69 2,41/0,56* 4,95*/0,76* 3,02/0,44 4,78*/0,64* 3,1/0,48

GJR(N) GJR(N)-LSTM GJR(STD) GJR(STD)-LSTM GJR(SSTD) GJR(SSTD)-LSTM

S&P 5,99*/2,37 3,94/1,21 6,88/1,49* 4,5*/0,97 5,63*/1,05* 3,22/0,48

NKX 5,63*/2,33 3,06/0,84* 5,83*/1,73 3,42/0,68* 5,39*/1,49* 2,98/0,44

DAX 6,51/2,25 2,49/0,76* 6,88/1,65 2,69/0,48 6,07/1,33* 2,41/0,4

WIG 5,47*/1,81 3,58/1,09* 5,91/1,29* 3,94/0,84* 5,39*/1,21* 3,5/0,64*

KOSPI 6,63/2,29 2,45/0,76* 7,04/1,85 2,69/0,52 6,23/1,21* 2,45/0,4

BVP 5,15*/1,45* 2,65/0,56* 5,43*/1,01* 2,69/0,52 5,71*/1,13* 2,77/0,4

AP(N) AP(N)-LSTM AP(STD) AP(STD)-LSTM AP(SSTD) AP(SSTD)-LSTM

S&P 6,67/2,85 4,46*/1,65 7,08/1,65 4,62/1,17 5,95/1,09* 3,98/0,72*

NKX 5,43*/2,01 2,98/0,92* 5,63*/1,57 3,26/0,56 4,91*/1,09* 3,02/0,44

DAX 6,51/2,37 2,53/0,84* 7,04/1,89 2,69/0,52 6,07/1,57 2,29/0,4

WIG VaR 5,71*/1,93 3,82/1,17* 5,83/1,33* 3,86/0,92* 5,47*/1,25* 3,42/0,8*

KOSPI VaR 6,92/2,65 2,9/0,8* 7,2/1,85 2,98/0,52 6,15/1,25* 2,61/0,4

BVP VaR 5,79*/1,65 2,69/0,64* 5,75*/1,25* 3,18/0,48 5,55*/1,33* 3,26/0,6*

Uwaga: Pogrubione zostały wyniki najbardziej zbliżone do przyjętego poziomu tolerancji,

podkreślone te, które uzyskały także poprawny wynik testu Kupca, zaś gwiazdką oznaczone zostały

te, które uzyskały poprawny wynik testu Christoffersena. Oczekiwana liczba przekroczeń wynosi

124/24, ilość prognoz 2487.

Źródło: Opracowanie własne.

Analizując wyniki przedstawione w powyższej tabeli, pod względem procentowego

udziału przekroczeń VaR najlepsze wyniki uzyskał model APARCH-LSTM

z rozkładem normalnym, który dla 1% poziomu tolerancji najlepsze rezultaty uzyskał

dla trzech indeksów: NIKKEI 225 (0,92%), DAX (0,84%) oraz KOSPI (0,8%). Z kolei

model APARCH ze skośnym rozkładem t-Studenta najlepiej spisywał się na 5%

poziomie tolerancji dla indeksów NIKKEI 225 (4,91%) oraz KOSPI (6,15%). Ogólnie

zauważyć można, że modele wykorzystujące specyfikację APARCH spisywały się

w tym zestawieniu najlepiej. Wyniki ilości procentowych przekroczeń VaR sugerują





dodatkowo, że nieznacznie lepiej spisują się modele wykorzystujące rozkłady

t-Studenta i skośny t-Studenta (w pięciu przypadkach dla każdego rozkładu) niż

modele wykorzystujące rozkład normalny (w trzech przypadkach). Dodatkowa tabela,

A.1, przedstawiająca liczbę przekroczeń poziomu VaR zamieszczona została

w Aneksie.

Wstępne porównanie wyników uzyskanych przez modele hybrydowe z modelami

klasy GARCH wskazuje pod względem wartości najbliższych przyjętym poziomom

tolerancji (wartości pogrubione), pokazuje, że modele hybrydowe lepiej prognozują

wartość zagrożoną dla 1% poziomu tolerancji, zaś „czyste” modele GARCH — dla

poziomu 5%. Szczegółowa analiza porównawcza wybranych specyfikacji modelowych

przedstawiona zostanie w rozdziale 6.

Przekroczenia VaR dla poszczególnych modeli przeanalizowane zostały dodatkowo

z wykorzystaniem testu Kupca, badającego poprawność ilości przekroczeń poziomu

VaR w stosunku do przyjętego poziomu tolerancji, oraz testu Christoffersena,

sprawdzającego dodatkowo niezależność przekroczeń w czasie (zob. punkt 2.6.3).

Prawidłowe wyniki dla tych testów zaznaczone zostały w tabeli 5.12 odpowiednio

podkreśleniem oraz gwiazdką. Analizując wyniki w tym kontekście przede wszystkim

zauważyć zauważyć można, że dla 1% poziomu tolerancji najlepsze wyniki

przekrojowo uzyskały modele hybrydowe wykorzystujące specyfikacje GARCH

z rozkładem normalnym. Bardzo dobre wyniki, dla obu poziomów tolerancji, uzyskały

także „czyste” modele klasy GARCH ze skośnym rozkładem t-Studenta.

Wyniki oszacowań ryzyka w kolejnym kroku poddane zostały analizie wykresowej.

Na rysunkach 5.16 i 5.17 przedstawione zostały oszacowania VaR oraz ich

przekroczenia dla modeli najlepiej spisujących się pod względem liczby przekroczeń

dla danego indeksu, zarówno dla poziomu tolerancji 1%, jak i 5%.

Na prezentowanych wykresach, zielonym kolorem zaznaczony jest prognozowany

poziom VaR dla 5% poziomu tolerancji, natomiast kolorem czerwonym — dla 1%

poziomu tolerancji. Punktowo zaznaczone zostały natomiast przekroczenia VaR. Dla

wszystkich badanych aktywów zauważyć można pojawiające się na wykresach

zgrupowania przekroczeń, widoczne dla obu poziomów tolerancji. Zgrupowania te

widoczne są zarówno w okresach podwyższonej, jak i niskiej zmienności. Takie wyniki

sugerować by mogły, że przekroczenia nie są niezależne w czasie.





Rysunek 5.16: Prognozy wartości zagrożonej dla indeksów S&P 500, NIKKEI oraz DAX, uzyskane za

pomocą wybranych modeli klasy GARCH oraz modeli hybrydowych GARCH-LSTM.

Źródło: Opracowanie własne.





Rysunek 5.17: Prognozy wartości zagrożonej dla indeksów WIG, KOSPI oraz BOVESPA, uzyskane

za pomocą wybranych modeli klasy GARCH oraz modeli hybrydowych GARCH-LSTM.

Źródło: Opracowanie własne.

Szczegółowe wyniki da wszystkich analizowanych modeli przedstawione zostały

w tabelach A.2 - A.25, zamieszczonych w Aneksie. Tabele te zawierają informacje

dotyczące ocen prognoz zmienności za pomocą miar MSE, MAE, HMSE i R2, wyniki

testu Diebolda-Mariano na istotność różnic trafności prognoz, ilości przekroczeń VaR,

wyniki testów Kupca oraz Christoffersena dla obu przyjętych poziomów tolerancji,

oraz wyniki testu McNeila i Fraya (zob. punkt 2.6.3) dotyczące poprawności prognoz





oczekiwanego niedoboru. Ogólnie, zaprezentowane we wspomnianych tabelach wyniki

charakteryzują się dużym rozrzutem. Z tego względu, szczegółowej analizie

porównawczej przedstawionej w punkcie 6.1.2, poddane zostały wyniki uzyskane

przez najlepsze specyfikacje modelowe.

5.6 Prognozowanie rozkładów prawdopodobieństw

W poniższym podrozdziale zaprezentowane zostaną wyniki uzyskane

z wykorzystaniem sieciowych modeli prognoz probabilistycznych, opisanych

w punkcie 4.2.2. Analizie poddane zostały modele bazujące na jednowymiarowych

sieciach CNN oraz sieciach rekurencyjnych LSTM. Struktura i hiperparametry

zastosowanych sieci przedstawione zostały dokładniej w podrozdziale 5.3. Modele

wykorzystane zostały do prognozowania parametrów wybranych rozkładów

warunkowych: rozkładu normalnego, t-Studenta oraz skośnego rozkładu t-Studenta.

W pierwszej kolejności zaprezentowane zostaną oceny wykorzystujące kryteria oceny

prognoz probabilistycznych: LPS, CRPS oraz PIT (zob. punkt 2.5.4). W dalszej

części modele te ocenione zostały w kontekście szacowania ryzyka kapitałowego za

pomocą wartości zagrożonej.

Szczegółowe wyniki, dla wszystkich badanych modeli i instrumentów finansowych,

dodatkowo przedstawione zostały w Aneksie, w tabelach A.27 - A.38.

5.6.1 Ocena trafności prognoz probabilistycznych

W tabeli 5.13 przedstawiono uzyskane wartości mierników LSP oraz CRPS, a także

wartości p-value testu Andersona-Darlinga jednostajności rozkładu PIT (zob. punkt

2.5.4), którego hipoteza zerowa zakłada, że rozkład skalibrowany jest prawidłowo.

Na podstawie przedstawionych w tabeli wyników, można zauważyć, że dla

większości aktywów najlepsze wyniki uzyskały sieci LSTM dla skośnego rozkładu

t-Studenta. W przypadku miernika LPS, dla indeksów DAX, WIG oraz BOVESPA

lepsze wyniki uzyskały sieci LSTM z rozkładem t-Studenta, natomiast pod względem

miernika CRPS sieci LSTM z rozkładem normalnym w przypadku indeksu

BOVESPA.





Tabela 5.13: Oceny prognoz uzyskanych za pomocą sieciowych modeli prognozowania

probabilistycznego

Kryterium/Model CNN-N CNN-STD CNN-SSTD LSTM-N LSTM-STD LSTM-SSTD

Indeks S&P 500

LPS 1,2820 1,2416 1,2220 1,2632 1,2104 1,1933

CRPS 0,5229 0,5248 0,5197 0,5146 0,5137 0,5094

PIT p-value 2,41e-07 1,55e-05 0,1144 2,41e-07 0,0057 0,0309

Indeks NIKKEI

LPS 1,6136 1,5990 1,5865 1,6124 1,5870 1,5854

CRPS 0,6914 0,6995 0,6963 0,6892 0,6894 0,6874

PIT p-value 2,41e-07 4,41e-05 0,0476 2,41e-07 2,41e-07 2,41e-07

Indeks DAX

LPS 1,5800 1,5598 1,5708 1,5540 1,5178 1,5229

CRPS 0,6804 0,6892 0,6901 0,6651 0,6663 0,6645

PIT p-value 2,41e-07 2,41e-07 2,41e-07 2,41e-07 2,41e-07 0,3536

Indeks WIG

LPS 1,4520 1,3925 1,4055 1,4265 1,3400 1,3475

CRPS 0,5616 0,5703 0,5716 0,5605 0,5553 0,5553

PIT p-value 2,41e-07 2,41e-07 2,41e-07 2,41e-07 0,0023 0,0087

Indeks KOSPI

LPS 1,3349 1,3147 1,3172 1,3240 1,2961 1,2847

CRPS 0,5285 0,5297 0,5302 0,5246 0,5201 0,5165

PIT p-value 2,41e-07 2,41e-07 2,41e-07 2,41e-07 4,70e-07 5,08e-06

Indeks BOVESPA

LPS 1,7740 1,7829 1,7875 1,7776 1,7751 1,7851

CRPS 0,8268 0,8369 0,8349 0,8222 0,8269 0,8335

PIT p-value 2,41e-07 0,1866 0,0069 2,41e-07 0,0038 0,0056
Uwaga: W tabeli pogrubione zostały najniższe wartości kryteriów LPS oraz CRPS oraz najwyższe

wartości p-value dla testu Andersona-Darlinga.

Źródło: Opracowanie własne.

Analizując wyniki poprawności kalibracji rozkładu, zauważyć można, że

w zdecydowanej większości przypadków wartości p-value były niskie, co wskazuje na

niepoprawną kalibrację. W przypadku indeksu S&P 500, jedynie sieci CNN ze

skośnym rozkładem t-Studenta uzyskały poprawny wynik testu. Model ten uzyskał

najlepszy wynik pod tym względem także w przypadku indeksu NIKKEI, wartość

p-value była w tym przypadku nieznacznie niższa niż 0,1. Dla indeksu DAX





poprawny wartość p-value wyższą niż 0,1 uzyskał model bazujący na sieciach LSTM

ze skośnym rozkładem t-Studenta. Model ten uzyskał też najwyższą wartość p-value

w przypadku indeksów WIG oraz KOSPI, w dalszym ciągu wartość ta jest niższa niż

0,01, co sugeruje niedostateczną kalibrację rozkładów prognozy. Dla indeksu

BOVESPA najlepszy i zarazem poprawny wynik testu uzyskały sieci CNN

z rozkładem t-Studenta.

Na rysunku 5.18 przedstawione zostały rozkłady wartości PIT, dla trzech

wybranych specyfikacji modelowych: LSTM-SSTD, LSTM-N oraz CNN-N, dotyczące

indeksu DAX.

Rysunek 5.18: Wykres rozkładów wartości PIT, indeks DAX.

Źródło: Opracowanie własne.

Obserwując wykresy przedstawione na powyższym rysunku można zauważyć, że

model LSTM-SSTD, który uzyskał najlepszy wynik testu Andersona-Darlinga,

charakteryzuje się najlepszym poziomem dopasowania — wykres wartości PIT jest

najbardziej zbliżony do rozkładu jednostajnego. W przypadku modelu LSTM-N

zaobserwować można nadmierne rozproszenie wartości prognozowanych — relatywnie

mało obserwacji, w stosunku do tendencji centralnej, realizuje się w ogonach

rozkładów predyktywnych. Natomiast dla modelu CNN-N zaobserwować można, że

zbyt duża ilość obserwacji realizuje się w górnych kwantylach rozkładów, co może

świadczyć o tym, że rozkłady predykatywne były w tym przypadku systematycznie

zaniżone.

5.6.2 Ocena trafności prognoz ryzyka uzyskanych przy

pomocy modeli prognozowania probabilistycznego

Wyniki uzyskane przez sieciowe modele prognozowania probabilistycznego

poddane zostały analizie także w kontekście szacowania ryzyka kapitałowego. W

pierwszej kolejności przedstawione zostały wyniki procentowego udziału przekroczeń

VaR dla wszystkich badanych indeksów giełdowych. Zestawienie wyników





przedstawiono w tabeli 5.14.

Tabela 5.14: Procentowe udziały przekroczeń oszacowań VaR(0,05)/VaR(0,01) w modelach

prognozowania probabilistycznego.

Indeks/Model CNN-N CNN-STD CNN-SSTD

S&P 4,50/1,56* 4,58/0,92* 5,30/0,88*

NKX 4,30*/1,48 4,02*/0,92* 3,53/0,40

DAX 6,35/2,53 5,42*/1,12* 4,14*/0,80*

WIG 5,07/1,97 4,58*/1,12 3,69/0,80*

KOSPI 5,70/2,09 3,86/0,56* 2,29/0,32

BVP 5,38*/1,20* 3,98/0,72* 2,61/0,28

LSTM-N LSTM-STD LSTM-SSTD

S&P 4,86*/1,97 5,34/1,01* 4,50/0,84*

NKX 4,46*/1,88 4,58*/1,01* 3,81/0,64

DAX 5,87/1,97 6,59/1,16* 5,66/0,88*

WIG 4,82/1,84 4,95/1,20 4,26/0,76*

KOSPI 5,42*/1,93 4,46*/0,84* 3,37/0,44

BVP 5,18*/1,24* 3,65/0,68* 2,41/0,32
Uwaga: Pogrubione zostały wyniki najbardziej zbliżone do przyjętego poziomu tolerancji,

podkreślone te, które uzyskały także poprawny wynik testu Kupca, zaś gwiazdką oznaczone zostały

te, które uzyskały poprawny wynik testu Christoffersena. Oczekiwana liczba przekroczeń wynosi

124/24, ilość prognoz 2487.

Źródło: Opracowanie własne.

Analizując przedstawione w powyższej tabeli wyniki, można stwierdzić, że dla

indeksu S&P 500 najlepsze wyniki pod względem ilości przekroczeń (wartości

pogrubione) uzyskały sieci LSTM, przy czym dla 5% poziomu tolerancji był to model

z rozkładem normalnym, natomiast dla poziomu 1% — model z rozkładem

t-Studenta. W przypadku indeksu NIKKEI, dla obu poziomów tolerancji najlepsze

wyniki uzyskały sieci LSTM z rozkładem t-Studenta. Z kolei w przypadku indeksu

DAX dla 5% poziomu tolerancji najlepszy wynik uzyskały sieci CNN z rozkładem

t-Studenta, natomiast dla poziomu 1% były to sieci LSTM ze skośnym rozkładem

T-studenta oraz, ponownie, sieci CNN z rozkładem t-Studenta. Dla indeksu WIG, dla

5% poziomu tolerancji najlepiej spisywał się model wykorzystujące sieci LSTM

z rozkładem t-Studenta, zaś dla 1% poziomu tolerancji sieci CNN z rozkładem

t-Studenta. Dla indeksów KOSPI oraz BOVESPA, dla 5% poziomu tolerancji

najlepsze wyniki uzyskał model LSTM z rozkładem normalnym, natomiast dla





poziomu 1% odpowiednio model LSTM z rozkładem t-Studenta oraz CNN

z rozkładem normalnym.

Podsumowując wyniki dotyczące procentowych udziałów przekroczeń VaR można

wskazać, że sieci LSTM przynosiły nieco lepsze rezultaty, uzyskując najlepsze wyniki

w dziewięciu na dwanaście przypadków, natomiast sieci CNN — w czterech. W

przypadku porównania badanych rozkładów prawdopodobieństwa można stwierdzić,

że modele oparte na rozkładzie t-Studenta uzyskały najlepsze rezultaty w ośmiu

przypadkach, rozkładzie normalnym w czterech przypadkach, zaś oparte na skośnym

rozkładzie t-Studenta w jednym przypadku.

Odnosząc się do rezultatów testów Kupca i Christoffersena (dla których poprawne

wyniki oznaczone zostały odpowiednio podkreśleniem oraz gwiazdką), zauważyć

można, że sieciowe modele prognozowania probabilistycznego ogólnie przynoszą dobre

rezultaty. Uwagę zwracają przede wszystkim dobre rezultaty modelu LSTM

z rozkładem normalnym dla 5% poziomu tolerancji oraz modeli LSTM i CNN

z rozkładem t-Studenta dla 1% poziomu tolerancji. Ogólnie najlepsze wyniki pod

kątem liczby przkroczeń oraz poprawnych wyników testów wstecznych uzyskał dla

obu poziomów tolerancji uzyskał model LSTM z rozkładem t-Studenta.

W kolejnej części wyniki uzyskane przez najlepsze modele poddane zostały analizie

graficznej. 11 Rysunki 5.19 i 5.20 przedstawiają wykresy prognozowanych poziomów

wartości zagrożonej dla poszczególnych indeksów (oznaczone linią ciągłą) oraz momenty

przekroczeń tych poziomów, zaznaczone punktowo.

Analogicznie do wykresów przedstawiających oszacowania VaR dla modeli

hybrydowych, zielonym kolorem oznaczone zostały prognozy dla przyjętego 5%

poziomu tolerancji, a kolorem czerwonym dla poziomu 1%. Także w tym wypadku

zauważyć można, że przekroczenia prognozowanego poziomu VaR są zgrupowane

i mają miejsce najczęściej w okresach wysokiej zmienności, co — podobnie, jak

w przypadku modeli hybrydowych — świadczyć mogło by o tym że przekroczenia te

nie są niezależne. Dokładne wyniki testu Kupca i testu Christoffersena dla VaR oraz

testu McNeila i Freya dla ES przedstawione zostały w tabelach A.27 - A.38

zamieszczonych w Aneksie. Porównanie wyników uzyskanych przez modele

prognozowania probabilistycznego z modelami hybrydowymi m.in. pod względem

procentowego udziału przekroczeń VaR przedstawione zostało w punkcie 6.1.3 gdzie

zestawiono najlepsze specyfikacje modelowe.

11W przypadku indeksu WIG, sieci CNN z rozkładem t-Studenta i LSTM ze skośnym rozkładem

t-Studenta uzyskały bardzo zbliżone wyniki. W analizie graficznej przedstawiono wyniki tylko dla sieci

CNN, ponieważ model ten uzyskał lepsze wyniki testów wstecznych.





Rysunek 5.19: Prognozy wartości zagrożonej z wykorzystaniem modeli prognozowania

probabilistycznego dla indeksów S&P 500, NIKKEI oraz DAX.

Źródło: Opracowanie własne.





Rysunek 5.20: Prognozy wartości zagrożonej z wykorzystaniem modeli prognozowania

probabilistycznego dla indeksów WIG, KOSPI oraz BOVESPA.

Źródło: Opracowanie własne.





