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Wstęp

Różnorodność i ewolucja systemu gospodarczego są pojęciami nieodłącznie związa-

nymi: zmiany ewolucyjne, które zachodzą w pewnym systemie gospodarczym, mogą wywoły-

wać wzrost lub spadek jego różnorodności; z drugiej strony, to jak różnorodny jest obserwowany

system, może wpływać na rodzaj zachodzących w nim zmian. Analiza ewolucji dowolnego sys-

temu powinna uwzględniać kontekst towarzyszących jej zmian różnorodności (por. Witt 1996).

Dotyczy to również systemu gospodarczego.

Malawski (1999) zwraca uwagę, że należy odróżnić obiekt poznania nauki, który jest

umiejscowionym w realnym świecie fragmentem obiektywnej rzeczywistości, od przedmiotu

badania, będącego intencjonalnym tworem badacza, wyodrębnionym przez niego konceptual-

nie, jako pewne odwzorowanie fragmentu obiektywnego świata i analizowanym logicznie bądź

empirycznie. W rozprawie obiektem poznania jest gospodarka (system gospodarczy), rozumia-

na jako „całość mechanizmów i warunków działania podmiotów gospodarczych związanych

z wytwarzaniem i podziałem dóbr i usług” (por. Słownik języka polskiego). Przedmiot bada-

nia zaś stanowi pewien model gospodarki, który nazywa się ekonomią. Ekonomia jako system

jest układem elementów, który ma określoną strukturę i którego elementy pozostają we wza-

jemnych relacjach ze sobą i ze swym otoczeniem (por. Malawski 1999). Tak rozumiany system

ekonomiczny ma strukturę hierarchiczną (ibid.). Ekonomia składa się z dwóch podsystemów

ekonomicznych: systemu produkcji i systemu konsumpcji. W rozprawie analizuje się ewolucję

systemu ekonomicznego, rozumianą jako proces przeobrażeń tego systemu, który zachodzi pod

wpływem czynników wewnętrznych i jest możliwy do zaobserwowania w czasie.

Twórcą ewolucyjnego podejścia w ekonomii jest Joseph A. Schumpeter, który jako

pierwszy przedstawił koncepcję rozwoju gospodarczego wywoływanego innowacjami (Schum-

peter 1934). Choć w badaniach ekonomicznych, inspirowanych myślą Schumpetera, pojęcie róż-
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norodności jest obecne (zob. np. Silverberg et al. 1988; Metcalfe 1994; Ayres 1994; Safarzyńska,

van den Bergh 2010; Saviotti et al. 2020; Almudi, Fatás-Villafranca 2021), to brakuje w nich

precyzyjnej definicji różnorodności systemu gospodarczego oraz sposobu jej wyznaczania. Co

więcej, nawet dla abstrakcyjnego zbioru obiektów stosuje się różne definicje jego różnorodno-

ści (por. np. Stirling 2007; Gravel 2008; Nehring, Puppe 2009). Przyjmuje się zazwyczaj, że

dla zbioru, który składa się ze skończonej liczby elementów można zdefiniować funkcję różno-

rodności, określoną na rodzinie jego podzbiorów (zob. np. Gravel 2008). W roku 2002, Klaus

Nehring i Clemens Puppe zaproponowali w pracy „A theory of diversity” model różnorodności

skończonego zbioru obiektów, bazujący na pojęciu atrybutu, rozumianego jako podzbiór ele-

mentów posiadających określone własności (Nehring, Puppe 2002). Ten sposób definiowania

różnorodności został po raz pierwszy zastosowany do zdefiniowania różnorodności technolo-

gicznej w modelu ekonomicznym w pracy (Pliś 2020). Jednak wydaje się, że naturalne pytanie

o istotę związku pomiędzy ewolucją systemu gospodarczego generowaną innowacjami a różno-

rodnością tego systemu nie uzyskało jeszcze pełnej odpowiedzi. Stąd badania, których podsu-

mowanie stanowi niniejsza rozprawa, miały dwa podstawowe cele, którymi były:

I. Uogólnienie definicji różnorodności zbioru zaproponowanej przez Nehringa i Puppego

(2002) na różnorodność systemu ekonomicznego.

II. Określenie wzajemnych zależności pomiędzy zmianą różnorodności systemu ekonomicz-

nego a jego ewolucją.

W trakcie badań poszukiwano odpowiedzi na dwa pytania dotyczące wzajemnego wpływu ewo-

lucji systemu gospodarczego i zmian w jego różnorodności:

1. Jak w toku ewolucji gospodarki zmienia się jej różnorodność?

2. Jak zmiana różnorodności gospodarki wpływa na jej ewolucję?

Odpowiadając na powyższe pytania, w niniejszej rozprawie doktorskiej poddano weryfikacji

następujące hipotezy badawcze:

H1. Wprowadzenie innowacji jest warunkiem koniecznym i wystarczającym zwiększenia róż-

norodności systemu ekonomicznego.

H2. Zmiana technologiczna, która polega na wycofaniu z użycia pewnej technologii, zmniejsza

różnorodność systemu ekonomicznego.
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H3. Im większy przyrost różnorodności w systemie ekonomicznym powoduje wprowadzenie

innowacji, tym większa skłonność producentów do jej wprowadzenia.

Rozprawa ma charakter teoretyczny, a podstawową metodą badawczą w niej stosowa-

ną jest metoda aksjomatyczna (zob. np. Malawski 1999). Pojęcie różnorodności systemu ekono-

micznego zostało w rozprawie sformalizowane przy użyciu definicji funkcji różnorodności zbio-

ru zaproponowanej przez Nehringa i Puppego (2002), a następnie zaimplementowane w dwóch

różnych modelach gospodarki, w których rozważano skończoną liczbę towarów.