Rozdział 6

Szczegółowa analiza porównawcza

wyników empirycznych uzyskanych

za pomocą wybranych modeli

6.1 Porównanie uzyskanych wyników

W poniższym podrozdziale dokonana została analiza porównawcza wyników

uzyskanych z wykorzystaniem wybranych badanych specyfikacji modelowych — tych,

które uzyskały najlepsze wyniki dla badanych aktywów w poszczególnych

scenariuszach badawczych. Porównanie to ma na celu przede wszystkim wskazanie

obszarów, w których poszczególne specyfikacje modelowe sprawdzają się najlepiej.

6.1.1 Modele punktowych prognoz stóp zwrotu

W pierwszym punkcie porównane zostaną wybrane modele wykorzystane do

uzyskania punktowych prognoz stóp zwrotu, które uzyskały najlepsze wyniki

w kontekście wybranych miar błędu (MSE i MADL) oraz ocen strategii

inwestycyjnych.

W podrozdziale 5.4 omówione zostały wyniki ewaluacji modeli opartych na

sieciach neuronowych za pomocą poszczególnych metryk błędu (zob. tabela 5.4). Pod

względem procentowej trafności prognoz oraz miernika MSE (który wykorzystywany

był także jako funkcja straty w procesie uczenia sieci), najlepsze wyniki uzyskały sieci

LSTM, uzyskując najniższe wartości MSE dla czterech z sześciu badanych indeksów,

i najwyższe wartości procentowej trafności predykcji dla trzech indeksów. Z kolei sieci

CNN lepsze wyniki uzyskały biorąc pod uwagę wartości błędu mierzonego przez

funkcję MADL. Najsłabiej w tym zestawieniu wypadły sieci MLP, które tylko nieco
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lepszy wynik od pozostałych sieci pod względem funkcji MADL i trafności predykcji

uzyskały dla indeksu WIG.

W kolejnej części modele prognoz punktowych stóp zwrotu porównane będą pod

względem poszczególnych wskaźników oceny strategii inwestycyjnych, przy czym do

zestawienia wybrane zostaną jedynie najlepsze strategie. Tabela 6.1 uwzględnia także

wyniki modelu wykorzystującego sieć LSTM uczoną z wykorzystaniem funkcji straty

zadanej jako MADL. Porównanie wyników, dla wszystkich badanych aktywów,

zaprezentowane zostało w tabeli 6.1. W celu określenia najlepszych modeli należy

zwrócić przede wszystkim uwagę na dwa wskaźniki: roczny skumulowany zwrot (aRC)

oraz wskaźniki informacyjne (IR), głównie ze względu na to, że wskaźniki IR biorą

pod uwagę także pozostałe wskaźniki dotyczące zmienności i ryzyka związanego

z daną strategią (aSD, MD oraz MLD).

Porównując wyniki przedstawione w poniższej tabeli można zauważyć, że najlepsze

wyniki w pod względem wskaźnika rocznego skumulowanego zwrotu (aRC) uzyskały

sieci CNN, uzyskując najwyższe wartości tego wskaźnika dla trzech indeksów: S&P

500, KOSPI oraz BOVESPA. Sieci LSTM najlepiej wypadły dla indeksów NIKKEI

oraz DAX (wynik ten został dodatkowo poprawiony w modelu LSTM trenowanym na

funkcji MADL), natomiast dla indeksu WIG najlepszy wynik uzyskała sieć MLP.

Biorąc pod uwagę wskaźnik informacyjny IR*, sieci LSTM uzyskały najlepsze

wyniki dla indeksów NIKKEI, DAX, oraz BOVESPA, z tym że w tym przypadku

były to sieci używające miernika MADL jako funkcji straty. Zbliżone wyniki uzyskały

sieci CNN, które najlepiej spisywały się na indeksach S&P500 oraz KOSPI. Dla

indeksu WIG najlepszy wynik uzyskała ponownie sieć MLP. Modele wykazują także

podobne wyniki pod względem miernika IR** – w tym przypadku sieci CNN

dodatkowo uzyskały wynik na tym samym poziomie (0,05) co sieci LSTM dla indeksu

BOVESPA.

Analizując wyniki sieci LSTM uczonej z wykorzystaniem miernika MADL jako

funkcji straty można zauważyć, że cechuje się ona bardzo dobrymi wynikami

ogólnymi. Dla wszystkich badanych aktywów strategie wykorzystujące ten model

przynosiły zyski, często na poziomie zbliżonym do pozostałych badanych sieci.

Modele te cechują się także najlepszymi ogólnymi wskaźnikami aSD oraz MD, co

wskazuje, że charakteryzują się najniższym ryzykiem, dzięki czemu możliwe byłoby

zastosowanie w tym przypadku dźwigni w celu uzyskania większych zysków. Dobre

wyniki w kontekście wskaźników aSD oraz MD uzyskały także modele wykorzystujące

sieci MLP, mimo że nie przełożyło się to w tym wypadku na pozostałe wskaźniki. Z

kolei dla wskaźnika MLD, najlepiej spisywały się sieci CNN.





Tabela 6.1: Porównanie modeli punktowych prognoz stóp zwrotu, pod względem wskaźników oceny

strategii inwestycyjnych.

Indeks/Strategia aRC aSD MD MLD IR* IR** IR***

Sieci MLP (MSE)

S&P500 LO 6,98 15,69 24,91 1,17 0,45 0,12 0,01

NIKKEI LO 1,42 18,46 41,01 3,63 0,08 0,00 0

DAX LO 0,35 17,36 35,57 6,46 0,02 0,00 0

WIG LO 2,15 15,36 47,38 2,90 0,14 0,01 0

KOSPI LO 0,38 15,75 43,78 5,08 0,02 0,00 0

BOVESPA LO 1,96 21,24 51,03 5,75 0,09 0,00 0

Sieci CNN (MSE)

S&P500 LS 13,01 21,11 28,52 4,08 0,62 0,28 0,01

S&P500 LO 10,95 18,34 29,34 1,1 0,60 0,22 0,02

NIKKEI LO 4,48 19,30 39,31 2,74 0,23 0,03 0

DAX LO 2,26 18,92 43,48 5,40 0,12 0,01 0

WIG LO -1,55 15,01 43,61 9,20 -0,10 0 0

KOSPI LS 9,20 19,66 39,44 2,48 0,47 0,11 0

BOVESPA LS 8,56 28,46 47,96 2,52 0,30 0,05 0

Sieci LSTM (MSE)

S&P500 LS 9,07 21,12 34,50 2,75 0,43 0,11 0

S&P500 LO 8,92 18,70 34,03 3,05 0,48 0,13 0

NIKKEI LO 6,89 21,28 42,76 4,56 0,32 0,05 0

DAX LS 7,04* 22,97 47,11 2,92 0,31 0,05 0

DAX LO 6,47 19,49 39,89 2,93 0,33* 0,05 0

WIG LO 0,50 16,67 42,64 2,90 0,03 0 0

KOSPI LO -0,41 17,68 43,12 8,83 -0,02 0,00 0

BOVESPA LO 5,07 24,24 52,48 4,56 0,21 0,02 0

Sieci LSTM (MADL)

S&P500 LO 9,26 15,69 29,69 1,55 0,59 0,18 0,01

NIKKEI LO 3,27 15,81 30,00 4,43 0,21 0,02 0

DAX LS 8,06 22,97 57,47 8,11 0,35 0,05 0

WIG LO 1,14 12,80 38,85 7,09 0,09 0 0

KOSPI LO 3,29 14,55 38,97 4,62 0,23 0,02 0

BOVESPA LO 7,08 22,18 44,08 7,80 0,32 0,05 0
Uwaga: Pogrubiono najlepsze rezultaty uzyskane dla określonej strategii inwestycyjnej, tj. dla

wskaźników aRC oraz IR pogrubione zostały najwyższe wartości dla poszczególnych indeksów, zaś

dla wskaźników aSD, MD oraz MLD — wartości najniższe. Gwiazdką oznaczone zostały najlepsze

wyniki spośród sieci wykorzystujących MSE jako funkcję straty.

Źródło: Opracowanie własne.





Na podstawie wyników przedstawionych w tabeli 6.1 nie sposób jednoznacznie

wskazać, który typ sieci jest najlepszy pod względem punktowego prognozowania stóp

zwrotu. Można natomiast zauważyć, że sieci uczenia głębokiego (LSTM oraz CNN)

spisywały się lepiej niż klasyczne sieci MLP. Biorąc jednak dodatkowo pod uwagę

wyniki miar błędu (MSE, MAE oraz trafności prognoz) z tabeli 5.4 sieci LSTM

można wyróżnić jako spisujące się nieznacznie lepiej od sieci CNN.

Porównując sposoby konturowania strategii inwestycyjnych, należy zwrócić uwagę,

że tabeli w znaczniej większości znalazły się strategie wykorzystujące wyłącznie

sygnały kupna (LO). Wynikać to może z faktu, że w tych strategiach możliwość

popełnienia błędu jest ograniczona, jak i z tego, że badane instrumenty finansowe

w postaci indeksów giełdowych charakteryzują się trendem wzrostowym, co także

może mieć pozytywny wpływ na wyniki strategi bazujących na pozycjach długich.

6.1.2 Modele hybrydowe punktowych prognoz zmienności

W poniższym punkcie przedstawione zostały zestawienia szczegółowych wyników

dla modeli wykorzystanych uprzednio w celu uzyskania punktowych prognoz

zmienności – modeli ARMA-GARCH oraz hybrydowych modeli

ARMA-GARCH-LSTM. Spośród wszystkich rozważanych specyfikacji modelowych do

porównań wybrane zostały te, które uzyskały najniższe wartości błędu MSE oraz

odpowiednich liczb przekroczeń VaR.1 Zestawienia przygotowane zostały w tabelach

osobno dla każdego z aktywów. W tabelach zawarte zostały dodatkowo także mierniki

błędów MAE, HMSE i R2, a także wyniki (wartości p-value) testów Kupca

i Christoffersena dla oszacowań wartości zagrożonej, oraz testu McNeila i Fraya dla

oczekiwanego niedoboru (zob. rozdział 4). Testy przeprowadzone zostały zarówno dla

5%, jak i 1% poziomu tolerancji.

Indeks S&P 500

W tabeli 6.2 przedstawiono wyniki dla modeli, które uzyskały najlepsze rezultaty

na danych pochodzących z indeksu S&P 500. Do zestawienia wybrane zostały modele

GJR-GARCH(SSTD)-LSTM, GARCH(STD)-LSTM oraz GARCH(SSTD)-LSTM.

1Szczegółowe wyniki dla wszystkich badanych specyfikacji modelowych przedstawione zostały

w tabelach A.2 - A.25 zamieszczonych w Aneksie.





Tabela 6.2: Zestawienie modeli, indeks S&P 500, najlepsze modele pod względem MSE i ilości

przekroczeń VaR

Mierniki/Model GJR(STD)-LSTM G(STD)-LSTM G(SSTD)-LSTM

MSE 0,2810 0,3240 0,3315

MAE 0,3632 0,3707 0,3783

HMSE 0,3274 0,3472 0,3768

R2 0,7677 0,5822 0,5668

Przek. VaR 112/24 127/28 105/24

Przek. VaR (%) 4,5/0,97 5,11/1,13 4,22/0,97

Kupiec 5% 0,2481 0,8080 0,0677

Kupiec 1% 0,8600 0,5363 0,8600

Christoff. 5% 0,1259 0,2230 0,0105*

Christoff. 1% 0,0051* 0,0107* 0,0052

ES bootstrap 5% 0,6861 0,5438 0,7727

ES próbkowy 5% 0,7225 0,5342 0,8536

ES bootstrap 1% 0,4358 0,4240 0,6902

ES próbkowy 1% 0,3510 0,4240 0,7638
Uwaga: Pogrubione zostały najniższe wartości MSE, oraz ilość przekroczeń VaR najbardziej zbliżona

do przyjętego poziomu tolerancji. * oznaczone zostały wyniki testów, w których hipoteza zerowa

została odrzucona, mimo akceptowalnej ilości przekroczeń.

Źródło: Opracowanie własne.

W przypadku indeksu S&P 500, model, który uzyskał najlepsze wyniki pod

względem podstawowej miary błędu MSE, tj. GJR-GARCH(STD)-LSTM, osiągnął

także najlepsze wyniki dla pozostałych wymienionych mierników błędu prognoz. Pod

względem liczby przekroczeń VaR dla 1% poziomu tolerancji jest na tym samym

poziomie, co model GARCH(SSTD)-LSTM. Natomiast dla 5% poziomu tolerancji

najlepsze wyniki uzyskał model GARCH(STD)-LSTM. Przedstawione w tabeli

modele mają także akceptowalne wyniki testów VaR i ES (wartości p-value). Wyjątki

stanowią tutaj modele GJR-GARCH(STD)-LSTM oraz GARCH(STD)-LSTM, które

uzyskały niską wartość p-value testu Christoffersena dla 1% poziomu tolerancji, oraz

model GARCH(SSTD)-LSTM także pod względem testu Christoffersena dla 5%

poziomu tolerancji.

Zauważyć można także, że dla rozważanego tu indeksu, w zestawieniu najlepszych

modeli znalazły się tylko modele hybrydowe, w dwóch przypadkach bazujące na

skośnym rozkładzie t-Studenta, a w jednym — na rozkładzie t-Studenta.





Indeks NIKKEI 225

Wyniki dla najlepszych modeli dla indeksu NIKKEI 225 przedstawione zostały

w tabeli 6.3. W zestawieniu uwzględniono modele GJR-GARCH(SSTD)-LSTM,

APARCH(SSTD) oraz APARCH(N)-LSTM.

Tabela 6.3: Zestawienie modeli, indeks NIKKEI 225, najlepsze modele pod względem MSE i ilości

przekroczeń VaR

Mierniki/Model GJR(SSTD)-LSTM AP(SSTD) AP(N)-LSTM

MSE 0,6277 0,7013 0,6386

MAE 0,5669 0,5645 0,5659

HMSE 4,4495 2,7125 4,6458

R2 0,1699 0,1998 0,1568

Przek. VaR 74/11 122/27 74/23

Przek. VaR (%) 2,98/0,44 4,91/1,09 2,98/0,92

Kupiec 5% 5,89e-07* 0,8283 5,89e-07*

Kupiec 1% 0,0017* 0,6712 0,7027

Christoff. 5% 2,03e-06* 0,8924 2,03e-06*

Christoff. 1% 0,0008* 0,5333 0,4229

ES próbkowy 5% — 0,2384 —

ES próbkowy 5% — 0,1476 —

ES bootstrap 1% — 0,2315 0,0398

ES próbkowy 1% — 0,1445 0,0185*
Uwaga: Pogrubione zostały najniższe wartości MSE, oraz ilość przekroczeń VaR najbardziej zbliżona

do przyjętego poziomu tolerancji. * oznaczone zostały wyniki testów, w których hipoteza zerowa

została odrzucona, mimo akceptowalnej ilości przekroczeń. W tabeli pominięte zostały wyniki testu

dotyczącego ES, w przypadku gdy wyniki obu testów na liczbę przekroczeń VaR były niewłaściwe.

Źródło: Opracowanie własne.

Pod względem miary MSE najlepszy wynik uzyskał model

GJR-GARCH(SSTD)-LSTM. Wynik ten jednak nie przekłada się na dobre rezultaty

pod względem pozostałych kryteriów, zarówno w odniesieniu do innych mierników

błędu, jak i prognoz ryzyka, gdzie lepsze wyniki uzyskały pozostałe modele. Liczba

przekroczeń VaR w przypadku tego modelu była znacznie niższa niż założona, co

odbiło się także na wynikach testów.

Pod względem liczby przekroczeń VaR dla 5% poziomu tolerancji najlepszy wynik

dla tego indeksu uzyskał model APARCH(SSTD). Wyniki testów wstecznych dla tego

modelu są także we wszystkich wypadkach poprawne. Model ten uzyskał także

najniższą wartość mierników HMSE, MAE i najniższą miernika R2, oraz poprawne





wyniki testu wstecznego McNeila i Fraya (ES), dla obydwu rozważanych poziomów

tolerancji. Dla 1% VaR najlepszy wynik uzyskał model APARCH(N)-LSTM. Nie

sprawdził się on jednak dla poziomu 5%, gdzie otrzymał wyniki znacznie zaniżone.

Także w przypadku testu wstecznego dla 1% ES wartości p-value były zbyt niskie.

Indeks DAX

Dla indeksu DAX szczegółowe wyniki przedstawione zostały w tabeli 6.4,

zestawiającej w tym przypadku modele GJR-GARCH(SSTD)-LSTM,

EGARCH(SSTD) oraz APARCH(N)-LSTM.

Tabela 6.4: Zestawienie modeli, indeks DAX, najlepsze modele pod względem MSE i ilości przekroczeń

VaR

Mierniki/Model GJR(SSTD)-LSTM E(SSTD) AP(N)-LSTM

MSE 0,7446 1,1950 0,7755

MAE 0,5396 0,6437 0,5483

HMSE 0,3278 0,1699 0,3300

R2 0,3765 0,2423 0,3679

Przek. VaR 60/10 150/38 63/21

Przek. VaR (%) 2,69/0,48 6,03/1,53 2,53/0,84

Kupiec 5% 5,51e-11* 0,02207* 5,19e-10*

Kupiec 1% 0,0007* 0,01408* 0,4229

Christoff. 5% 4,19e-10* 0,0582 2,46e-09*

Christoff. 1% 0,0029* 0,0432* 0,6065

ES bootstrap 5% — 0,2602 —

ES próbkowy 5% — 0,1686 —

ES bootstrap 1% — — 0,1535

ES próbkowy 1% — — 0,0874
Uwaga: Pogrubione zostały najniższe wartości MSE, oraz ilość przekroczeń VaR najbardziej zbliżona

do przyjętego poziomu tolerancji. * oznaczone zostały wyniki testów, w których hipoteza zerowa

została odrzucona, mimo akceptowalnej ilości przekroczeń. W tabeli pominięte zostały wyniki testu

dotyczącego ES, w przypadku gdy wyniki obu testów na liczbę przekroczeń VaR były niewłaściwe.

Źródło: Opracowanie własne.

W kontekście mierników błędu prognoz najlepsze wyniki uzyskał model

GJR-GARCH(SSTD)-LSTM, z wyjątkiem miary HMSE. Prognozy uzyskane

z wykorzystaniem tego modelu dawały jednak zdecydowanie zawyżone oszacowania

ryzyka, co skutkuje zbyt niską ilością przekroczeń VaR w stosunku do założonej. Dla

5% poziomu tolerancji najlepsze prognozy uzyskał model EGARCH(SSTD), także





pod kątem testu Christoffersena dla VaR oraz testu McNeila i Freya, choć

w przypadku testu Kupca hipoteza zerowa została odrzucona . Model ten uzyskał

także najniższą wartość dla miernika HMSE. Z kolei dla 1% poziomu tolerancji

najlepszy wynik uzyskał model APARCH(N)-LSTM, uzyskując także wysokie

wartości p-value dla testów wstecznych zarówno dla wartości zagrożonej, jak

i oczekiwanego niedoboru.

Indeks WIG

Zestawienie dla indeksu WIG przedstawione zostało w tabeli 6.5.

Tabela 6.5: Zestawienie modeli, indeks WIG, najlepsze modele pod względem MSE i ilości przekroczeń

VaR

Mierniki/Model GJR(N)-LSTM GJR(SSTD) E(STD)-LSTM

MSE 0,4320 0,4730 0,4868

MAE 0,3878 0,3873 0,4054

HMSE 0,2457 0,1476 0,2541

R2 0,2663 0,2537 0,2004

Przek. VaR 89/27 134/30 99/24

Przek. VaR (%) 3,58/1,09 5,39/1,21 3,98/0,97

Kupiec 5% 0,0006* 0,3803 0,0157*

Kupiec 1% 0,6720 0,3166 0,8600

Christoff. 5% 0,0010* 0,2588 0,0091

Christoff. 1% 0,6797 0,4198 0,4796*

ES bootstrap 5% — 0,1012 —

ES próbkowy 5% — 0,0376 —

ES bootstrap 1% 0,0010 0,0352 0,1890

ES próbkowy 1% 0,0001* 0,0088* 0,1107
Uwaga: Pogrubione zostały najniższe wartości MSE, oraz ilość przekroczeń VaR najbardziej zbliżona

do przyjętego poziomu tolerancji. * oznaczone zostały wyniki testów, w których hipoteza zerowa

została odrzucona, mimo akceptowalnej ilości przekroczeń. W tabeli pominięte zostały wyniki testu

dotyczącego ES, w przypadku gdy wyniki obu testów na liczbę przekroczeń VaR były niewłaściwe.

Źródło: Opracowanie własne.

W przypadku tego indeksu, jako najlepsze wybrane zostały modele

GJR-GARCH(N)-LSTM, GJR-GARCH(SSTD) oraz EGARCH(STD)-LSTM.

Pierwszy z tych modeli uzyskał najniższe wyniki mierników błędu prognoz,

z wyjątkiem HMSE i MAE. Prognozy poziomu wartości zagrożonej uzyskane

z wykorzystaniem tego modelu były zbyt wysokie dla 5% poziomu tolerancji VaR (co





skutkuje zbyt niską liczbą liczbą przekroczeń), natomiast na poziomie 1% były one

poprawne. W przypadku testu McNeila i Freya dla 1% poziomu tolerancji wyniki

p-value były bardzo niskie. Model GJR-GARCH(SSTD) uzyskał najlepsze wyniki

jeśli chodzi o poziom VaR na poziomie 5%, przy czym dla poziomu 1% też były one

poprawne. Wyniki testu dla ES dla tego modelu były poprawne dla 5% poziomu

tolerancji, ale niskie dla poziomu 1%. Model uzyskał też najniższe miary błędu HMSE

oraz MAE. Dla poziomu 1%, zarówno dla VaR, jak i ES najlepszy wnik uzyskał

model EGARCH(SSTD)-LSTM, jednak zbyt wysoko oszacował VaR dla 5% poziomu

tolerancji.

Indeks KOSPI

Dla indeksu KOSPI zestawienie przedstawione zostało w tabeli 6.6, zawierającej

szczegółowe dane o wynikach modeli APARCH(N)-LSTM oraz APARCH(SSTD).

Tabela 6.6: Zestawienie modeli, indeks KOSPI, najlepsze modele pod względem MSE i ilości

przekroczeń VaR

Mierniki/Model AP(N)-LSTM AP(SSTD)

MSE 0,5318 0,7324

MAE 0,4403 0,5024

HMSE 0,2372 0,1407

R2 0,3248 0,3991

Przek. VaR 72/20 153/31

Przek. VaR (%) 2,9/0,8 6,15/1,25

Kupiec 5% 1,87e-07* 0,0108*

Kupiec 1% 0,3096 0,2342

Christoff. 5% 5,99e-07* 0,0122*

Christoff. 1% 0,5074 0,3331

ES bootstrap 5% — —

ES próbkowy 5% — —

ES bootstrap 1% 0,0377 0,5111

ES próbkowy 1% 0,0124* 0,4713
Uwaga: Pogrubione zostały najniższe wartości MSE, oraz ilość przekroczeń VaR najbardziej zbliżona

do przyjętego poziomu tolerancji. * oznaczone zostały wyniki testów, w których hipoteza zerowa

została odrzucona, mimo akceptowalnej ilości przekroczeń. W tabeli pominięte zostały wyniki testu

dotyczącego ES, w przypadku gdy wyniki obu testów na liczbę przekroczeń VaR były niewłaściwe.

Źródło: Opracowanie własne.

Pierwszy z tych modeli uzyskał najniższe miary błędu MSE i MAE oraz najlepszy





wynik dla liczby przekroczeń VaR na poziomie 1%, poparty także wynikami testów

wstecznych. Na poziomie 5% model ten prognozował jednak zawyżony poziom VaR,

w rezultacie uzyskując niskie frakcje przekroczeń. Także w tescie McNeila i Freya dla

poziomu 1% model ten uzyskał zbyt niskie wyniki. W tym zestawieniu nieco lepiej

wypadł model APARCH(SSTD), warto zauważyć jednak, że wartości p-value dla

testów wstecznych dla tego modelu są niskie dla poziomu 5%, co oznacza, że pomimo

najlepszych prognoz poziomu wartości zagrożonej spośród wszystkich testowanych

modeli, poziomy te wciąż są w tym przypadku zaniżone. Dla 1% poziomu tolerancji,

wyniki testów wstecznych VaR i ES dla tego modelu są natomiast prawidłowe.

Indeks BOVESPA

Dla indeksu BOVESPA, do zestawienia zaprezentowanego w tabeli 6.7, wybrane

zostały modele EGARCH(N)-LSTM, EGARCH(STD) oraz GJR-GARCH(STD).

Tabela 6.7: Zestawienie modeli, indeks BOVESPA, najlepsze modele pod względem MSE i ilości

przekroczeń VaR

Mierniki/Model E(N)-LSTM E(STD) GJR(STD)

MSE 0,6504 0,8182 0,7942

MAE 0,5364 0,5532 0,5654

HMSE 0,2506 0,1730 0,1536

R2 0,5072 0,3992 0,4550

Przek. VaR 60/14 123/19 135/25

Przek. VaR (%) 3,58/1,09 4,95/0,76 5,43/1,01

Kupiec 5% 5,51e-11* 0,9020 0,3335

Kupiec 1% 0,0170* 0,2171 0,9791

Christoff. 5% 1,05e-10* 0,9226 0,3950

Christoff. 1% 0,0535 0,4033 0,7754

ES bootstrap 5% — 0,7938 0,2229

ES próbkowy 5% — 0,8796 0,1365

ES bootstrap 1% 0,0232 0,6882 0,1027

ES próbkowy 1% 0,0108* 0,7377 0,0438*
Uwaga: Pogrubione zostały najniższe wartości MSE, oraz ilość przekroczeń VaR najbardziej zbliżona

do przyjętego poziomu tolerancji. * oznaczone zostały wyniki testów, w których hipoteza zerowa

została odrzucona, mimo akceptowalnej ilości przekroczeń. W tabeli pominięte zostały wyniki testu

dotyczącego ES, w przypadku gdy wyniki obu testów na liczbę przekroczeń VaR były niewłaściwe.

Źródło: Opracowanie własne.

Pierwszy z wymienionych modeli uzyskał najniższe wyniki mierników błędu





z wyjątkiem HMSE, jednak prognozy poziomu wartości zagrożonej uzyskane przez

ten model były zawyżone dla 5% poziomu tolerancji. Dla 5% poziomu tolerancji

najlepsze prognozy VaR uzyskał model EGARCH(STD). Także dla poziomu 1%

model ten prawidłowo prognozował poziom VaR, jednak lepsze wyniki pod tym

względem uzyskał model GJR-GARCH(STD), uzyskując także najniższą wartość

HMSE. Oba te modele uzyskały prawidłowe wyniki testów wstecznych, można także

wnioskować, że poprawnie szacują także poziom oczekiwanego niedoboru.

Podsumowanie

Na podstawie przedstawionych w tym punkcie rezultatów, dotyczących wszystkich

indeksów, można wnioskować, że modele hybrydowe lepiej spisywały się w szacowaniu

ryzyka na 1% poziomie tolerancji. Świadczyć to może o tym, że uzyskane za pomocą

tych modeli oszacowania VaR są zdecydowanie bardziej konserwatywne (prognozowany

jest wyższy poziom VaR), niż w przypadku modeli klasy GARCH.2

6.1.3 Modele prognozowania probabilistycznego

Poniższy punkt dotyczy rezultatów uzyskiwanych przez sieciowe modele

prognozowania probabilistycznego. W pierwszej kolejności, porównując wyniki

zaprezentowane w tabelach 5.13 oraz 5.14, należy zwrócić uwagę na fakt, że dobre

wyniki uzyskane w kontekście mierników ocen trafności prognoz nie zawsze

przekładają się na poprawne prognozy poziomu wartości zagrożonej. O ile

w pierwszym przypadku zdecydowanie lepiej spisywały się modele LSTM ze skośnym

rozkładem t-Studenta, to nie znajduje to jednak odzwierciedlenia w wynikach tego

modelu w kontekście VaR. Podobna sytuacja miała miejsce w przypadku: modeli

hybrydowych (gdzie niskie oceny miernika MSE nie szły w parze z poprawą

oszacowań ryzyka), oraz modeli stosowanych do punktowych prognoz zmienności (w

których wyniki strategii inwestycyjnych często nie były jednoznaczne z niskimi

ocenami dokładności prognoz punktowych). Także w przypadku modeli hybrydowych

i probabilistycznych świadczyć to może o konieczności wprowadzenia innej funkcji

straty, stosowanej w celu poprawy prognoz wartości zagrożonej.

2Do takich rezultatów przyczynić się mógł wysoki poziom ocen zmienności wynikających

z estymatora GKYZ.





Porównanie modeli w kontekście prognozowania rozkładów

prawdopodobieństwa

W tabeli 6.8 przedstawione zostało porównanie wybranych sieciowych modeli

prognozowania probabilistycznego z modelami klasy AR-GARCH. Spośród badanych

modeli w zestawieniu wykorzystane zostały specyfikacje wykorzystujące skośny

rozkład t-Studenta — modele sieciowe bazujące na architekturze CNN i LSTM

porównane zostały z modelami GJR-GARCH i APARCH. Do porównania prognoz

probabilistycznych zastosowane zostały mierniki LPS, CRPS, oraz test

Andersona-Darlinga (p-value) dla poprawności kalibracji modelu z wykorzystaniem

kryterium PIT.

Analizując przedstawione w tabeli wyniki można zauważyć, że zestawione w niej

specyfikacje uzyskały zbliżone wyniki. Modele APARCH i GJR-GARCH cechują się

częściej niższymi wartościami CRPS — w przypadku modelu APARCH miało to

miejsce dla indeksów S&P 500, NIKKEI oraz DAX, zaś dla modelu GJR-GARCH

w przypadku indeksów WIG, KOSPI oraz BOVESPA. Z kolei modele LSTM

wykazują niższe wartości miernika LPS, co miało miejsce w przypadku czterech

indeksów: NIKKEI, DAX, WIG oraz BOVESPA. Lepsze wyniki modeli sieciowych

pod względem LPS są mogą wynikać z faktu, że kryterium to jest zbliożone

w konstrukcji do funkcji straty minimalizowanych przez sieć.3

Biorąc pod uwagę wartości p-value testu Andersona-Darlinga, najlepsze wyniki

uzyskały sieci CNN — miało to miejsce w przypadku indeksów S&P 500, NIKKEI

i BOVESPA. W przypadku dwóch indeksów — WIG oraz KOSPI, wyniki lepsze od

pozostałych uzyskał model GJR(SSTD). Należy jednak zwrócić uwagę na problemy

z osiągnięciem prawidłowej kalibracji prognoz rozkładów w przeważającej liczbie

rozważanych przypadków modeli i instrumentów. Jedynie w sześciu przypadkach

możemy stwierdzić, że była ona prawidłowa.

3Podobna sytuacja miała miejsce także w przypadku modeli hybrydowych, które poprawiały

wyniki oceny prognoz przy pomocy miernika MSE, wykorzystywanego jako funkcja straty komponentu

sieciowego.





Tabela 6.8: Porównanie modeli prognozowania probabilistycznego z modelami klasy AR-GARCH pod

kątem oceny trafności prognoz

Kryteria/Model CNN-SSTD LSTM-SSTD GJR(SSTD) APARCH(SSTD)

Indeks S&P 500

LPS 1,2220 1,1934 1,2321 1,1700

CRPS 0,5197 0,5095 0,5017 0,5012

PIT p-value 0,0309 1,56e-05 2,41e-07 2,41e-07

Indeks NIKKEI

LPS 1,5865 1,5854 1,5900 1,5921

CRPS 0,6963 0,6874 0,6831 0,6826

PIT p-value 0,0476 2,41e-07 2,41e-07 2,41e-07

Indeks DAX

LPS 1,5708 1,5230 1,5316 1,5364

CRPS 0,6901 0,6646 0,6607 0,6606

PIT p-value 2,41e-07 0,3537 2,41e-07 2,41e-07

Indeks WIG

LPS 1,4055 1,3475 1,3600 1,3582

CRPS 0,5716 0,5554 0,5516 0,5519

PIT p-value 2,41e-07 0,0087 0,7779 2,41e-07

Indeks KOSPI

LPS 1,3172 1,2848 1,2616 1,2643

CRPS 0,5302 0,5165 0,5146 0,5147

PIT p-value 2,41e-07 5,09e-06 0,1953 0,1606

Indeks BOVESPA

LPS 1,7875 1,7851 1,8361 1,7992

CRPS 0,8349 0,8335 0,8229 0,8233

PIT p-value 0,0069 0,0056 2,41e-07 2,41e-07
Uwaga: Porgubione zostały najniższe wartości LPS i CRPS, oraz najwyższe wartości p-value.

Źródło: Opracowanie własne.

Porównanie modeli prognozowania probabilistycznego i modeli punktowych

W kolejnym kroku porównane zostały rezultaty uzyskane przez modele

prognozowania probabilistycznego z wynikami grupy modeli hybrydowych oraz





AR-GARCH, stosowanych do punktowego prognozowania zmienności, w kontekście

szacowania ryzyka. W tym celu, w tabeli 6.9, przedstawiono zestawienie najlepszych

specyfikacji modelowych dla poszczególnych aktywów pod kątem procentowego

udziału przekroczeń wartości zagrożonej.

Tabela 6.9: Porównanie modeli prognozowania probabilistycznego z modelami hybrydowymi oraz

GARCH — procentowy udział przekroczeń VaR dla wszystkich aktywów.

Indeks/Model NN-D % Przekr. Model hybrydowy % Przekr.

S&P VaR 5% LSTM-N 4,86 G(STD)-LSTM 5,11

NKX VaR 5% LSTM-STD 4,58 AP(SSTD) 4,91

DAX VaR 5% CNN-STD 5,42 E(SSTD) 6,03

WIG VaR 5% LSTM-STD 4,95 GJR(SSTD) 5,39

KOSPI VaR 5 LSTM-N 5,42 AP(SSTD) 6,15

BVP VaR 5% LSTM-N 5,18 E(STD) 4,95

S&P VaR 1% LSTM-STD 1,01 G(SSTD)-LSTM/GJR(STD)-LSTM 0,97

NKX VaR 1% LSTM-STD 1,01 AP(N)-LSTM 0,92

DAX VaR 1% CNN-STD/LSTM-SSTD- 1,12/0,88 AP(N)-LSTM 0,84

WIG VaR 1% CNN-STD 1,12 E(STD)-LSTM 0,97

KOSPI VaR 1% LSTM-STD 0,84 AP(N)-LSTM 0,80

BVP VaR 1% CNN-N 1,20 GJR(STD) 1,01

Źródło: Opracowanie własne.

Analizując procentowe udziały przekroczeń VaR, nie można jednoznacznie

wskazać grupy modeli, które uzyskały znacząco lepsze wyniki od pozostałych.

Zarówno modele prognozowania probabilistycznego jak i modele hybrydowe oraz

GARCH uzyskują zbliżone wyniki. Pewne różnice zauważyć można w przypadku

indeksów DAX oraz KOSPI przy 5% poziomie tolerancji, gdzie udział przekroczeń dla

modeli odpowiednio EGARCH i APARCH ze skośnym rozkładem t-Studenta wynosi

powyżej 6%, natomiast w przypadku modeli prognoz probabilistycznych nie

występują tak duże odchylenia. Podobny wniosek można wysnuć porównując wyniki

z tabel 5.14 oraz 5.12, omawianych w poprzednim rozdziale. W grupie modeli

hybrydowych i GARCH uzyskane wartości frakcji przekroczeń charakteryzują się

większymi odstępstwami od przyjętych poziomów tolerancji, niż w przypadku grupy

modeli prognozowania probabilistycznego.

6.2 Podsumowanie wyników

W ramach tego podrozdziału ogólne wyniki prezentowane w rozdziale 5 oraz ich

analiza porównawcza przeprowadzona w punkcie 6.1.1 podsumowane zostaną





w odniesieniu do sformułowanych we wstępie pracy poszczególnych celów oraz hipotez

badawczych.

6.2.1 Realizacja celów badawczych

Podsumowując wyniki przedstawione w poprzednim podrozdziale można

wnioskować, że główny cel pracy został osiągnięty. W pracy pokazano, że modele

bazujące na sieciach uczenia głębokiego można z powodzeniem stosować

w prognozowaniu finansowych szeregów czasowych. Modele te wykorzystane zostały

do uzyskania prognoz na trzech różnych poziomach - punktowych prognoz stóp

zwrotu, punktowych prognoz zmienności (za pomocą modeli hybrydowych), oraz do

prognozowania całych rozkładów prawdopodobieństwa. We wszystkich trzech

przypadkach rozważane modele sieciowe uzyskały zadowalające, choć nie bezbłędne

rezultaty.

W kolejnych rozdziałach pracy zrealizowane zostały także poszczególne cele

cząstkowe. Podrozdział 5.4 oraz punkt 6.1.1 odnoszą się do celów dotyczących

efektywności modeli w kontekście prognoz punktowych stóp zwrotu, ich oceny

poprzez zastosowanie uzyskanych prognoz do budowy strategii inwestycyjnych,

a także sprawdzenia wyników w zależności od poziomu rozwinięcia badanych rynków.

Punkt 4.2.1 oraz podrozdział 5.5 dotyczą celów badawczych związanych z konstrukcją

i oceną modeli hybrydowych stosowanych do uzyskiwania punktowych prognoz

zmienności oraz ich ocenę w kontekście szacowania ryzyka kapitałowego. Z kolei

w punkcie 4.2.2 oraz podrozdziale 5.6 zrealizowane zostały cele związane z budową

sieciowych modeli prognozowania probabilistycznego. Porównanie efektywności

modeli ekonometrycznych z modelami wykorzystującymi sieci uczenia głębokiego

przedstawione zostało w punktach 6.1.2 oraz 6.1.3. Realizacja wspomnianych celów

badawczych możliwa była poprzez stworzenie autorskich kodów, co dokładniej

omówione zostało w podrozdziale 5.2.

6.2.2 Odniesienie do hipotez badawczych

W poniższej części pracy zweryfikowane zostaną poszczególne hipotezy badawcze,

które sformułowane zostały na początku badań i przedstawione we wstępie do niniejszej

dysertacji. W pierwszej kolejności omówione zostaną hipotezy szczegółowe, a następnie

hipoteza główna, która jest niejako ich podsumowaniem.

Pierwsza z postawionych hipotez szczegółowych głosiła, że modele oparte na uczeniu

głębokim generują lepsze efekty predykcji w porównaniu z modelami wykorzystującymi

klasyczne metody sztucznej inteligencji, w kontekście punktowych prognoz stóp zwrotu.





Wyniki przedstawione w podrozdziale 5.4 oraz punkcie6.1.1, na podstawie których

wnioskować można, że badane typy sieci uczenia głębokiego w postaci rekurencyjnych

sieci LSTM oraz sieci konwolucyjnych istotnie przyniosły lepsze rezultaty predykcji,

w porównaniu z klasycznymi sieciami MLP. Wyniki te nie dają podstaw do odrzucenia

omawianej hipotezy.

Należy jednak mieć na uwadze, że rezultaty uzyskane poprzez sieci neuronowe

w dużym stopniu zależą od struktury sieci oraz ustalonych hiperparametrów,

w związku z czym mogą wyniki uzyskane przez poszczególne specyfikacje modelowe

mogą nie być optymalne. Zauważyć także należy, że sieci MLP są tylko jednym

z bardzo licznych narzędzi klasycznego uczenia maszynowego, cechujących się często

różnymi sposobami konstrukcji, nie należy więc, opierając się na tym jednym

przykładzie dokonywać nadmiernie szerokiego uogólnienia.

Kolejna z badanych hipotez głosiła, że prognozy punktowe stóp zwrotu uzyskane

przez modele sieciowe, można wykorzystać do budowy skutecznych strategii

inwestycyjnych. Wyniki przedstawione w podrozdziale 5.4 oraz punkcie 6.1.1

pokazują, że budowa strategii inwestycyjnych na podstawie prognoz uzyskanych przez

modele sieciowe jest możliwa, jednak w większości przypadków nie przynoszą one

znacząco lepszych rezultatów od prostej strategii pasywnej. W przypadku sieci LSTM

wykorzystujących miarę MADL do budowy strategii bazującej na pozycjach długich,

można stwierdzić, że model ten może służyć jako podstawa w konstrukcji narzędzi

inwestycyjnych, ponieważ ze względu na niski poziom ekspozycji na ryzyko umożliwia

wprowadzenie mechanizmu dźwigni. Poza tym przypadkiem, badane modele nie

wskazują na możliwości poprawy rezultatów względem strategii pasywnej. Mając

dodatkowo na uwadze, że w procesie inwestowania należy brać pod uwagę także

dodatkowe koszty transakcyjne, na podstawie uzyskanych wyników hipotezę tą należy

odrzucić.

Na podstawie tych samych wyników (zob. podrozdział 5.4 oraz punkt 6.1.1),

odnieść się można także do hipotezy, głoszącej że prognozy stóp zwrotu indeksów

notowanych na rynkach wschodzących dają lepsze wyniki w kontekście strategii

inwestycyjnych w porównaniu z indeksami z rynków rozwiniętych. Wyniki te nie

wykazują znacznych różnic pomiędzy prognozami uzyskanymi na podstawie danych

pochodzących z rynków rozwijających się (reprezentowanych przez indeksy WIG,

KOSPI oraz BOVESPA) w stosunku do rynków rozwiniętych. W związku z tym,

w tym przypadku postawioną hipotezę także należałoby odrzucić.

W kontekście punktowych prognoz zmienności, zbadana została hipoteza głosząca,

że połączenie metod ekonometrycznych z metodami uczenia głębokiego w ramach

modeli hybrydowych przyczynia się do poprawy efektywności prognoz zmienności.





Wyniki dotyczące punktowych predykcji zmienności omówione zostały

w podrozdziale 5.5 oraz punkcie 6.1.2. Na podstawie ocen trafności predykcji

wykorzystujących miarę MSE stosowaną jako funkcję straty w modelach

hybrydowych, można zauważyć, że wyniki uzyskane przez te modele uległy poprawie

we wszystkich badanych przypadkach, co nie daje podstaw do odrzucenia tej

hipotezy. Jeśli jednak dokładniej przyjrzeć się pozostałym miernikom oceny trafności

prognoz, oraz wynikom testów na istotność różnic miar błędów prognoz,

przedstawionych w tabelach A.2 - A.25, można zauważyć, że różnice nie zawsze były

istotne, a pozostałe mierniki błędów niekiedy wskazały odmienne rezultaty.

Oceny prognoz punktowych, uzyskane przy pomocy typowych mierników, okazały

się niejednoznaczne, niemniej jednak przeprowadzono również badania pod kątem

prognozowania poziomów ryzyka kapitałowego. W tym przypadku hipoteza badawcza

głosiła, że prognozy zmienności uzyskane przez modele hybrydowe przyczyniają się do

poprawy prognoz ryzyka kapitałowego. W tym kontekście, bazując na wynikach

zaprezentowanych w punktach 5.5.2 oraz 6.1.2, można zauważyć, że modele

hybrydowe przyczyniały się do poprawy wyników przede wszystkim w przypadku

prognoz wartości zagrożonej z jednoprocentowym poziomem tolerancji. Natomiast

w przypadku poziomu pięcioprocentowego natomiast dawały prognozy zawyżone.

Biorąc pod uwagę najnowsze zalecenia Komitetu Bazylejskiego, w których

preferowany jest jednoprocentowy poziom VaR oraz modele bardziej konserwatywne,

można wnioskować, że uzyskane wyniki nie dają podstaw do odrzucenia przyjętej

hipotezy. Dodatkowym atutem analizowanych specyfikacji modelowych (także tych

dotyczących prognozowania probabilistycznego) są zadowalające wyniki uzyskane

w kontekście prognoz oczekiwanego niedoboru.

Kolejna spośród badanych hipotez głosiła, że sieci neuronowe uczenia głębokiego

można wykorzystać jako narzędzie w prognozowaniu całych rozkładów

prawdopodobieństwa. W celu zweryfikowania tej hipotezy zaproponowane zostały

sieciowe modele prognozowania probabilistycznego umożliwiające prognozowanie

parametrów różnych zadanych typów rozkładów predyktywnych, oraz zdefiniowane

zostały stosowane w nich nowe funkcje straty. Wyniki omówione w podrozdziale 5.6,

dotyczące oceny jakości prognoz probabilistycznych oraz szacowania ryzyka

kapitałowego z wykorzystaniem tych modeli, wskazują, że nie ma podstaw do

odrzucenia tej hipotezy.

Sieciowe modele prognoz probabilistycznych wykorzystane zostały także w celu

weryfikacji hipotezy głoszącej, że prognozy probabilistyczne uzyskane przez sieci

uczenia głębokiego przynoszą lepsze rezultaty w kontekście szacowania ryzyka

kapitałowego w porównaniu z modelami klasy ARMA-GARCH. W punkcie 6.1.3





zaprezentowane zostały wyniki porównujące ze sobą skuteczność badanych modeli.

Na ich podstawie można wnioskować, że sieciowe modele prognozowania

probabilistycznego, mimo że charakteryzują się nieco mniejszymi odstępstwami

procentowych udziałów przekroczeń od przyjętych poziomów tolerancji, nie uzyskują

jednoznacznie lepszych prognoz od modeli punktowych prognoz zmienności (zarówno

modeli hybrydowych, jak ARMA-GARCH). W związku z tym hipotezę tą należałoby

odrzucić.

Z uwagi na wyniki związane z badaniem poszczególnych hipotez szczegółowych,

można wnioskować, że nie ma również podstaw do odrzucenia głównej hipotezy pracy,

głoszącej że modele predykcyjne oparte na metodach uczenia głębokiego, można

efektywnie wykorzystywać do prognozowania finansowych szeregów czasowych

w postaci logarytmicznych stóp zwrotu. Odrzucone zostały hipotezy dotyczące

budowy strategii inwestycyjnych opartych o modele uczenia głębokiego oraz o

przewadze sieciowych modeli probabilistycznych nad modelami klasy

ARMA-GARCH. Pozostałe zaprezentowane w pracy wyniki świadczą o tym, że

badane modele wykorzystujące sieci uczenia głębokiego dobrze sprawdzają się

w prognozowaniu zmienności i szacowaniu ryzyka kapitałowego, przede wszystkim

jako narzędzia uzupełniające w połączeniu z metodami ekonometrycznymi.

6.3 Zalety i ograniczenia wynikające ze stosowania

metod uczenia głębokiego

Jak wykazano w pracy, modele bazujące na sieciach uczenia głębokiego mogą

stanowić pomocne narzędzie podczas modelowania i prognozowania instrumentów

finansowych. Aby umożliwić pełniejszą ocenę tych modeli, należy wskazać zalety

i wady związane z ich zastosowaniem.

Do głównych zalet modeli uczenia głębokiego należy ich elastyczność. Jak

wiadomo, modele te stosowane są w bardzo szerokim zakresie, z którego badanie

szeregów czasowych jest tylko niewielkim wycinkiem. Ta elastyczność narzędzi

uczenia głębokiego umożliwia pracę z po pierwsze, pracę z dowolnymi zestawami

danych, a po drugie – znacznie ułatwia łączenie ich z narzędziami bardziej

wyspecjalizowanymi w danej dziedzinie, jak w tym przypadku z modelami

ekonometrycznymi. Tego typu rozwiązania hybrydowe najczęściej przyczyniają się do

poprawy uzyskiwanych wyników oraz otwierają nowe możliwości badawcze.

Elastyczność ta pozwala także na stosunkowo prostą możliwość dostosowania

konstrukcji modelu w zależności od danego problemu badawczego, jak miało to

w przypadku budowy sieciowych modeli prognoz probabilistycznych.





Stosowanie modeli opartych na sieciach neuronowych uczenia głębokiego

umożliwia także modelowanie danych w postaci zarówno jednowymiarowej, jak to

miało w przypadku tej pracy, jak i wielowymiarowych, przykładowo w celu analizy

całego portfela inwestycyjnego. Dobór danych wejściowych do sieci może być

w zasadzie zupełnie dowolny, jeśli tylko uznamy, że dodatkowe zmienne wejściowe

mogą przyczynić się do poprawy wyników uzyskiwanych przez model. W wielu

badaniach, m.in. opisanych w podrozdziałach 1.3 oraz 4.1, jako dane wejściowe

stosowane było nawet kilkanaście zmiennych, obejmujących przykładowo różne typy

aktywów czy też oszacowania parametrów modeli. Podobnie, ilość wektorów

wyjściowych sieci zależy jedynie od ilości neuronów w warstwie wyjściowej

i odpowiedniego dopasowania funkcji straty minimalizowanej przez model, co, jak

wspomniano, pozwala także na modelowanie danych wielowymiarowych. Także

w przypadku zaproponowanego w tej pracy modelu prognozowania probabilistycznego

własność ta umożliwiła zmianę ilości prognozowanych parametrów rozkładu.4

Dodatkowo, dzięki stosowaniu w sieciach uczenia głębokiego nieliniowych funkcji

aktywacji oraz wielu warstw ukrytych możliwe jest wykrywanie skomplikowanych

i często wysoce nieliniowych zależności, co pozwala w stosunkowo prosty sposób

modelować dane o zróżnicowanej strukturze.

Modele bazujące na sieciach uczenia głębokiego nie są jednak pozbawione wad.

Jednym z podstawowych problemów jest odpowiedni dobór hiperparametrów sieci, od

których w dużej mierze zależeć mogą uzyskiwane wyniki. Ze względu na dużą liczbę

hiperparametrów i możliwości dodatkowych zmian w strukturze sieci, jest to

najczęściej proces czasochłonny, co więcej nie dający pewności, że wybrane końcowo

wartości są optymalne. Dodatkowym problemem jest wybór odpowiedniego okna

danych, na których przeprowadzany jest proces dostrajania hiperparametrów. W

przypadku finansowych szeregów czasowych, wybór jednego wycinka danych w żaden

sposób nie gwarantuje nam, że w przyszłości będziemy mieli do czynienia z danymi o

podobnej charakterystyce, w związku z czym hiperparametry, które mogą okazać się

optymalne dla tego wycinka, wcale nie muszą się sprawdzić podczas ewaluacji sieci na

zbiorze testowym lub w trakcie jej eksploatacji.

Podobny problem dotyczy wyboru minimalizowanej w trakcie uczenia sieci funkcji

straty, co również może mieć kluczowy wpływ na wyniki. Ogólnie stosowane

w prognozowaniu finansowych szeregów czasowych funkcje straty często okazują się

niewystarczające w celu rozwiązania takich problemów jak budowa optymalnych

strategii inwestycyjnych czy szacowanie poziomu ryzyka. Łączy się to także często

4Parametry te, w określonych przypadkach, traktować można także jako punktowe prognozy stóp

zwrotu oraz zmienności, co otwiera nowe możliwości implementacyjne proponowanego modelu.





z koniecznością tworzenia nowych postaci funkcji straty, jak miało to w tym

przypadku miejsce przy podjęciu próby prognozowania probabilistycznego, oraz

omawianej w kontekście strategii inwestycyjnych funkcji MADL.5

Utrudnieniem, które zaobserwowano podczas badań empirycznych dotyczących

prognozowania parametrów rozkładu prawdopodobieństwa, były problemy

z uzyskaniem zbieżności przez model, szczególnie w przypadku prognozowania

parametrów skośnego rozkładu t-Studenta. Spowodowało to konieczność zmiany

wielkości paczki wsadowej (na znacznie większą niż początkowo założono) oraz

konieczność stosowania schematu rekursywnego, aby zwiększyć ilość dostępnych

danych wejściowych. Schemat rekursywny musiał być zastosowany także w przypadku

modeli hybrydowych, wykorzystanych w tej pracy do punktowego prognozowania

zmienności, w celu poprawy uzyskiwanych wyników.

6.4 Proponowane kierunki dalszych prac

badawczych

W poniższym podrozdziale zaproponowane zostały dalsze kierunki badań nad

zastosowaniem narzędzi wykorzystujących sieci uczenia głębokiego w prognozowaniu

finansowych szeregów czasowych.

Analizy zaprezentowane w tej pracy dotyczyły tylko indeksów giełdowych, które -

jako typ - stanowią tylko niewielki wycinek spośród dostępnych instrumentów

finansowych. Zatem naturalnym rozszerzeniem zakresu badań byłoby przetestowane

proponowanych modeli na innych typach instrumentów, takich jak przykładowo kursy

walut, kryptowaluty, surowce, towary handlowe czy też opcje i kontrakty terminowe.

Dodatkowo, metody prezentowane w tej pracy stosować można także w innych

dziedzinach, jak choćby prognozowanie cen lub zużycia energii elektrycznej.

Obszar badań poszerzyć można także do analizowania szeregów wielowymiarowych.

W tym zakresie sieci uczenia głębokiego wykorzystać można do analizy portfelowej –

prób zbudowania strategii inwestycyjnych czy też szacowania ryzyka dla całego portfela.

Dodatkowo modele uczenia głębokiego mogłyby być także zbadane w kontekście danych

o wysokiej częstotliwości.

Do kluczowych zagadnień, które wymagają dalszych badań jest także usprawnienie

procesu dostrajania hiperparametrów oraz kwestie związane z wyborem danych, na

5W tym miejscu zwrócić także należy uwagę na pewne problemy, które pojawiły się podczas uczenia

sieci z wykorzystaniem funkcji MADL. Ze względu na konstrukcję tej funkcji, słabo sprawdza się w jej

przypadku wykorzystanie metod optymalizacyjnych bazujących na gradiencie, przez co uczenie sieci

w tym przypadku miało charakter losowy, bardziej zbliżony do metody siatki grid search.





których proces dostrajania jest prowadzony. Wciąż trwają prace nad rozwojem narzędzi

umożliwiających zautomatyzowanie tego procesu, jednak bazując na doświadczeniu

dotyczącym ich stosowania w zaprezentowanych powyżej badaniach, wciąż wymagają

one dalszego usprawniania.

Jak wykazano w badaniach przeprowadzonych w tej pracy, ważną kwestią

związana z projektowaniem modeli sieciowych jest dobór odpowiedniej funkcji straty.

Proponowane mierniki błędów, o ile sprawdzają się jako narzędzia oceny uzyskanych

prognoz, często wymagają doprecyzowania w przypadkach kiedy wykorzystane mają

być jako funkcja straty stosowana do rozwiązania konkretnego problemu.

Przykładowo, zamiast korzystania z ogólnych mierników błędu prognoz, można

skonstruować funkcję straty optymalizującą, przykładowo, wskaźniki informacyjne

w kontekście strategii inwestycyjnych lub bezpośrednio poziom prognozowanej

wartości zagrożonej podczas szacowania ryzyka kapitałowego.

Sieciowe modele prognoz probabilistycznych, stosowane do prognozowania

parametrów zadanego rozkładu prawdopodobieństwa, można w praktyce wykorzystać

także do uzyskania prognoz punktowych, jak ma to miejsce przykładowo

w przypadku rozkładu normalnego, gdzie wartość parametru µt+1 można traktować

jako prognozę punktową stopy zwrotu, a parametru σt+1 — jako punktową prognozę

zmienności, pomimo, że w przypadku tych modeli funkcja straty bazuje na zupełnie

innej koncepcji, niż w przypadku modeli prognozowania punktowego. Uzasadnione

byłoby więc przeprowadzenie badań porównujących wyniki prognoz punktowych

uzyskanych za pomocą modeli bazujących na tych dwóch odmiennych podejściach. Z

kolei w prognozowaniu całych rozkładów prawdopodobieństwa przyszłych stóp

zwrotu Naturalnym kierunkiem naturalnym kierunkiem badań byłoby także

wykorzystanie w tym zakresie sieci bayesowskich.

Zaprezentowane w niniejszej pracy modele ewaluowane były przede wszystkim

z wykorzystaniem testów wstecznych (z wyjątkiem sieci LSTM, która zastosowana

została także do uzyskania prognoz punktowych w czasie rzeczywistym). W celu

uzyskania pełniejszego obrazu możliwości prognostycznych proponowanych modeli,

należało by je ocenić także w kontekście eksploatacji poprzez budowę

zautomatyzowanych algorytmów inwestycyjnych lub szacujących ryzyko w czasie

rzeczywistym. Pozwoliłoby to na dokładniejszą ocenę omawianych narzędzi od strony

praktycznej.









Zakończenie

Głównym celem pracy była analiza modeli bazujących na sieciach neuronowych

uczenia głębokiego w prognozowaniu szeregów czasowych stóp zwrotu wybranych

instrumentów finansowych oraz ich zmienności. Cel ten osiągnięty został poprzez

szczegółowe przedstawienie zagadnień teoretycznych związanych z poruszaną

problematyką omówionych w pierwszej części pracy, w szczególności w rozdziałach 2

i 3, oraz wieloaspektowe badania empiryczne dotyczące możliwości prognostycznych

omawianych modeli, zaprezentowane w rozdziałach 5 i 6.

W badaniach przedstawionych w niniejszej rozprawie zastosowane zostało

podejście interdyscyplinarne. Szczególny nacisk położony został na połączenie

narzędzi ekonometrycznych z metodami z zakresu sztucznej inteligencji. Podjęta

została próba syntezy tych metodologii, która zaowocowała propozycjami nowych

narzędzi służących do prognozowania finansowych szeregów czasowych, w postaci

modeli hybrydowych i sieciowych modeli prognozowania probabilistycznego.

Omawiane w pracy modele przeanalizowane zostały na trzech płaszczyznach. W

pierwszej kolejności zbadano możliwości modeli wykorzystujących sieci neuronowe

w prognozowaniu punktowym stóp zwrotu. Następnie, uzyskane prognozy

wykorzystano do budowy strategii inwestycyjnych. W tym zakresie zaobserwowano

przewagę sieci uczenia głębokiego (LSTM oraz CNN) nad klasycznymi sieciami MLP.

Zwrócono też uwagę na fakt, że duży wpływ na uzyskiwane wyniki ma także sposób

konstrukcji strategii.

W kolejnej części zaproponowane w ramach pracy modele hybrydowe

ARMA-GARCH-LSTM posłużyły do punktowego prognozowania zmienności oraz

szacowania ryzyka kapitałowego. Wyniki prognoz porównane zostały także

z „czystymi” modelami klasy ARMA-GARCH. Początkowa ocena jakości prognoz,

bazująca na funkcji MSE, która minimalizowana była przez sieć, wskazywała na

poprawę wyników uzyskanych przez specyfikacje rozbudowane o komponent sieciowy.

Biorąc jednak pod uwagę dodatkowe mierniki oraz ocenę prognoz ryzyka kapitałowego

stwierdzono, że rezultaty uzyskane poprzez poszczególne grupy modeli są zbliżone.

Trzecia część badań empirycznych dotyczyła ewaluacji modeli sieciowych
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stosowanych do prognozowania parametrów rozkładów prawdopodobieństwa

przyszłych stóp zwrotu. W tym celu zastosowane zostały kryteria oceny prognoz

probabilistycznych, oraz ponownie, miary trafności prognoz ryzyka kapitałowego.

Także w tym zakresie jakość prognoz zależała w dużym stopniu od stosowanego

kryterium oceny. Modele sieciowe najlepsze rezultaty uzyskały pod kątem miernika

LPS, którego konstrukcja jest najbardziej zbliżona do wykorzystywanych przez sieć

funkcji straty.

Wyniki przeprowadzonych badań wskazują na zasadność wykorzystania sieci

neuronowych uczenia głębokiego w prognozowaniu finansowych szeregów czasowych,

choć nie pokazują jednoznacznej przewagi konkretnej specyfikacji modelowej nad

innymi. Ta niejednoznaczność w dużej mierze wynika z kwestii związanych

z konstrukcją i wyborem funkcji straty minimalizowanych przez modele sieciowe, co

w bezpośredni sposób przekłada się na wyniki uzyskiwane przez dany model. Mając

to na uwadze, można jednak stwierdzić, że spośród badanych typów sieci

neuronowych, rekurencyjne sieci LSTM regularnie charakteryzowały się dobrymi

rezultatami we wszystkich trzech aspektach.

Ze względu na szeroki zakres tematyki związanej z modelowaniem

i prognozowaniem finansowych szeregów czasowych, należy wziąć pod uwagę, że

metody i narzędzia przedstawione w tej pracy, choć analizowane były w możliwie

szerokim zakresie, stanowią jedynie podstawę, na bazie której można dokonywać

dalszej ich rozbudowy koncepcyjnej i analizy poprzez badania empiryczne, co

pozostawać będzie w obszarze dalszych zainteresowań autora.





Aneks

Ilustracje

Rysunek A.1: ACF dla wartości bezwzględnych stóp zwrotu

Źródło: Opracowanie własne.

Rysunek A.2: PACF dla wartości bezwzględnych stóp zwrotu

Źródło: Opracowanie własne.
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Rysunek A.3: ACF dla oszacowań zmienności uzyskanych za pomocą estymatora GKYZ

Źródło: Opracowanie własne.

Rysunek A.4: PACF dla oszacowań zmienności uzyskanych za pomocą estymatora GKYZ

Źródło: Opracowanie własne.





Wyniki modeli ARMA-GARCH oraz modeli hybrydowych

ARMA-GARCH-LSTM

Tabela A.1: Ilość przekroczeń oszacowań VaR(0,05)/VaR(0,01) w modelach ARMA-GARCH i

hybrydowych ARMA-GARCH-LSTM

Model/Metrics G(N) G(N)-LSTM G(STD) G(STD)-LSTM G(SSTD) G(SSTD)-LSTM

S&P VaR 5%/1% 158/68 (6,35/2,73) 108/41 174/45 127/28 158/37 105/24

NKX VaR 5%/1% 136/58 (5,47/2,33) 80/26 153/45 90/18 134/37 77/11

WIG VaR 5%/1% 142/46 (5,71/1,85) 98/28 150/33 107/21 141/29 90/19

KOSPI VaR 5%/1% 167/63 (6,71/2,53) 64/16 180/47 79/11 156/36 59/5

BVP VaR 5%/1% 133/36 (5,35/1,45) 68/18 145/29 69/13 137/30 67/16

DAX VaR 5%/1% 174/65 (7/2,61) 68/17 184/40 78/9 171/37 67/7

E(N) E(N)-LSTM E(STD) E(STD)-LSTM E(SSTD) E(SSTD)-LSTM

S&P VaR 5%/1% 163/64 (6,55/2,57) 110/36 179/46 118/33 155/22 98/22

NKX VaR 5%/1% 139/53 (5,59/2,13) 71/20 148/43 83/13 135/28 76/10

WIG VaR 5%/1% 150/49 (6,03/1,97) 83/28 158/41 99/24 144/31 86/16

KOSPI VaR 5%/1% 171/68 (6,88/2,73) 66/17 178/51 74/15 158/29 53/8

BVP VaR 5%/1% 130/42 (5,23/1,69) 60/14 123/19 75/11 119/16 77/12

DAX VaR 5%/1% 159/57 (6,39/2,29) 67/18 171/51 77/15 150/38 60/9

GJR(N) GJR(N)-LSTM GJR(STD) GJR(STD)-LSTM GJR(SSTD) GJR(SSTD)-LSTM

S&P VaR 5%/1% 149/59 (5,99/2,37) 98/30 171/37 112/24 140/26 80/12

NKX VaR 5%/1% 140/58 (5,63/2,33) 76/21 145/43 85/17 134/37 74/11

WIG VaR 5%/1% 136/45 (5,47/1,81) 89/27 147/32 98/21 134/30 87/16

KOSPI VaR 5%/1% 165/57 (6,63/2,29) 61/19 175/46 67/13 155/30 61/10

BVP VaR 5%/1% 128/36 (5,15/1,45) 66/14 135/25 67/13 142/28 69/10

DAX VaR 5%/1% 162/56 (6,51/2,25) 62/19 171/41 67/12 151/33 60/10

AP(N) AP(N)-LSTM AP(STD) AP(STD)-LSTM AP(SSTD) AP(SSTD)-LSTM

S&P VaR 5%/1% 166/71 (6,67/2,85) 111/41 176/41 115/29 148/27 99/18

NKX VaR 5%/1% 135/50 (5,43/2,01) 74/23 140/39 81/14 122/27 75/11

WIG VaR 5%/1% 142/48 (5,71/1,93) 95/29 145/33 96/23 136/31 85/20

KOSPI VaR 5%/1% 172/66 (6,92/2,65) 72/20 179/46 74/13 53/31 65/10

BVP VaR 5%/1% 144/41 (5,79/1,65) 67/16 143/31 79/12 138/33 81/15

DAX VaR 5%/1% 162/59 (6,51/2,37) 63/21 175/47 67/13 151/39 57/10

Uwaga: Oczekiwana liczba przekroczeń wynosi 124/24, ilość prognoz 2487

Źródło: Opracowanie własne.





Tabela A.2: Prognozy zmienności, indeks S&P500, model GARCH i GARCH LSTM

Model/Metrics G(N) G(N)-LSTM G(STD) G(STD)-LSTM G(SSTD) G(SSTD)-LSTM

MSE 0,3285463 0,3280888 0,3251186 0,324028 0,3352583 0,3314607

DM p-value 0,8624 0,8597 0,7724

MAE 0,3652576 0,3712369 0,363694 0,370711 0,3656465 0,3782946

HMSE 0,2156606 0,3453763 0,2237549 0,3471955 0,223676 0,3767537

R2 0,6341285 0,5696598 0,6186275 0,5822008 0,6143863 0,5668014

Przek. VaR 158/68 108/41 174/45 127/28 158/37 105/24

Przek. VaR (%) 158/68 108/41 174/45 127/28 158/37 105/24

Kupiec 5% 0,002911799(R) 0,1241958 1,559684e-05(R) 0,8080036 0,002911799(R) 0,06766877

Kupiec 1% 7,948087e-13(R) 0,002949403(R) 0,0002689616(R) 0,5363499 0,02262881(R) 0,8600111

Christoff. 5% 0,007515332(R) 0,02411495(R) 6,208225e-05(R) 0,2230072 0,003462283(R) 0,01050691(R)

Christoff. 1% 5,308975e-12(R) 2,53154e-05(R) 0,0006885124(R) 0,01072578(R) 0,02265446(R) 0,005157251(R)

ES bootstrap 5% 0,0001550028 0,0007601218 0,3960251 0,5437578 0,561588 0,7726647

ES próbkowy 5% 3,201136e-07(R) 2,719803e-05(R) 0,3386457 0,534278 0,5917593 0,8535576

ES bootstrap 1% — — — 0,4240474 — 0,6901583

ES próbkowy 1% — — — 0,3757155 — 0,7637902

Źródło: Opracowanie własne.

Tabela A.3: Prognozy zmienności, indeks S&P500, model EGARCH i EGARCH-LSTM

Model/Metrics E(N) E(N)-LSTM E(STD) E(STD)-LSTM E(SSTD) E(SSTD)-LSTM

MSE 0,3575556 0,3518625 0,3517481 0,3448754 0,3632544 0,3605409

DM p-value 0,1617 0,1553 0,1453

MAE 0,3642571 0,3835117 0,3609983 0,37705 0,3635144 0,3819407

HMSE 0,1732228 0,3853719 0,1751933 0,3553598 0,1756505 0,3638078

R2 0,5729105 0,5488056 0,561027 0,5877998 0,5661337 0,5163117

Przek. VaR 163/64 110/36 179/46 118/33 155/22 98/22

Przek. VaR (%) 163/64 110/36 179/46 118/33 155/22 98/22

Kupiec 5% 0,0006710911(R) 0,1784333 2,227363e-06(R) 0,5558262 0,006522105(R) 0,01194658(R)

Kupiec 1% 4,569256e-11(R) 0,03551858(R) 0,0001401641(R) 0,1186792 0,5552061 0,5552061

Christoff. 5% 0,002998533(R) 0,01632977(R) 1,302748e-05(R) 0,0369363(R) 0,01829748(R) 0,002670763(R)

Chrisotff. 1% 2,395822e-10(R) 2,545875e-07(R) 0,0001252356(R) 0,000998233(R) 0,355113 0,0001042493(R)

ES bootstrap 5% 3,307416e-05 0,007496304 0,174615 0,2261359 0,6434566 0,5576949

ES próbkowy 5% 2,938924e-07(R) 0,0007393309(R) 0,09533645 0,1474097 0,6735219 0,5641093

ES bootstrap 1% — — — 0,6758302 0,1517443 0,6403693

ES próbkowy 1% — — — 0,70159 0,08271212 0,6664602

Źródło: Opracowanie własne.





Tabela A.4: Prognozy zmienności, indeks S&P500, model GJR-GARCH i GJR-GARCH-LSTM

Model/Metrics GJR(N) GJR(N)-LSTM GJR(STD) GJR(STD)-LSTM GJR(SSTD) GJR(SSTD)-LSTM

MSE 0,302625 0,2914628 0,3012009 0,2809567 0,3063293 0,2946242

DM p-value 0,1478 0,1521 0,1521

MAE 0,3519807 0,3741351 0,3516875 0,3631845 0,3533803 0,3788403

HMSE 0,1807714 0,3842018 0,183153 0,3273964 0,1848005 0,4225433

R2 0,6068593 0,7384955 0,5981365 0,7677426 0,6015356 0,7731989

Przek. VaR 149/59 98/30 171/37 112/24 140/26 80/12

Przek. VaR (%)

Kupiec 5% 0,02764251(R) 0,01194658(R) 4,674136e-05(R) 0,2481387 0,1577436 1,337974e-05(R)

Kupiec 1% 5,095557e-09(R) 0,3166331 0,02262881(R) 0,8600111 0,821158 0,003927525(R)

Christoff. 5% 0,08359927 0,002670763(R) 0,0002338338(R) 0,1259191 0,274063 4,477951e-06(R)

Chrisotff. 1% 3,589397e-08(R) 0,0116681(R) 0,06384671 0,005157251(R) 0,5376108 0,01474698(R)

ES bootstrap 5% 0,0008605812 0,08362556 0,5690876 0,6861423 0,6974109 0,8121736

ES próbkowy 5% 1,545614e-05(R) 0,02975946(R) 0,589491 0,7224967 0,7623357 0,8867095

ES bootstrap 1% — 0,0310762 0,5853297 0,4358049 0,3789528 —

ES próbkowy 1% — 0,01149588(R) 0,5632319 0,3510686 0,3088883 —

Źródło: Opracowanie własne.

Tabela A.5: Prognozy zmienności, indeks S&P500, model APARCH i APARCH-LSTM

Model/Metrics AP(N) AP(N)-LSTM AP(STD) AP(STD)-LSTM AP(SSTD) AP(SSTD)-LSTM

MSE 0,3426945 0,3344834 0,3242661 0,318056 0,3264551 0,3162408

DM p-value 0,1849 0,204 0,1616

MAE 0,3606189 0,3699534 0,3544302 0,3627978 0,3531873 0,3610026

HMSE 0,1685517 0,3312288 0,1715618 0,3185091 0,1670245 0,3035204

R2 0,5456934 0,5692383 0,5582577 0,611704 0,5676243 0,5926861

Przek. VaR 166/71 111/41 176/41 115/29 148/27 99/18

Przek. VaR (%)

Kupiec 5% 0,0002585233(R) 0,2112618 7,28635e-06(R) 0,3838599 0,0344(R) 0,01574687(R)

Kupiec 1% 3,264056e-14(R) 0,002949403(R) 0,002949403(R) 0,4173806 0,6719996 0,1453207

Christoff. 5% 0,0006112344(R) 0,1036547 4,226065e-05(R) 0,04996012(R) 0,03931851(R) 0,003824839(R)

Chrisotff. 1% 5,928591e-14(R) 2,410587e-06(R) 0,004948776(R) 0,0114341(R) 0,5333337 0,1031526

ES bootstrap 5% 6,28606e-06 0,002173954 0,242324 0,3242384 0,6982161 0,6809137

ES próbkowy 5% 2,985549e-08(R) 0,000195468(R) 0,1541806 0,2350046 0,7501902 0,7400651

ES bootstrap 1% — — — 0,5986175 0,3858598 0,4302824

ES próbkowy 1% — — — 0,6280052 0,307657 0,3673147

Źródło: Opracowanie własne.





Tabela A.6: Prognozy zmienności, indeks NIKKEI 225, model GARCH i GARCH-LSTM

Model/Metrics G(N) G(N)-LSTM G(STD) G(STD)-LSTM G(SSTD) G(SSTD)-LSTM

MSE 0,7190396 0,6295932 0,7156355 0,6413457 0,7232306 0,6445305

DM p-value 0,0001895 0,4401 0,3759

MAE 0,5676317 0,5713175 0,5689244 0,5740221 0,571226 0,5768095

HMSE 2,850735 4,558046 2,988673 4,457486 2,84862 4,60183

R2 0,1691152 0,1733029 0,1691473 0,1571037 0,1664218 0,14434

Przek. VaR 136/58 80/26 153/45 90/18 134/37 77/11

Przek. VaR (%)

Kupiec 5% 0,2906901 1,337974e-05(R) 0,01082282(R) 0,0009088047(R) 0,3803133 2,977075e-06(R)

Kupiec 1% 1,245618e-08(R) 0,821158 0,0002689616(R) 0,1453207 0,02262881(R) 0,001678938(R)

Christoff. 5% 0,5591795 1,255502e-05(R) 0,0381103(R) 0,001483662(R) 0,6504183 5,581325e-06(R)

Chrisotff. 1% 4,149255e-08(R) 0,5376108 0,0002087952(R) 0,1031526 0,004497022(R) 0,000831569(R)

ES bootstrap 5% 8,991041e-06 0,02218931 0,07341403 0,5331799 0,09595087 0,6353035

ES próbkowy 5% 3,819098e-07(R) 0,006081351(R) 0,02829267(R) 0,4774846 0,03660707(R) 0,6201986

ES bootstrap 1% — 0,04672565 — 0,4804514 — —

ES próbkowy 1% — 0,01821063(R) — 0,4009626 — —

Źródło: Opracowanie własne.

Tabela A.7: Prognozy zmienności, indeks NIKKEI 225, model EGARCH i EGARCH-LSTM

Model/Metrics E(N) E(N)-LSTM E(STD) E(STD)-LSTM E(SSTD) E(SSTD)-LSTM

MSE 0,7293213 0,6421487 0,7185632 0,6292921 0,718122 0,6454369

DM p-value 0,5743 0,509 0,5842

MAE 0,5737363 0,571063 0,5684049 0,5657533 0,5669657 0,5696178

HMSE 2,667138 4,72994 2,687264 4,619211 2,616769 4,430363

R2 0,2060841 0,1326951 0,2125535 0,175777 0,2064342 0,124935

Przek. VaR 139/53 71/20 148/43 83/13 135/28 76/10

Przek. VaR (%)

Kupiec 5% 0,1855083 1,030394e-07(R) 0,0344(R) 5,371088e-05(R) 0,3335094 1,757875e-06(R)

Kupiec 1% 8,393498e-07(R) 0,3095893 0,0009299509(R) 0,008473333(R) 0,5363499 0,0006566578(R)

Christoff. 5% 0,3750778 5,71622e-07(R) 0,1064974 0,000130801(R) 0,6060121 3,122448e-06(R)

Chrisotff. 1% 4,039331e-06(R) 0,2143328 0,003996211(R) 0,005037558(R) 0,5077687 0,0002877767(R)

ES bootstrap 5% 0,0003025123 0,04243671 0,02555243 0,4185492 0,1609098 0,6743024

ES próbkowy 5% 1,929293e-05(R) 0,01453429(R) 0,006372951(R) 0,3478262 0,08017253 0,7029006

ES bootstrap 1% — 0,02279984 — — 0,2118688 —

ES próbkowy 1% — 0,0111404(R) — — 0,1254408 —

Źródło: Opracowanie własne.





Tabela A.8: Prognozy zmienności, indeks NIKKEI 225, model GJR-GARCH i GJR-GARCH-LSTM

Model/Metrics GJR(N) GJR(N)-LSTM GJR(STD) GJR(STD)-LSTM GJR(SSTD) GJR(SSTD)-LSTM

MSE 0,7042808 0,6496123 0,6900629 0,6344323 0,6961625 0,6277231

DM p-value 0,7503 0,7358 0,6868

MAE 0,5644395 0,5706564 0,5603332 0,5675919 0,5620999 0,5669418

HMSE 2,886685 4,5297 2,958561 4,473554 2,634196 4,449538

R2 0,197785 0,113094 0,2090007 0,160146 0,2040482 0,1698732

Przek. VaR 140/58 76/21 145/43 85/17 134/37 74/11

Przek. VaR (%)

Kupiec 5% 0,1577436 1,757875e-06(R) 0,06383829 0,0001276986(R) 0,3803133 5,888947e-07(R)

Kupiec 1% 1,245618e-08(R) 0,4229126 0,0009299509(R) 0,09252608 0,02262881(R) 0,001678938(R)

Christoff. 5% 0,3480243 6,414211e-06(R) 0,1546133 0,0003315829(R) 0,6023921 2,026285e-06(R)

Chrisotff. 1% 7,936179e-08(R) 0,2833833 0,001947491(R) 0,06519099 0,06384671 0,000831569(R)

ES bootstrap 5% 0,0006524609 0,05506156 0,0622781 0,4463583 0,2221808 0,6550945

ES próbkowy 5% 4,228499e-05(R) 0,02204104(R) 0,01948298(R) 0,3895219 0,1306741 0,6805171

ES bootstrap 1% — 0,03188525 — 0,401404 —

ES próbkowy 1% — 0,01836927(R) — 0,3184132 —

Źródło: Opracowanie własne.

Tabela A.9: Prognozy zmienności, indeks NIKKEI 225, model APARCH i APARCH-LSTM

Model/Metrics AP(N) AP(N)-LSTM AP(STD) AP(STD)-LSTM AP(SSTD) AP(SSTD)-LSTM

MSE 0,725722 0,6385541 0,7014102 0,6340941 0,7013369 0,6347263

DM p-value 0,6452 0,69 0,7182

MAE 0,5717364 0,5658564 0,5641562 0,5677007 0,5644852 0,566896

HMSE 2,788908 4,645786 2,817499 4,70593 2,712554 4,604738

R2 0,1649554 0,1567614 0,194411 0,1519926 0,1997656 0,1436635

Przek. VaR 135/50 74/23 140/39 81/14 122/27 75/11

Przek. VaR (%)

Kupiec 5% 0,3335094 5,888947e-07(R) 0,1577436 2,152801e-05(R) 0,8283143 1,024309e-06(R)

Kupiec 1% 8,449136e-06(R) 0,7026887 0,008555221(R) 0,01697476(R) 0,6719996 0,001678938(R)

Christoff. 5% 0,6212114 2,026285e-06(R) 0,3385526 4,861257e-05(R) 0,8924112 3,634332e-06(R)

Chrisotff. 1% 4,934183e-05(R) 0,4228579 0,02833089(R) 0,01076814(R) 0,5333337 0,000831569(R)

ES bootstrap 5% 0,001917887 0,04622795 0,1655853 0,4697999 0,2384024 0,6936294

ES próbkowy 5% 0,0001867613(R) 0,01756195(R) 0,08321602 0,4091589 0,1476266 0,7310164

ES bootstrap 1% — 0,03978208 — — 0,2314639 —

ES próbkowy 1% — 0,01846625(R) — — 0,1444633 —

Źródło: Opracowanie własne.





Tabela A.10: Prognozy zmienności, indeks DAX, model GARCH i GARCH-LSTM

Model/Metrics G(N) G(N)-LSTM G(STD) G(STD)-LSTM G(SSTD) G(SSTD)-LSTM

MSE 1,069736 0,7849515 1,051762 0,7771242 1,075352 0,7910381

DM p-value 0,002308 0,001331 0,0007548

MAE 0,6289005 0,5624794 0,6203608 0,5560515 0,6246122 0,5605514

HMSE 0,1854313 0,3559361 0,1831631 0,340455 0,1836664 0,3445947

R2 0,3513935 0,3170056 0,3469804 0,3242 0,3267928 0,3125383

Przek. VaR 174/65 68/17 184/40 78/9 171/37 67/7

Przek. VaR (%)

Kupiec 5% 1,559684e-05(R) 1,586138e-08(R) 2,754904e-07(R) 4,976404e-06(R) 4,674136e-05(R) 8,253918e-09(R)

Kupiec 1% 1,697487e-11(R) 0,09252608 0,005080548(R) 0,0002327628(R) 0,02262881(R) 2,073181e-05(R)

Christoff. 5% 7,284972e-06(R) 8,449678e-08(R) 2,363876e-07(R) 2,83897e-05(R) 1,486731e-05(R) 6,066743e-08(R)

Chrisotff. 1% 4,364076e-11(R) 0,2161062 0,01026075(R) 0,001107336(R) 0,04253562(R) 0,0001138994(R)

ES bootstrap 5% 0,0001373883 0,1848147 0,2414165 0,9135146 0,464242 0,9517954

ES próbkowy 5% 8,476633e-06(R) 0,1060256 0,1595951 0,9731608 0,4183047 0,9933471

ES bootstrap 1% — 0,213894 — — — —

ES próbkowy 1% — 0,1262211 — — — —

Źródło: Opracowanie własne.

Tabela A.11: Prognozy zmienności, indeks DAX, model EGARCH i EGARCH-LSTM

Model/Metrics E(N) E(N)-LSTM E(STD) E(STD)-LSTM E(SSTD) E(SSTD)-LSTM

MSE 1,214811 0,8233499 1,196003 0,8740355 1,19496 0,8504577

DM p-value 0,0009276 0,001369 0,001283

MAE 0,6577704 0,5625484 0,6427355 0,5718593 0,6437478 0,5654752

HMSE 0,1719085 0,3506878 0,1695586 0,3428184 0,1699276 0,3554711

R2 0,2859736 0,342667 0,2403574 0,3205843 0,2422677 0,3380977

Przek. VaR 159/57 67/18 171/51 77/15 150/38 60/9

Przek. VaR (%)

Kupiec 5% 0,002198025(R) 8,253918e-09(R) 4,674136e-05(R) 2,977075e-06(R) 0,02207304(R) 5,51249e-11(R)

Kupiec 1% 2,993902e-08(R) 0,1453207 3,98726e-06(R) 0,03176469(R) 0,0140778(R) 0,0002327628(R)

Christoff. 5% 0,007694525(R) 2,118517e-08(R) 0,0001991965(R) 7,274061e-07(R) 0,05817807 2,357327e-10(R)

Chrisotff. 1% 9,139484e-08(R) 0,3037263 1,676681e-05(R) 0,09102395 0,04315141(R) 0,001107336(R)

ES bootstrap 5% 1,195145e-05 0,1550033 0,0004296552 0,1640598 0,2602961 0,7191898

ES próbkowy 5% 9,584718e-07(R) 0,08640518 4,446945e-05(R) 0,08472213 0,1686346 0,7487983

ES bootstrap 1% — 0,08146706 — 0,3471822 — —

ES próbkowy 1% — 0,04933472(R) — 0,240651 — —

Źródło: Opracowanie własne.





Tabela A.12: Prognozy zmienności, indeks DAX, model GJR-GARCH i GJR-GARCH-LSTM

Model/Metrics GJR(N) GJR(N)-LSTM GJR(STD) GJR(STD)-LSTM GJR(SSTD) GJR(SSTD)-LSTM

MSE 1,018062 0,7592761 0,9778356 0,7556117 0,9762771 0,7446205

DM p-value 0,0151 0,01883 0,009107

MAE 0,6204018 0,551187 0,6046727 0,5491992 0,6033362 0,5396463

HMSE 0,1662555 0,3420855 0,1643428 0,3494785 0,1640458 0,3278431

R2 0,3871644 0,3670471 0,3966749 0,3592803 0,403628 0,3764779

Przek. VaR 162/56 62/19 171/41 67/12 151/33 60/10

Przek. VaR (%)

Kupiec 5% 0,0009111476(R) 2,499176e-10(R) 4,674136e-05(R) 8,253918e-09(R) 0,0175152(R) 5,51249e-11(R)

Kupiec 1% 7,073541e-08(R) 0,2170907 0,002949403(R) 0,003927525(R) 0,1186792 0,0006566578(R)

Christoff. 5% 0,003015094(R) 1,902654e-09(R) 0,0001991965(R) 4,316764e-08(R) 0,04891764(R) 4,19351e-10(R)

Chrisotff. 1% 4,784607e-07(R) 0,4032968 0,01122788(R) 0,01474698(R) 0,1898935 0,002895986(R)

ES bootstrap 5% 0,000112717 0,09519169 0,2659333 0,6875935 0,6054211 0,7795719

ES próbkowy 5% 6,030285e-06(R) 0,04682177(R) 0,1829912 0,7082645 0,6473815 0,8633752

ES bootstrap 1% — 0,1365961 — — 0,6832069 —

ES próbkowy 1% — 0,0700981 — — 0,7042714 —

Źródło: Opracowanie własne.

Tabela A.13: Prognozy zmienności, indeks DAX, model APARCH i APARCH-LSTM

Model/Metrics AP(N) AP(N)-LSTM AP(STD) AP(STD)-LSTM AP(SSTD) AP(SSTD)-LSTM

MSE 1,080154 0,7755289 1,03333 0,7596108 1,048637 0,7690159

DM p-value 0,00331 0,007559 0,005758

MAE 0,6322617 0,5483295 0,616666 0,546451 0,6158596 0,5453936

HMSE 0,163826 0,3299685 0,161454 0,3395394 0,1606082 0,3411371

R2 0,3900843 0,3679386 0,3932616 0,3684221 0,3722437 0,3481467

Przek. VaR 162/59 63/21 175/47 67/13 151/39 57/10

Przek. VaR (%)

Kupiec 5% 0,0009111476(R) 5,191794e-10(R) 1,069158e-05(R) 8,253918e-09 0,0175152(R) 5,027312e-12(R)

Kupiec 1% 5,095557e-09(R) 0,4229126 7,156069e-05(R) 0,008473333(R) 0,008555221(R) 0,0006566578(R)

Christoff. 5% 0,002264429(R) 2,459031e-09(R) 5,436756e-05(R) 4,316764e-08(R) 0,03771531(R) 3,757084e-11(R)

Chrisotff. 1% 3,403486e-08(R) 0,6065243 0,0003738905(R) 0,02919851(R) 0,02833089(R) 00,002895986(R)

ES bootstrap 5% 8,81916e-05 0,06353271 0,1944392 0,5367139 0,4903197 0,6874604

ES próbkowy 5% 5,70966e-06 0,03009668 0,1071196 0,5193546 0,4539598 0,7172347

ES bootstrap 1% — 0,1535328 — — — —

ES próbkowy 1% — 0,08743779 — — — —

Źródło: Opracowanie własne.





Tabela A.14: Prognozy zmienności, indeks WIG, model GARCH i GARCH-LSTM

Model/Metrics G(N) G(N)-LSTM G(STD) G(STD)-LSTM G(SSTD) G(SSTD)-LSTM

MSE 0,5016779 0,4807461 0,4898187 0,4648025 0,4919046 0,4899494

DM p-value 0,2081 0,00342 0,3169

MAE 0,3971172 0,4007828 0,3892141 0,3971894 0,3901081 0,404276

HMSE 0,159309 0,2495876 0,1512678 0,2510024 0,1506661 0,2596854

R2 0,2438276 0,2024343 0,2395174 0,2168488 0,238097 0,1963516

Przek. VaR 142/46 98/28 150/33 107/21 141/29 90/19

Przek. VaR (%)

Kupiec 5% 0,1119399 0,01194658(R) 0,02207304(R) 0,1023182 0,1332994 0,0009088047(R)

Kupiec 1% 0,0001401641(R) 0,5363499 0,1186792 0,4229126 0,4173806 0,2170907

Christoff. 5% 0,008804667(R) 0,006510383(R) 0,002855768(R) 0,2129693 0,0193541(R) 9,135134e-05(R)

Chrisotff. 1% 2,704862e-05(R) 0,5077687 0,2252329 0,2833833 0,4646559 0,1531993

ES bootstrap 5% 6,965654e-05 0,003694259 0,02497194 0,3177466 0,04674462 0,2333109

ES próbkowy 5% 3,788183e-06(R) 0,0003317787(R) 0,005185661(R) 0,2363042 0,01537991(R) 0,1491645

ES bootstrap 1% — 0,0005649516 0,01611454 0,3218875 0,009718938 0,1384656

ES próbkowy 1% — 3,453853e-05(R) 0,002733272(R) 0,2975999 0,001389077 0,06825786

Źródło: Opracowanie własne.

Tabela A.15: Prognozy zmienności, indeks WIG, model EGARCH i EGARCH-LSTM

Model/Metrics E(N) E(N)-LSTM E(STD) E(STD)-LSTM E(SSTD) E(SSTD)-LSTM

MSE 0,5110341 0,4883024 0,5080994 0,4868426 0,5032369 0,4992776

DM p-value 0,3057 0,2132 0,2438

MAE 0,4009833 0,4030376 0,4020795 0,4053615 0,4008149 0,4059339

HMSE 0,1465773 0,2628319 0,147502 0,2540669 0,1486358 0,2608203

R2 0,2842135 0,189866 0,2724925 0,2004278 0,2428964 0,1927532

Przek. VaR 150/49 83/28 158/41 99/24 144/31 86/16

Przek. VaR (%)

Kupiec 5% 0,02207304(R) 5,371088e-05(R) 0,002911799(R) 0,01574687(R) 0,07746676 0,0001934506(R)

Kupiec 1% 1,756379e-05(R) 0,5363499 0,002949403(R) 0,8600111 0,2341585 0,0558152

Christoff. 5% 0,01098066(R) 7,786051e-06(R) 0,005324692(R) 0,009110769(R) 0,05870036 0,0002627241(R)

Chrisotff. 1% 2,317021e-05(R) 0,5077687 0,004948776(R) 0,4796015 0,08470451 0,03851254

ES bootstrap 5% 0,0001821562 0,001073194 0,02395514 0,1064 0,08013354 0,3480869

ES próbkowy 5% 1,398831e-05(R) 9,564629e-05(R) 0,004593311(R) 0,04680702(R) 0,03123847(R) 0,2800814

ES bootstrap 1% — 0,0008099588 — 0,1890437 0,05412765 0,1126649

ES próbkowy 1% — 6,40275e-05(R) — 0,1106635 0,01295855(R) 0,05013207

Źródło: Opracowanie własne.





Tabela A.16: Prognozy zmienności, indeks WIG, model GJR-GARCH i GJR-GARCH-LSTM

Model/Metrics GJR(N) GJR(N)-LSTM GJR(STD) GJR(STD)-LSTM GJR(SSTD) GJR(SSTD)-LSTM

MSE 0,480196 0,4319645 0,4727176 0,4331499 0,4729606 0,4335862

DM p-value 0,006797 0,009753 0,01336

MAE 0,3904561 0,3877966 0,3870368 0,3887263 0,3873296 0,3894942

HMSE 0,1470687 0,245685 0,1467416 0,2391514 0,1476416 0,243874

R2 0,2643956 0,2663223 0,260102 0,2653745 0,2536893 0,2634236

Przek. VaR 136/45 89/27 147/32 98/21 134/30 87/16

Przek. VaR (%)

Kupiec 5% 0,2906901 0,0006277842(R) 0,04254057(R) 0,01194658(R) 0,3803133 0,0002896842(R)

Kupiec 1% 0,0002689616(R) 0,6719996 0,1688211 0,4229126 0,3166331 0,0558152

Christoff. 5% 0,1491261 0,0009832874(R) 0,0263967(R) 0,01368701(R) 0,2588073 0,0007930645(R)

Chrisotff. 1% 0,001283738(R) 0,6796999 0,2556413 0,6065243 0,4198489 0,1447965

ES bootstrap 5% 0,0001293162 0,01579327 0,04979409 0,2571328 0,1011758 0,4251651

ES próbkowy 5% 1,047157e-05(R) 0,002703568(R) 0,01810339(R) 0,1709857 0,03751224 0,3802523

ES bootstrap 1% — 0,001002251 0,01049462 0,3490302 0,03524295 0,1406133

ES próbkowy 1% — 0,000104181(R) 0,001351261(R) 0,3071385 0,008806436(R) 0,08105896

Źródło: Opracowanie własne.

Tabela A.17: Prognozy zmienności, indeks WIG, model APARCH i APARCH-LSTM

Model/Metrics AP(N) AP(N)-LSTM AP(STD) AP(STD)-LSTM AP(SSTD) AP(SSTD)-LSTM

MSE 0,4951572 0,4778275 0,4825994 0,4723306 0,5062653 0,4659261

DM p-value 0,3771 0,2187 0,09545

MAE 0,3978857 0,3957532 0,390865 0,4014725 0,3932025 0,3988304

HMSE 0,150432 0,2455245 0,1467749 0,2646203 0,1752026 0,2662842

R2 0,2545484 0,2061789 0,2517307 0,2072169 0,162094 0,2169121

Przek. VaR 142/48 95/29 145/33 96/23 136/31 85/20

Przek. VaR (%)

Kupiec 5% 0,1119399 0,004914388(R) 0,06383829 0,006674846(R) 0,2906901 0,0001276986(R)

Kupiec 1% 3,580577e-05(R) 0,4173806 0,1186792 0,7026887 0,2341585 0,3095893

Christoff. 5% 0,06768427 0,0002796864(R) 0,03123931(R) 0,003193499(R) 0,1491261 0,0001643573(R)

Chrisotff. 1% 0,0001196566(R) 0,4646559 0,1898935 0,4228579 0,3331484 0,2143328

ES bootstrap 5% 0,0002196592 0,007406649 0,03522117 0,2679577 0,05801245 0,3727497

ES próbkowy 5% 1,353553e-05(R) 0,001012632(R) 0,006961378(R) 0,1756529 0,01795494(R) 0,3007678

ES bootstrap 1% — 0,00128344 0,005429643 0,2118191 0,01828824 0,1518267

ES próbkowy 1% — 4,851239e-05(R) 0,0003618305(R) 0,1263483 0,003464845(R) 0,08199591

Źródło: Opracowanie własne.





Tabela A.18: Prognozy zmienności, indeks KOSPI, model GARCH i GARCH-LSTM

Model/Metrics G(N) G(N)-LSTM G(STD) G(STD)-LSTM G(SSTD) G(SSTD)-LSTM

MSE 0,7378322 0,553092 0,7188387 0,5574311 0,7388017 0,559372

DM p-value 0,007025 0,01168 0,008227

MAE 0,5041342 0,4498382 0,4950363 0,450868 0,5003664 0,4527608

HMSE 0,1486261 0,2673304 0,1465225 0,2714647 0,1473925 0,2759781

R2 0,2754385 0,2566355 0,2819561 0,252989 0,262754 0,249279

Przek. VaR 167/63 64/16 180/47 79/11 156/36 59/5

Przek. VaR (%)

Kupiec 5% 0,000185844(R) 1,061341e-09(R) 1,483234e-06 8,211886e-06 0,005015865(R) 2,524525e-11(R)

Kupiec 1% 1,211037e-10(R) 0,0558152 7,156069e-05(R) 0,001678938(R) 0,03551858(R) 1,037271e-06(R)

Christoff. 5% 1,42488e-05(R) 5,173137e-09(R) 1,958115e-07 3,207632e-05 0,0003327804(R) 1,913443e-10(R)

Chrisotff. 1% 8,738547e-10(R) 0,1447965 0,0003738905(R) 0,006843567(R) 0,09169552 6,531212e-06(R)

ES bootstrap 5% 2,999049e-06 0,2047013 0,07023574 0,9739512 0,1828492 0,9879942

ES próbkowy 5% 1,440762e-08(R) 0,1119625 0,02321616(R) 0,9974071 0,1093607 0,9995317

ES bootstrap 1% — 0,391375 — — 0,8428028 —

ES próbkowy 1% — 0,3104891 — — 0,9125288 —

Źródło: Opracowanie własne.

Tabela A.19: Prognozy zmienności, indeks KOSPI, model EGARCH i EGARCH-LSTM

Model/Metrics E(N) E(N)-LSTM E(STD) E(STD)-LSTM E(SSTD) E(SSTD)-LSTM

MSE 0,7895534 0,5861569 0,7751247 0,5751065 0,7710203 0,5626108

DM p-value 0,01117 0,004848 0,003027

MAE 0,5224552 0,4577732 0,5150387 0,4656652 0,5142949 0,4605595

HMSE 0,1493635 0,2748749 0,1470675 0,2939542 0,1467586 0,293472

R2 0,3587522 0,2984503 0,3502296 0,3046175 0,3549323 0,3079475

Przek. VaR 171/68 66/17 178/51 74/15 158/29 53/8

Przek. VaR (%)

Kupiec 5% 4,674136e-05(R) 4,230779e-09(R) 3,325637e-06(R) 5,888947e-07(R) 0,002911799(R) 1,606493e-13(R)

Kupiec 1% 7,948087e-13(R) 0,09252608 3,98726e-06(R) 0,03176469(R) 0,4173806 7,391891e-05(R)

Christoff. 5% 7,013816e-05(R) 1,038133e-09(R) 6,054885e-06(R) 2,026285e-06(R) 0,003215756(R) 1,134759e-12(R)

Chrisotff. 1% 2,690514e-12(R) 0,2161062 6,654995e-06(R) 0,09102395 0,5111283 0,0003783371(R)

ES bootstrap 5% 1,28053e-05 0,2098873 0,02930189 0,8671703 0,3388093 0,9264903

ES próbkowy 5% 2,839617e-07(R) 0,117655 0,005943415(R) 0,9436366 0,2729836 0,9824801

ES bootstrap 1% — 0,04334628 — 0,8574863 0,2039617 —

ES próbkowy 1% — 0,01240531(R) — 0,9381089 0,1226525 —

Źródło: Opracowanie własne.





Tabela A.20: Prognozy zmienności, indeks KOSPI, model GJR-GARCH i GJR-GARCH-LSTM

Model/Metrics GJR(N) GJR(N)-LSTM GJR(STD) GJR(STD)-LSTM GJR(SSTD) GJR(SSTD)-LSTM

MSE 0,7034035 0,5402718 0,6912846 0,553268 0,7065312 0,5602887

DM p-value 0,02455 0,05489 0,0555

MAE 0,5023142 0,4447278 0,4944834 0,4506149 0,4973971 0,4444016

HMSE 0,1421074 0,2522675 0,1401998 0,2670855 0,1404988 0,241665

R2 0,4039474 0,3128245 0,3982769 0,2954005 0,3884698 0,2837887

Przek. VaR 165/57 61/19 175/46 67/13 155/30 61/10

Przek. VaR (%)

Kupiec 5% 0,0003574606(R) 1,183531e-10(R) 1,069158e-05(R) 8,253918e-09(R) 0,006522105(R) 1,183531e-10(R)

Kupiec 1% 2,993902e-08(R) 0,2170907 0,0001401641(R) 0,008473333(R) 0,3166331 0,0006566578(R)

Christoff. 5% 0,0002933049(R) 2,102257e-10(R) 1,477245e-05(R) 4,316764e-08(R) 0,01324942(R) 2,102257e-10(R)

Chrisotff. 1% 1,814355e-07(R) 0,4032968 0,0003938719(R) 0,02919851(R) 0,4198489 0,002895986(R)

ES bootstrap 5% 0,6929617 0,9603083 0,1267458 0,7745528 0,4490631 0,8761657

ES próbkowy 5% 0,7371838 0,9936208 0,04995367(R) 0,8262102 0,4041286(R) 0,9525879

ES bootstrap 1% — 0,1595358 — — 0,6235896 —

ES próbkowy 1% — 0,07610875 — — 0,6472259 —

Źródło: Opracowanie własne.

Tabela A.21: Prognozy zmienności, indeks KOSPI, model APARCH i APARCH-LSTM

Model/Metrics AP(N) AP(N)-LSTM AP(STD) AP(STD)-LSTM AP(SSTD) AP(SSTD)-LSTM

MSE 0,7496204 0,5317775 0,7233447 0,5511946 0,7324045 0,5664421

DM p-value 0,00115 0,005486 0,01627

MAE 0,5138654 0,4403128 0,5016307 0,454489 0,5024283 0,453435

HMSE 0,1444482 0,237207 0,1411206 0,2727843 0,1407051 0,2578569

R2 0,4013762 0,3247839 0,4044557 0,2982872 0,3991118 0,2823087

Przek. VaR 172/66 72/20 179/46 74/13 153/31 65/10

Przek. VaR (%)

Kupiec 5% 3,26119e-05(R) 1,868141e-07(R) 2,227363e-06(R) 5,888947e-07(R) 0,01082282(R) 2,135601e-09(R)

Kupiec 1% 6,210588e-12(R) 0,3095893 0,0001401641(R) 0,008473333(R) 0,2341585(R) 0,0006566578(R)

Christoff. 5% 2,040205e-05(R) 5,99583e-07(R) 1,697194e-06(R) 2,026285e-06(R) 0,0122336(R) 4,909902e-09(R)

Chrisotff. 1% 5,364187e-11(R) 0,5074174 0,0007011565(R) 0,02919851(R) 0,3331484 0,002895986(R)

ES bootstrap 5% 4,622223e-05 0,1316408 0,09488302 0,8681284 0,3414234 0,9324648

ES próbkowy 5% 2,071653e-07(R) 0,06027143 0,03768734(R) 0,9394527 0,2840894 0,9833066

ES bootstrap 1% — 0,03769699 — — 0,5110893 —

ES próbkowy 1% — 0,01248621(R) — — 0,4713184 —

Źródło: Opracowanie własne.





Tabela A.22: Prognozy zmienności, indeks BVP, model GARCH i GARCH-LSTM

Model/Metrics G(N) G(N)-LSTM G(STD) G(STD)-LSTM G(SSTD) G(SSTD)-LSTM

MSE 0,7934381 0,6665721 0,7988081 0,6707073 0,8114086 0,6783546

DM p-value 0,08275 0,1263 0,09155

MAE 0,560111 0,5333564 0,5577967 0,5324868 0,5613681 0,5337788

HMSE 0,1526598 0,2279903 0,1491898 0,2304943 0,1499011 0,2281416

R2 0,4379412 0,4460823 0,4162867 0,4415638 0,4118728 0,4420366

Przek. VaR 133/36 68/18 145/29 69/13 137/30 67/16

Przek. VaR (%)

Kupiec 5% 0,4310731 1,586138e-08(R) 0,06383829 3,003042e-08 0,25182 8,253918e-09(R)

Kupiec 1% 0,03551858(R) 0,1453207 0,4173806 0,008473333(R) 0,3166331 0,0558152

Christoff. 5% 0,7327024 1,708624e-08 0,1205989 2,99768e-08 0,3447194 9,584317e-09(R)

Chrisotff. 1% 0,06463278 0,3037263 0,5111283 .02919851(R) 0,4198489 0,1447965

ES bootstrap 5% 0,0162502 0,1187758 0,3304445 0,4189453 0,246131 0,4448575

ES próbkowy 5% 0,004163439(R) 0,05844181 0,269692 0,3577988 0,1497405 0,3922364

ES bootstrap 1% 0,006502646 0,04925743 0,248665 — 0,1034294 0,3923926

ES próbkowy 1% 0,002624935(R) 0,02356333(R) 0,1716354 — 0,05026162 0,289595

Źródło: Opracowanie własne.

Tabela A.23: Prognozy zmienności, indeks BVP, model EGARCH i EGARCH-LSTM

Model/Metrics E(N) E(N)-LSTM E(STD) E(STD)-LSTM E(SSTD) E(SSTD)-LSTM

MSE 0,8487132 0,6503974 0,8181792 0,657855 0,8023545 0,6735475

DM p-value 0,03847 0,05963 0,05385

MAE 0,5765123 0,5364117 0,5532199 0,5433847 0,5480561 0,5441965

HMSE 0,1519191 0,2506146 0,173009 0,2567203 0,1845385 0,2609665

R2 0,450027 0,5072175 0,3991935 0,5164304 0,4446621 0,515144

Przek. VaR 130/42 60/14 123/19 75/11 119/16 77/12

Przek. VaR (%)

Kupiec 5% 0,6057333 5,51249e-11(R) 0,9009813 1,024309e-06(R) 0,6201504 2,977075e-06(R)

Kupiec 1% 0,001674417(R) 0,01697476(R) 0,2170907 0,001678938(R) 0,0558152 0,003927525(R)

Christoff. 5% 0,8291842 1,049834e-10(R) 0,9225836 4,080854e-06(R) 0,6498937 1,057124e-05(R)

Chrisotff. 1% 0,003483071(R) 0,05346227 0,4032968 0,006843567(R) 0,1447965 0,01474698(R)

ES bootstrap 5% 0,002761678 0,2262921 0,7937584 0,9126173 0,9192221 0,9322515

ES próbkowy 5% 0,0003896895 0,1394997 0,8796151 0,976134 0,9788193 0,9856935

ES bootstrap 1% — 0,02325789 0,6881639 — 0,7878925 —

ES próbkowy 1% — 0,01083468(R) 0,7376287 — 0,8509674 —

Źródło: Opracowanie własne.





Tabela A.24: Prognozy zmienności, indeks BVP, model GJR-GARCH i GJR-GARCH-LSTM

Model/Metrics GJR(N) GJR(N)-LSTM GJR(STD) GJR(STD)-LSTM GJR(SSTD) GJR(SSTD)-LSTM

MSE 0,7888172 0,6736189 0,7941569 0,6760366 0,8232394 0,6914141

DM p-value 0,08934 0,07432 0,1092

MAE 0,5665861 0,5339551 0,5653967 0,5378323 0,5705334 0,5373571

HMSE 0,1528855 0,2354904 0,1536421 0,2429683 0,1549077 0,2275408

R2 0,4643912 0,4576045 0,455036 0,440399 0,3623912 0,3844152

Przek. VaR 128/36 66/14 135/25 67/13 142/28 69/10

Przek. VaR (%)

Kupiec 5% 0,7381654 4,230779e-09(R) 0,3335094 8,253918e-09(R) 0,1119399 3,003042e-08(R)

Kupiec 1% 0,03551858(R) 0,01697476(R) 0,9791164 0,008473333(R) 0,5363499 0,0006566578(R)

Christoff. 5% 0,2482394 5,289744e-09(R) 0,395033 4,89735e-08(R) 0,2019643 1,628031e-07(R)

Chrisotff. 1% 0,06463278 0,05346227 0,7754523 0,02919851(R) 0,6004122 0,002895986

ES bootstrap 5% 0,01449717 0,1607308 0,222932 0,4686802 0,3506208 0,4887399

ES próbkowy 5% 0,003722228(R) 0,08179994 0,1364645 0,4455389 0,2912791 0,4420894

ES bootstrap 1% 0,04193854 0,008548071 0,1027438 — 0,2010305 0,1732925

ES próbkowy 1% 0,01566763(R) 0,003259883(R) 0,04382025(R) — 0,1218748 0,1094762

Źródło: Opracowanie własne.

Tabela A.25: Prognozy zmienności, indeks BVP, model APARCH i APARCH-LSTM

Model/Metrics AP(N) AP(N)-LSTM AP(STD) AP(STD)-LSTM AP(SSTD) AP(SSTD)-LSTM

MSE 0,8060332 0,6740019 0,8053575 0,6695474 0,88005 0,7010085

DM p-value 0,1087 0,0696 0,04171

MAE 0,5722127 0,5344938 0,5554061 0,5327831 0,565691 0,5393321

HMSE 0,146249 0,2419149 0,1496342 0,2234588 0,1606514 0,2263562

R2 0,404476 0,4157662 0,3523447 0,4160728 0,2348076 0,4008941

Przek. VaR 144/41 67/16 143/31 79/12 138/33 81/15

Przek. VaR (%)

Kupiec 5% 0,07746676 8,253918e-09(R) 0,09341474 8,211886e-06(R) 0,2168065 2,152801e-05(R)

Kupiec 1% 0,002949403(R) 0,0558152 0,2341585 0,003927525(R) 0,1186792 0,03176469(R)

Christoff. 5% 0,2087564 4,89735e-08(R) 0,2352261 1,699626e-05(R) 0,4115865 4,861257e-05(R)

Chrisotff. 1% 0,00605536(R) 0,1447965 0,3331484 0,01474698(R) 0,1898935 0,09102395

ES bootstrap 5% 0,005872602 0,1979213 0,2344821 0,6529934 0,3395229 0,6089566

ES próbkowy 5% 0,001471848 0,119337 0,140498 0,6682199 0,2588353 0,5965249

ES bootstrap 1% — 0,09421114 0,1387183 — 0,2645184 —

ES próbkowy 1% — 0,04267026 0,07048602 — 0,1656818 —

Źródło: Opracowanie własne.





Wyniki modeli prognoz probabilistycznych

Tabela A.26: Ilość przekroczeń oszacowań VaR(0,05)/VaR(0,01) w sieciowych modelach

prognozowania probabilistycznego

Model/Metrics CNN-N CNN-STD CNN-SSTD

S&P VaR 5%/1% 112/39 114/23 132/22

NKX VaR 5%/1% 107/37 100/23 88/10

DAX VaR 5%/1% 158/63 135/28 103/20

WIG VaR 5%/1% 126/49 114/28 92/20

KOSPI VaR 5%/1% 142/52 96/14 57/8

BOVESPA VaR 5%/1% 134/30 99/18 65/7

LSTM-N LSTM-STD LSTM-SSTD

S&P VaR 5%/1% 121/49 133/25 112/21

NKX VaR 5%/1% 111/47 114/25 95/16

DAX VaR 5%/1% 146/49 164/29 141/22

WIG VaR 5%/1% 120/46 123/30 106/19

KOSPI VaR 5%/1% 135/48 111/21 84/11

BOVESPA VaR 5%/1% 129/31 91/17 60/8
Uwaga: Oczekiwana liczba przekroczeń wynosi 124/24, ilość prognoz 2487

Źródło: Opracowanie własne.





Tabela A.27: Prognozy probabilistyczne, indeks S&P500, sieci CNN

Model/Metrics CNN(N) CNN(STD) CNN(SSTD)

LPS 1,28204 1,24162 1,222025

CRPS 0,5229748 0,5248868 0,5197192

PIT p-value 2,412545e-07 1,55995e-05 0,1144406

Przek. VaR 112/39 114/23 132/22

Przek. VaR (%) 4,50/1,56 4,58/0,92 5,30/0,88

Kupiec 5% 0,2481387 0,3344264 0,4856905

Kupiec 1% 0,008555221(R) 0,7026887 0,5552061

Christoff. 5% 0,00356562(R) 0,04092647(R) 0,03516364(R)

Chrisotff. 1% 0,0003746328(R) 0,05439649 0,355113

ES bootstrap 5% 0,8487771 0,9775541

ES próbkowy 5% 0,929866 0,9989004

ES bootstrap 1% 6,021294e-05 0,7343305 0,9529538

ES próbkowy 1% 2,237537e-06(R) 0,7875293 0,9917414

Źródło: Opracowanie własne.

Tabela A.28: Prognozy probabilistyczne, indeks S&P500, sieci LSTM

Model/Metrics LSTM(N) LSTM(STD) LSTM(SSTD)

LPS 1,263296 1,210462 1,193376

CRPS 0,5146218 0,5137579 0,5094981

PIT p-value 2,412545e-07 0,005700126 0,03094408

Przek. VaR 121/49 133/25 112/21

Przek. VaR (%) 4,86/1,97 5,34/1,005 4,50/0,84

Kupiec 5% 0,7569064 0,4310731 0,2481387

Kupiec 1% 1,756379e-05(R) 0,9791164 0,4229126

Christoff. 5% 0,4313099 0,01607378(R) 0,0264911(R)

Chrisotff. 1% 1,7719e-08(R) 0,5192243 0,2833833

ES bootstrap 5% 1,266502e-05 0,597149 0,5066612

ES próbkowy 5% 1,520095e-07(R) 0,6093057 0,4703062

ES bootstrap 1% — 0,7041345 0,7884135

ES próbkowy 1% — 0,7506336 0,8679756

Źródło: Opracowanie własne.





Tabela A.29: Prognozy probabilistyczne, indeks NIKKEI, sieci CNN

Model/Metrics CNN(N) CNN(STD) CNN(SSTD)

LPS 1,613601 1,599068 1,586503

CRPS 0,6914938 0,6995629 0,6963353

PIT p-value 2,412545e-07 4,41466e-05 0,04761705

Przek. VaR 107/37 100/23 88/10

Przek. VaR (%) 4,30/1,48 4,02/0,92 3,53/0,40

Kupiec 5% 0,1023182 0,02055537(R) 0,000428861(R)

Kupiec 1% 0,02262881 0,7026887 0,0006566578(R)

Christoff. 5% 0,1453825 0,06066346 0,001789705(R)

Chrisotff. 1% 0,004497022 0,4228579 0,0002877767(R)

ES bootstrap 5% 0,002102751 0,3075887 —

ES próbkowy 5% 0,0003844503(R) 0,2251687 —

ES bootstrap 1% — 0,380783 —

ES próbkowy 1% — 0,2856043 —

Źródło: Opracowanie własne.

Tabela A.30: Prognozy probabilistyczne, indeks NIKKEI, sieci LSTM

Model/Metrics LSTM(N) LSTM(STD) LSTM(SSTD)

LPS 1,61246 1,587088 1,585482

CRPS 0,6892744 0,6894952 0,6874244

PIT p-value 2,412545e-07 2,412545e-07 2,412545e-07

Przek. VaR 111/47 114/25 95/16

Przek. VaR (%) 4,46/1,88 4,58/1,005 3,81/0,64

Kupiec 5% 0,2112618 0,3344264 0,004914388(R)

Kupiec 1% 7,156069e-05 0,9791164 0,0558152

Christoff. 5% 0,1036547 0,5192243 0,009433387(R)

Chrisotff. 1% 7,318607e-05 0,5192243 0,03851254(R)

ES bootstrap 5% 0,0001054134 0,2559864 —

ES próbkowy 5% 7,944203e-06(R) 0,161735 —

ES bootstrap 1% — 0,4130939 0,2318004

ES próbkowy 1% — 0,3101348 0,1424559

Źródło: Opracowanie własne.





Tabela A.31: Prognozy probabilistyczne, indeks DAX, sieci CNN

Model/Metrics CNN(N) CNN(STD) CNN(SSTD)

LPS 1,580043 1,559851 1,570825

CRPS 0,6804201 0,6892444 0,6901093

PIT p-value 2,412545e-07 2,412545e-07 2,412545e-07

Przek. VaR 158/63 135/28 103/20

Przek. VaR (%) 6,35/2,53 5,42/1,12 4,14/0,80

Kupiec 5% 0,002911799 0,1855083 0,04319162(R)

Kupiec 1% 1,211037e-10 0,5363499 0,3095893

Christoff. 5% 0,0001283507 0,1349565 0,05763739

Chrisotff. 1% 9,511005e-10 0,6004122 0,5074174

ES bootstrap 5% — 0,6737697 0,6691323

ES próbkowy 5% — 0,7277809 0,7148299

ES bootstrap 1% — 0,5022836 0,6010707

ES próbkowy 1% — 0,4382549 0,5626957

Źródło: Opracowanie własne.

Tabela A.32: Prognozy probabilistyczne, indeks DAX, sieci LSTM

Model/Metrics LSTM(N) LSTM(STD) LSTM(SSTD)

LPS 1,55403 1,517858 1,522978

CRPS 0,6651706 0,666342 0,6645636

PIT p-value 2,412545e-07 2,412545e-07 0,3536619

Przek. VaR 146/49 164/29 141/22

Przek. VaR (%) 5,87/1,97 6,59/1,16 5,66/0,88

Kupiec 5% 0,05227703 0,0004912755(R) 0,1332994

Kupiec 1% 1,756379e-05 0,4173806 0,5552061

Christoff. 5% 0,007751175(R) 0,0001170212(R) 0,03889874(R)

Chrisotff. 1% 9,913803e-05 0,4646559 0,355113

ES bootstrap 5% 0,0004913535 — 0,8738948

ES próbkowy 5% 3,112749e-05(R) — 0,9464557

ES bootstrap 1% — 0,3795639 —

ES próbkowy 1% — 0,3082807 —

Źródło: Opracowanie własne.





Tabela A.33: Prognozy probabilistyczne, indeks WIG, sieci CNN

Model/Metrics CNN(N) CNN(STD) CNN(SSTD)

LPS 1,452008 1,392544 1,405504

CRPS 0,5616494 0,570386 0,5716405

PIT p-value 2,412545e-07 2,412545e-07 2,412545e-07

Przek. VaR 126/49 114/28 92/20

Przek. VaR (%) 5,066/1,97 4,58/1,12 3,69/0,80

Kupiec 5% 0,8795866 0,3344264 0,001843078

Kupiec 1% 1,756379e-05(R) 0,5363499 0,3095893

Christoff. 5% 0,007760636(R) 0,04092647 7,177948e-05

Chrisotff. 1% 1,059784e-06(R) 0,01072578(R) 0,2143328

ES bootstrap 5% 2,403899e-05 0,08714938 —

ES próbkowy 5% 2,618736e-06(R) 0,03894271(R) —

ES bootstrap 1% — 0,05862529 0,1747533

ES próbkowy 1% — 0,0240911(R) 0,09648941

Źródło: Opracowanie własne.

Tabela A.34: Prognozy probabilistyczne, indeks WIG, sieci LSTM

Model/Metrics LSTM(N) LSTM(STD) LSTM(SSTD)

LPS 1,426541 1,340019 1,347512

CRPS 0,560521 0,5553697 0,5553525

PIT p-value 2,412545e-07 0,002294637 0,008695127

Przek. VaR 120/46 123/30 106/19

Przek. VaR (%) 4,82/1,84 4,945/1,20 4,26/0,76

Kupiec 5% 0,6873387 0,9009813 0,08357332

Kupiec 1% 0,0001401641 0,3166331 0,2170907

Christoff. 5% 0,000830165 .001584901(R) 0,0001538501(R)

Chrisotff. 1% 0,0001252356 0,0009668114 0,1531993

ES bootstrap 5% 0,000117884 0,2029977 0,4422916

ES próbkowy 5% 7,166383e-06 0,1261955 0,3926888

ES bootstrap 1% — 0,3234363 0,2413903

ES próbkowy 1% — 0,2291602 0,1497585

Źródło: Opracowanie własne.





Tabela A.35: Prognozy probabilistyczne, indeks KOSPI, sieci CNN

Model/Metrics CNN(N) CNN(STD) CNN(SSTD)

LPS 1,334934 1,314745 1,317218

CRPS 0,528494 0,5296849 0,5301505

PIT p-value 2,412545e-07 2,412545e-07 2,412545e-07

Przek. VaR 142/52 96/14 57/8

Przek. VaR (%) 5,70/2,09 3,86/0,56 2,29/0,32

Kupiec 5% 0,1119399 0,006674846(R) 5,027312e-12(R)

Kupiec 1% 1,846464e-06(R) 0,01697476 7,391891e-05(R)

Christoff. 5% 0,008804667(R) 0,006769434(R) 3,708023e-11(R)

Chrisotff. 1% 9,733326e-07(R) 0,05346227 0,0003783371(R)

ES bootstrap 5% 0,0002535663 — —

ES próbkowy 5% 1,132197e-05(R) — —

ES bootstrap 1% — 0,1928189 —

ES próbkowy 1% — 0,1338842 —

Źródło: Opracowanie własne.

Tabela A.36: Prognozy probabilistyczne, indeks KOSPI, sieci LSTM

Model/Metrics LSTM(N) LSTM(STD) LSTM(SSTD)

LPS 1,324042 1,296143 1,284761

CRPS 0,5246137 0,520129 0,5164842

PIT p-value 2,412545e-07 4,702576e-07 5,087511e-06

Przek. VaR 135/48 111/21 84/11

Przek. VaR (%) 5,42/1,93 4,46/0,84 3,37/0,44

Kupiec 5% 0,3335094 0,2112618 8,331177e-05(R)

Kupiec 1% 3,580577e-05(R) 0,4229126 0,001678938(R)

Christoff. 5% 0,2382491 0,1846839 0,0004326179(R)

Chrisotff. 1% 0,0001947526(R) 0,6065243 0,006843567(R)

ES bootstrap 5% 0,000525885 0,5541596 —

ES próbkowy 5% 3,741374e-05 0,5469214 —

ES bootstrap 1% — 0,6018079 —

ES próbkowy 1% — 0,6328942 —

Źródło: Opracowanie własne.





Tabela A.37: Prognozy probabilistyczne, indeks BOVESPA, sieci CNN

Model/Metrics CNN(N) CNN(STD) CNN(SSTD)

LPS 1,774015 1,782918 1,787533

CRPS 0,8267813 0,8369301 0,8349038

PIT p-value 2,412545e-07 0,186626 0,006914349

Przek. VaR 134/30 99/18 65/7

Przek. VaR (%) 5,38/1,20 3,98/0,72 2,61/0,28

Kupiec 5% 0,3803133 0,01574687(R) 2,135601e-09(R)

Kupiec 1% 0,3166331 0,1453207 2,073181e-05(R)

Christoff. 5% 0,6504183 0,0187212(R) 1,378183e-08(R)

Chrisotff. 1% 0,4198489 0,3037263 0,0001138994(R)

ES bootstrap 5% 0,09109641 — —

ES próbkowy 5% 0,03699279(R) — —

ES bootstrap 1% 0,00768195 0,2585884 —

ES próbkowy 1% 0,003277963 0,1794694 —

Źródło: Opracowanie własne.

Tabela A.38: Prognozy probabilistyczne, indeks BOVESPA, sieci LSTM

Model/Metrics LSTM(N) LSTM(STD) LSTM(SSTD)

LPS 1,777575 1,775115 1,785089

CRPS 0,8221921 0,8268515 0,833506

PIT p-value 2,412545e-07 0,003849091 0,005559229

Przek. VaR 129/31 91/17 60/8

Przek. VaR (%) 5,18/1,24 3,65/0,68 2,41/0,32

Kupiec 5% 0,6705888 0,00130125(R) 5,51249e-11(R)

Kupiec 1% 0,2341585 0,09252608 1,049834e-10

Christoff. 5% 0,4559963 0,005579407(R) 1,049834e-10(R)

Chrisotff. 1% 0,3474328 0,2161062 0,0003783371

ES bootstrap 5% 0,01629235 — —

ES próbkowy 5% 0,004144868 — —

ES bootstrap 1% — 0,2206124 —

ES próbkowy 1% — 0,1296427 —

Źródło: Opracowanie własne.





Bibliografia

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,

G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,

D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,

B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,

F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, i X. Zheng.

TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems.

arXiv:1603.04467 [cs], 2016.

C. Acerbi i D. Tasche. On the coherence of Expected Shortfall. arXiv:cond-

mat/0104295, 2002.

C. Acerbi, C. Nordio, i C. Sirtori. Expected Shortfall as a Tool for Financial Risk

Management. arXiv:cond-mat/0102304, 2001.

C. Aloui i S. Mabrouk. Value-at-risk estimations of energy commodities via long-

memory, asymmetry and fat-tailed GARCH models. Energy Policy, 38(5):2326–2339,

2010.

B. Alshemali i J. Kalita. Improving the Reliability of Deep Neural Networks in NLP:

A Review. Knowledge-Based Systems, 191:105–210, 2020.

T. G. Andersen i T. Bollerslev. Answering the Skeptics: Yes, Standard Volatility Models

do Provide Accurate Forecasts. International Economic Review, 39(4):885–905, 1998.

T. G. Andersen, T. Bollerslev, F. X. Diebold, i P. Labys. Great Realizations. RISK,

13:105–108, 2000.

T. W. Anderson i D. A. Darling. A Test of Goodness of Fit. Journal of the American

Statistical Association, 49(268):765–769, 1954.

D. Ardia i L. F. Hoogerheide. GARCH models for daily stock returns: Impact of

estimation frequency on Value-at-Risk and Expected Shortfall forecasts. Economics

Letters, 123(2):187–190, 2014.

203



P. Artzner, F. Delbaen, J.-M. Eber, i D. Heath. Coherent Measures of Risk.

Mathematical Finance, 9(3):203–228, 1999.

G. R. Babu. Financial Markets And Institutions. Concept Publishing Company, 2006.

S. Bai, J. Z. Kolter, i V. Koltun. An Empirical Evaluation of Generic Convolutional

and Recurrent Networks for Sequence Modeling. arXiv:1803.01271 [cs], 2018.

D. Bams, G. Blanchard, i T. Lehnert. Volatility measures and Value-at-Risk.

International Journal of Forecasting, 33(4):848–863, 2017.

Basel Committee on Banking Supervision. Basel II: International Convergence of

Capital Measurement and Capital Standards: A Revised Framework. 2005.

Basel Committee on Banking Supervision. Basel III: International regulatory

framework for banks. 2017.

L. Bauwens, M. Lubrano, i J. Richard. Bayesian Inference in Dynamic Econometric

Models. Advanced Texts in Econometrics. OUP Oxford, 2000.

S. Beckers. Standard deviations implied in option prices as predictors of future stock

price variability. Journal of Banking & Finance, 5(3):363–381, 1981.

Y. Bengio. Learning Deep Architectures for AI. Foundations and Trends® in Machine

Learning, 2(1):1–127, 2009.

Y. Bengio, A. Courville, i P. Vincent. Representation Learning: A Review and New

Perspectives. arXiv:1206.5538 [cs], 2014.
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Probabilistic Forecasting for Short-Term Scheduling in Power Markets. IEEE

Transactions on Power Systems, 34(2):1203–1215, 2019.

S. Trück i K. Liang. Modelling and Forecasting Volatility in the Gold Market.

International Journal of Banking and Finance, 2012.

R. S. Tsay. Analysis of Financial Time Series. John Wiley & Sons, Chicago, 2010.





Y. K. Tse i A. K. C. Tsui. A Multivariate GARCH Model with Time-Varying

Correlations. SSRN Scholarly Paper ID 250228, Social Science Research Network,

Rochester, NY, 2000.

A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,

N. Kalchbrenner, A. Senior, i K. Kavukcuoglu. WaveNet: A Generative Model for

Raw Audio. arXiv:1609.03499 [cs], 2016.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, i

I. Polosukhin. Attention Is All You Need. arXiv:1706.03762 [cs.CL], 2017.

C. S. Vui, G. K. Soon, C. K. On, R. Alfred, i P. Anthony. A review of stock market

prediction with Artificial neural network (ANN). W: 2013 IEEE International

Conference on Control System, Computing and Engineering, s. 477–482, 2013.

A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, i K. Lang. Phoneme recognition

using time-delay neural networks. Acoustics, Speech and Signal Processing, IEEE

Transactions on, 37:328–339, 1989.

D. Warde-Farley, I. J. Goodfellow, A. Courville, i Y. Bengio. An empirical analysis of

dropout in piecewise linear networks. arXiv:1312.6197 [cs, stat], 2014.

P. J. Werbos. Generalization of backpropagation with application to a recurrent gas

market model. Neural Networks, 1(4):339–356, 1988.

J. W. Wilder. New Concepts in Technical Trading Systems. Trend Research,

Greensboro, N.C, 1978.

A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, i B. Recht. The Marginal Value of

Adaptive Gradient Methods in Machine Learning. arXiv:1705.08292 [cs, stat], 2018.

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac,

T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma,

Y. Jernite, J. Plu, C. Xu, T. Le Scao, S. Gugger, M. Drame, Q. Lhoest, i A. Rush.

Transformers: State-of-the-Art Natural Language Processing. W: Proceedings of

the 2020 Conference on Empirical Methods in Natural Language Processing: System

Demonstrations, s. 38–45, Online, 2020.

J. Wróblewska i A. Pajor. One-period joint forecasts of Polish inflation, unemployment

and interest rate using Bayesian VEC-MSF models. Central European Journal of

Economic Modelling and Econometrics, 11(1):23–45, 2019.





Y. Xu i R. Goodacre. On Splitting Training and Validation Set: A Comparative

Study of Cross-Validation, Bootstrap and Systematic Sampling for Estimating the

Generalization Performance of Supervised Learning. Journal of Analysis and Testing,

2(3):249–262, 2018.

D. Yang i Q. Zhang. Drift-Independent Volatility Estimation Based on High, Low,

Open, and Close Prices. The Journal of Business, 73(3):477–492, 2000.

J. Yang, Y. Li, X. Chen, J. Cao, i K. Jiang. Deep Learning for Stock Selection Based

on High Frequency Price-Volume Data. arXiv:1911.02502 [cs, q-fin], 2019.

Y. Yao, L. Rosasco, i A. Caponnetto. On Early Stopping in Gradient Descent Learning.

Constructive Approximation, 26(2):289–315, 2007.

J. Yoon, D. Jarrett, i M. van der Schaar. Time-series Generative Adversarial

Networks. W: Advances in Neural Information Processing Systems, volume 32.

Curran Associates, Inc., 2019.

S. Yu i Z. Li. Forecasting Stock Price Index Volatility with LSTM Deep Neural Network.

W: M. Tavana i S. Patnaik (red.), Recent Developments in Data Science and Business

Analytics, Springer Proceedings in Business and Economics, s. 265–272, Cham, 2018.

J.-M. Zakoian. Threshold heteroskedastic models. Journal of Economic Dynamics and

Control, 18(5):931–955, 1994.

Q. Zhang, R. Luo, Y. Yang, i Y. Liu. Benchmarking Deep Sequential Models on

Volatility Predictions for Financial Time Series. arXiv:1811.03711 [cs, q-fin, stat],

2018a.

R. Zhang, C. Huang, W. Zhang, i S. Chen. Multi Factor Stock Selection Model Based

on LSTM. International Journal of Economics and Finance, 10:36, 2018b.

Z. Zhang, L. Ma, Z. Li, i C. Wu. Normalized Direction-preserving Adam.

arXiv:1709.04546 [cs, stat], 2018c.

K. Zhou, W. Y. Wang, T. Hu, i C. H. Wu. Comparison of Time Series Forecasting

Based on Statistical ARIMA Model and LSTM with Attention Mechanism. Journal

of Physics: Conference Series, 1631(1):012141, 2020.

Y. Zhou i R. Chellappa. Computation of optical flow using a neural network. IEEE

1988 International Conference on Neural Networks, 1988.





M. Zolfaghari i S. Gholami. A hybrid approach of adaptive wavelet transform,

long short-term memory and ARIMA-GARCH family models for the stock index

prediction. Expert Systems with Applications, 182:115149, 2021.





Spis rysunków

3.1 Struktura sieci MLP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2 Struktura podstawowej komórki w sieci rekurencyjnej. . . . . . . . . . . 65

3.3 Struktura wielowarstwowych (głębokich) sieci rekurencyjnych. . . . . . 66

3.4 Pełna struktura komórki sieci LSTM. . . . . . . . . . . . . . . . . . . . 67

3.5 Pełna struktura sieci GRU. . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.6 Operacja konwolucji i funkcja aktywacji w sieci CNN. . . . . . . . . . . 72

3.7 Funkcja max pooling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.8 Struktura jednowymiarowej sieci CNN. . . . . . . . . . . . . . . . . . . 73

3.9 Porównanie sieci konwolucyjnych. . . . . . . . . . . . . . . . . . . . . . 74

3.10 Oceny parametrów w klasycznych sieciach neuronowych oraz w sieciach

bayesowskich. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.11 Wizualizacja przebiegu poszczególnych algorytmów w przestrzeni

parametrów ω. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.12 Funkcja wczesnego zatrzymania. . . . . . . . . . . . . . . . . . . . . . . 86

3.13 Podział danych na zbiory uczący, testowy oraz walidacyjny. . . . . . . . 87

3.14 Wizualizacja podziału danych przy zastosowaniu okna rolowanego oraz

okna rozszerzanego. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.15 Przebieg funkcji aktywacji. . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.16 Optymalizacja funkcji straty w zależności o wartości współczynnika

uczenia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.1 Schemat modelu hybrydowego ARMA-GARCH-LSTM. . . . . . . . . . 105

4.2 Model probabilistyczny CNN-SSTD, z czterema neuronami wyjściowymi

zwracającymi wartości parametrów skośnego rozkładu t-Studenta. . . . 110

5.1 Dzienne notowania wybranych indeksów giełdowych w okresie od

3.01.2000 do końca 31.12.2021 roku. . . . . . . . . . . . . . . . . . . . . 114

5.2 Logarytmiczne stopy zwrotu wybranych indeksów giełdowych, wyrażone

w punktach procentowych. . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.3 Kwadraty stóp zwrotu wybranych indeksów giełdowych. . . . . . . . . . 115

228



5.4 Rozkłady wybranych instrumentów finansowych z naniesionym

rozkładem normalnym. . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.5 ACF dla stóp zwrotu poszczególnych indeksów. . . . . . . . . . . . . . 118

5.6 PACF dla stóp zwrotu poszczególnych indeksów. . . . . . . . . . . . . . 118

5.7 ACF dla kwadratów stóp zwrotu. . . . . . . . . . . . . . . . . . . . . . 119

5.8 PACF dla kwadratów stóp zwrotu. . . . . . . . . . . . . . . . . . . . . 120

5.9 Wykresy punktowe dla par poszczególnych indeksów. . . . . . . . . . . 121

5.10 Krzywe kapitałowe dla sieci MLP trenowanych na MSE. . . . . . . . . 132

5.11 Krzywe kapitałowe dla sieci CNN trenowanych na MSE. . . . . . . . . 134

5.12 Krzywe kapitałowe dla sieci LSTM trenowanych na MSE. . . . . . . . . 136

5.13 Krzywe kapitałowe dla sieci LSTM trenowanych na MADL. . . . . . . . 139

5.14 Krzywe kapitałowe dla sieci LSTM trenowanych na MADL —

probieranie danych w czasie rzeczywistym. . . . . . . . . . . . . . . . . 140

5.15 Prognozy zmienności dla poszczególnych aktywów. . . . . . . . . . . . . 144

5.16 Prognozy wartości zagrożonej dla indeksów S&P 500, NIKKEI oraz

DAX, uzyskane za pomocą wybranych modeli klasy GARCH oraz

modeli hybrydowych GARCH-LSTM. . . . . . . . . . . . . . . . . . . . 148

5.17 Prognozy wartości zagrożonej dla indeksów WIG, KOSPI oraz

BOVESPA, uzyskane za pomocą wybranych modeli klasy GARCH

oraz modeli hybrydowych GARCH-LSTM. . . . . . . . . . . . . . . . . 149

5.18 Wykres rozkładów wartości PIT, indeks DAX. . . . . . . . . . . . . . . 152

5.19 Prognozy wartości zagrożonej z wykorzystaniem modeli prognozowania

probabilistycznego dla indeksów S&P 500, NIKKEI oraz DAX. . . . . . 155

5.20 Prognozy wartości zagrożonej z wykorzystaniem modeli prognozowania

probabilistycznego dla indeksów WIG, KOSPI oraz BOVESPA. . . . . 156

A.1 ACF dla wartości bezwzględnych stóp zwrotu . . . . . . . . . . . . . . 181

A.2 PACF dla wartości bezwzględnych stóp zwrotu . . . . . . . . . . . . . . 181

A.3 ACF dla oszacowań zmienności uzyskanych za pomocą estymatora GKYZ182

A.4 PACF dla oszacowań zmienności uzyskanych za pomocą estymatora GKYZ182





Spis tabel

2.1 Miary trafności prognoz punktowych. . . . . . . . . . . . . . . . . . . . 46

2.2 Mierniki oceny strategii inwestycyjnej . . . . . . . . . . . . . . . . . . . 48

3.1 Podstawowe funkcje aktywacji. . . . . . . . . . . . . . . . . . . . . . . . 93

4.1 Wybrane specyfikacje modeli klasy GARCH i oraz użyte typy rozkładów

warunkowych. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.1 Opis statystyczny danych. . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2 Wartości współczynników korelacji Pearsona . . . . . . . . . . . . . . . 121

5.3 Dostrajanie hiperparametrów dla sieci wykorzystywanych

w prognozowaniu punktowym stóp zwrotu. . . . . . . . . . . . . . . . . 126

5.4 Prognozowanie punktowe stóp zwrotu: mierniki błędu dla sieci

trenowanych z wykorzystaniem MSE . . . . . . . . . . . . . . . . . . . 129

5.5 Prognozowanie punktowe stóp zwrotu: wyniki strategii dla sieci MLP

trenowanych na MSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.6 Prognozowanie punktowe stóp zwrotu: wyniki strategii dla sieci CNN

trenowanych na MSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.7 Prognozowanie punktowe stóp zwrotu: wyniki strategii dla sieci LSTM

trenowanych na MSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.8 Prognozowanie punktowe stóp zwrotu: wyniki strategii dla sieci LSTM

trenowanych na MADL . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.9 Prognozowanie punktowe stóp zwrotu: wyniki strategii dla sieci LSTM

trenowanych na MADL — pobieranie danych w czasie rzeczywistym. . 140

5.10 Oceny trafności prognoz zmienności — wartości MSE. . . . . . . . . . . 142

5.11 Współczynniki korelacji Pearsona pomiędzy najlepszymi specyfikacjami

modeli GARCH i GARCH-LSTM dla poszczególnych aktywów . . . . 144

5.12 Procentowe udziały przekroczeń oszacowań VaR(0,05)/VaR(0,01)

w modelach ARMA-GARCH i hybrydowych ARMA-GARCH-LSTM . 146

5.13 Oceny prognoz uzyskanych za pomocą sieciowych modeli prognozowania

probabilistycznego . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

230



5.14 Procentowe udziały przekroczeń oszacowań VaR(0,05)/VaR(0,01)

w modelach prognozowania probabilistycznego. . . . . . . . . . . . . . . 153

6.1 Porównanie modeli punktowych prognoz stóp zwrotu, pod względem

wskaźników oceny strategii inwestycyjnych. . . . . . . . . . . . . . . . . 159

6.2 Zestawienie modeli, indeks S&P 500, najlepsze modele pod względem

MSE i ilości przekroczeń VaR . . . . . . . . . . . . . . . . . . . . . . . 161

6.3 Zestawienie modeli, indeks NIKKEI 225, najlepsze modele pod

względem MSE i ilości przekroczeń VaR . . . . . . . . . . . . . . . . . 162

6.4 Zestawienie modeli, indeks DAX, najlepsze modele pod względem MSE

i ilości przekroczeń VaR . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.5 Zestawienie modeli, indeks WIG, najlepsze modele pod względem MSE

i ilości przekroczeń VaR . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.6 Zestawienie modeli, indeks KOSPI, najlepsze modele pod względem

MSE i ilości przekroczeń VaR . . . . . . . . . . . . . . . . . . . . . . . 165

6.7 Zestawienie modeli, indeks BOVESPA, najlepsze modele pod względem

MSE i ilości przekroczeń VaR . . . . . . . . . . . . . . . . . . . . . . . 166

6.8 Porównanie modeli prognozowania probabilistycznego z modelami klasy

AR-GARCH pod kątem oceny trafności prognoz . . . . . . . . . . . . . 169

6.9 Porównanie modeli prognozowania probabilistycznego z modelami

hybrydowymi oraz GARCH — procentowy udział przekroczeń VaR dla

wszystkich aktywów. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

A.1 Ilość przekroczeń oszacowań VaR(0,05)/VaR(0,01) w modelach ARMA-

GARCH i hybrydowych ARMA-GARCH-LSTM . . . . . . . . . . . . 183

A.2 Prognozy zmienności, indeks S&P500, model GARCH i GARCH LSTM 184

A.3 Prognozy zmienności, indeks S&P500, model EGARCH i EGARCH-LSTM184

A.4 Prognozy zmienności, indeks S&P500, model GJR-GARCH i

GJR-GARCH-LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

A.5 Prognozy zmienności, indeks S&P500, model APARCH i APARCH-LSTM185

A.6 Prognozy zmienności, indeks NIKKEI 225, model GARCH i GARCH-

LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

A.7 Prognozy zmienności, indeks NIKKEI 225, model EGARCH i EGARCH-

LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

A.8 Prognozy zmienności, indeks NIKKEI 225, model GJR-GARCH i GJR-

GARCH-LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

A.9 Prognozy zmienności, indeks NIKKEI 225, model APARCH i APARCH-

LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

A.10 Prognozy zmienności, indeks DAX, model GARCH i GARCH-LSTM . 188





A.11 Prognozy zmienności, indeks DAX, model EGARCH i EGARCH-LSTM 188

A.12 Prognozy zmienności, indeks DAX, model GJR-GARCH i

GJR-GARCH-LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

A.13 Prognozy zmienności, indeks DAX, model APARCH i APARCH-LSTM 189

A.14 Prognozy zmienności, indeks WIG, model GARCH i GARCH-LSTM . 190

A.15 Prognozy zmienności, indeks WIG, model EGARCH i EGARCH-LSTM 190

A.16 Prognozy zmienności, indeks WIG, model GJR-GARCH i

GJR-GARCH-LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

A.17 Prognozy zmienności, indeks WIG, model APARCH i APARCH-LSTM 191

A.18 Prognozy zmienności, indeks KOSPI, model GARCH i GARCH-LSTM 192

A.19 Prognozy zmienności, indeks KOSPI, model EGARCH i EGARCH-LSTM192

A.20 Prognozy zmienności, indeks KOSPI, model GJR-GARCH i

GJR-GARCH-LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

A.21 Prognozy zmienności, indeks KOSPI, model APARCH i APARCH-LSTM193

A.22 Prognozy zmienności, indeks BVP, model GARCH i GARCH-LSTM . . 194

A.23 Prognozy zmienności, indeks BVP, model EGARCH i EGARCH-LSTM 194

A.24 Prognozy zmienności, indeks BVP, model GJR-GARCH i GJR-GARCH-

LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

A.25 Prognozy zmienności, indeks BVP, model APARCH i APARCH-LSTM 195

A.26 Ilość przekroczeń oszacowań VaR(0,05)/VaR(0,01) w sieciowych

modelach prognozowania probabilistycznego . . . . . . . . . . . . . . . 196

A.27 Prognozy probabilistyczne, indeks S&P500, sieci CNN . . . . . . . . . . 197

A.28 Prognozy probabilistyczne, indeks S&P500, sieci LSTM . . . . . . . . . 197

A.29 Prognozy probabilistyczne, indeks NIKKEI, sieci CNN . . . . . . . . . 198

A.30 Prognozy probabilistyczne, indeks NIKKEI, sieci LSTM . . . . . . . . . 198

A.31 Prognozy probabilistyczne, indeks DAX, sieci CNN . . . . . . . . . . . 199

A.32 Prognozy probabilistyczne, indeks DAX, sieci LSTM . . . . . . . . . . 199

A.33 Prognozy probabilistyczne, indeks WIG, sieci CNN . . . . . . . . . . . 200

A.34 Prognozy probabilistyczne, indeks WIG, sieci LSTM . . . . . . . . . . . 200

A.35 Prognozy probabilistyczne, indeks KOSPI, sieci CNN . . . . . . . . . . 201

A.36 Prognozy probabilistyczne, indeks KOSPI, sieci LSTM . . . . . . . . . 201

A.37 Prognozy probabilistyczne, indeks BOVESPA, sieci CNN . . . . . . . . 202

A.38 Prognozy probabilistyczne, indeks BOVESPA, sieci LSTM . . . . . . . 202




	Wstep
	Wprowadzenie do problematyki pracy
	Cele i hipotezy badawcze
	Metodyka badan i zródła informacji
	Streszczenie zawartosci poszczególnych rozdziałów

	Podstawowe podejscia do predykcji finansowych szeregów czasowych w badaniach naukowych i wdrozeniach praktycznych
	Rynki finansowe i ich prognozowanie
	Rynki i aktywa finansowe
	Prognozowanie instrumentów finansowych

	Stan badan w nurcie ekonometrii finansowej
	Stan badan w zakresie sieci neuronowych

	Ekonometryczne modelowanie i prognozowanie jednowymiarowych finansowych szeregów czasowych (z wykorzystaniem modeli klasy ARMA-GARCH)
	Procesy stochastyczne w ekonometrycznej analizie szeregów czasowych
	Empiryczne własnosci finansowych szeregów czasowych
	Szeregi czasowe cen
	Proste i logarytmiczne Stopy zwrotu – ich definicje i własnosci
	Fakty empiryczne

	Zmiennosc finansowych szeregów czasowych
	Zmiennosc historyczna i zrealizowana
	Estymatory zmiennosci bazujace na zakresie cen
	Transformacje estymatorów zmiennosci
	Zmiennosc implikowana

	Modele klasy ARMA-GARCH
	Definicja procesu ARMA-GARCH 
	Procesy ARMA
	Opis struktury GARCH
	Uogólnienia i modyfikacje podstawowej specyfikacji procesu GARCH
	Estymacja modeli klasy ARMA-GARCH
	Alternatywne specyfikacje modeli zmiennosci
	Wielowymiarowe uogólnienia modeli ARMA-GARCH i ARMA-SV-GARCH

	Prognozowanie stóp zwrotu i ich zmiennosci w ramach modeli klasy ARMA-GARCH
	Predykcja punktowa 
	Mierniki trafnosci prognoz punktowych
	Ocena trafnosci predykcji punktowej stóp zwrotu w kontekscie strategii inwestycyjnych
	Wyznaczanie i ocena trafnosci prognoz probabilistycznych

	Ocena zdolnosci predyktywnych modeli w kontekscie szacowania ryzyka kapitałowego
	Wartosc zagrozona - VaR
	Oczekiwany niedobór - ES
	Testy weryfikacyjne modeli ryzyka


	Sieci neuronowe uczenia głebokiego – koncepcja i wykorzystanie w budowie modeli predykcyjnych
	Wybrane architektury sieci neuronowych
	Wielowarstwowe sieci MLP jako podstawowa forma sieci neuronowych
	Rekurencyjne sieci LSTM i GRU
	Sieci konwolucyjne
	Inne typy sieci głebokich

	Podstawowe zagadnienia zwiazane z uczeniem sieci
	Sposoby uczenia sieci neuronowych
	Algorytmy oparte na metodzie gradientu
	Generalizacja i regularyzacja
	Podział zbioru danych w procesie uczenia i testowania sieci 
	Przygotowanie danych

	Dostrajanie hiperparametrów sieci
	Liczba warstw i neuronów sieci
	Optymalizatory i inicjalizatory
	Funkcje aktywacji
	Pozostałe hiperparametry
	Automatyzacja procesu dostrajania

	Sieci uczenia głebokiego w prognozowaniu szeregów czasowych

	Predykcyjne modele hybrydowe łaczace metody ekonometryczne i techniki uczenia głebokiego
	Przeglad i analiza mozliwosci predykcyjnych modeli hybrydowych
	Propozycja nowych modeli
	Hybrydowy model punktowych prognoz zmiennosci
	Model prognoz probabilistycznych


	Empiryczna ewaluacja modeli predykcyjnych
	Charakterystyka analizowanych zbiorów danych
	Budowa oprogramowania i algorytmów testujacych
	Optymalizacja hiperparametrów modeli sieciowych
	Prognozowanie punktowe stóp zwrotu
	Wyniki dla strategii wykorzystujacej sieci MLP
	Wyniki dla strategii wykorzystujacej sieci CNN
	Wyniki dla strategii wykorzystujacej sieci LSTM

	Prognozowanie zmiennosci i ryzyka
	Ocena trafnosci prognoz punkowych zmiennosci
	Ocena trafnosci prognoz ryzyka uzyskanych przy pomocy modeli hybrydowych

	Prognozowanie rozkładów prawdopodobienstw
	Ocena trafnosci prognoz probabilistycznych
	Ocena trafnosci prognoz ryzyka uzyskanych przy pomocy modeli prognozowania probabilistycznego


	Szczegółowa analiza porównawcza wyników empirycznych uzyskanych za pomoca wybranych modeli
	Porównanie uzyskanych wyników
	Modele punktowych prognoz stóp zwrotu
	Modele hybrydowe punktowych prognoz zmiennosci
	Modele prognozowania probabilistycznego

	Podsumowanie wyników
	Realizacja celów badawczych
	Odniesienie do hipotez badawczych

	Zalety i ograniczenia wynikajace ze stosowania metod uczenia głebokiego
	Proponowane kierunki dalszych prac badawczych

	Zakonczenie
	Aneks
	Bibliografia
	Spis rysunków
	Spis tabel