Pierwszy z modeli czerpie inspirację z teorii równowagi ogólnej (por. Arrow, Debreu

1954), a drugi wpisuje się w podejście znane z ewolucyjnej teorii gier (zob. Sandholm 2010b).

W pierwszym modelu zbiory producentów i konsumentów są skończone, a ewolucję ekonomii

rozważa się w czasie dyskretnym, analizując kolejne transformacje systemów: produkcji i kon-

sumpcji pod kątem wprowadzanych innowacji. Do analizy roli różnorodności w prezentowanym

modelu, użyto w rozprawie narzędzi teorii projektowania mechanizmów ekonomicznych (zob.

np. Hurwicz 1986). W drugim z analizowanych w rozprawie modeli, rozważano w czasie cią-

głym zmiany zachodzące w systemie ekonomicznym z nieskończoną ilością podmiotów, a za-

chodzącą konkurencję schumpeterowską przedstawiono w postaci gry populacyjnej, w której

wypłatach został uwzględniony wzrost różnorodności związany z wprowadzaniem innowacji.

Wyznaczając ewolucyjnie stabilne stany populacji (zob. Thomas 1984), zbadano jak wzrost róż-

norodności związany z wprowadzaniem innowacji zmienia strukturę systemu ekonomicznego,

a w szczególności, jak wpływa na odsetek producentów, którzy decydują się na wprowadze-

nie innowacji. Zdefiniowanie i analiza dwóch różnych modeli, pozwoliły na wyjaśnienie w jaki

sposób powstaje nowość w badanym obszarze oraz jakie są skutki jej pojawienia się (por. Witt

1999). W żadnym z modeli analizowanych w rozprawie nie zakładano ani pełnego dostępu do

informacji, ani racjonalności działań podmiotów gospodarczych (por. Simon 1955). W obu mo-

delach procesy zachodzące w gospodarce badano na podstawie specyfiki zachowań uczestników

rynku. Za najbardziej metodologicznie właściwe do teoretycznej analizy procesów makroeko-

nomicznych, uznał tego rodzaju modele Weintraub (1979) w książce pt. „Microfoundations: the

compatibility of microeconomics and macroeconomics” (zob. też Roth, Erev 1995; Erev, Roth

1998).

W pierwszym rozdziale rozprawy omówiono genezę pojęcia różnorodności w bada-

niach ekonomicznych, scharakteryzowano często używane koncepcje różnorodności abstrakcyj-
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nego zbioru obiektów, a także wskazano, gdzie pojęcie różnorodności jest stosowane we współ-

czesnej analizie ekonomicznej.

Badania opisane w rozdziale drugim służyły realizacji pierwszego z celów rozpra-

wy, czyli uogólnieniu definicji różnorodności zbioru na różnorodność systemu ekonomicznego.

W rozdziale tym przedstawiono pojęcie funkcji różnorodności określonej dla podzbiorów zbioru

skończonego, zaproponowane przez Nehringa i Puppego (2002) oraz zaprezentowano rozważa-

ny w czasie dyskretnym model ewolucji systemu gospodarczego, w którym działa skończona

liczba producentów i konsumentów, których w rozprawie nazywa się podmiotami ekonomicz-

nymi, albo krótko podmiotami. Główne wyniki tego rozdziału obejmują: zdefiniowanie funkcji

różnorodności w przestrzeni towarów oraz określenie definicji różnorodności systemu ekono-

micznego ze skończoną liczba podmiotów. Wyniki zaprezentowane w rozdziale drugim są roz-

szerzeniem wyników z pracy (Pliś 2020).

W celu odpowiedzi na pierwsze z pytań badawczych stawianych w rozprawie, w trze-

cim rozdziale użyto, wprowadzonej wcześniej, definicji różnorodności systemu ekonomicznego

do analizy zmian ewolucyjnych w systemie ekonomicznym ze skończoną liczbą podmiotów.

Zmiany te analizowano w czasie dyskretnym, jak to zostało opisane w rozdziale drugim. W roz-

dziale trzecim zweryfikowano hipotezy badawcze H1 oraz H2, mówiące o wpływie wprowadza-

nych innowacji oraz zachodzącej twórczej destrukcji na różnorodność systemu ekonomicznego.

Użyto w tym celu narzędzi teorii mnogości, topologii oraz twierdzeń analizy matematycznej.

Wyniki otrzymane w tym rozdziale zostały w dużej części opublikowane w pracach (Pliś 2020)

oraz (Lipieta, Pliś 2022).

Ostatni rozdział rozprawy opisuje badania mające na celu uzyskanie odpowiedzi na

drugie z pytań badawczych. Zawiera on autorski model konkurencji schumpeterowskiej. W roz-

dziale tym, posługując się narzędziami układów dynamicznych oraz teorii gier, poddano wery-

fikacji ostatnią z hipotez badawczych, dotyczącą wpływu przyrostu różnorodności w systemie

ekonomicznym spowodowanego wprowadzeniem innowacji na skłonność producentów do jej

wprowadzenia.
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Rozdział 1

Geneza pojęcia różnorodności jako
elementu modelu ekonomicznego

Różnorodność jest przedmiotem zainteresowania wielu dziedzin nauki. Pojęcie róż-

norodności jest obecne w literaturze ekonomicznej od końca XVIII wieku. Już u Adama Smi-

tha (1776) różnorodność form pracy (związana z jej podziałem i specjalizacją) stanowiła jeden

z czynników rosnącej wydajności pracy oraz ogólnego wzrostu gospodarczego w warunkach

społecznej harmonii (Malawski, Pliś 2007). Od końca XX wieku pojęcie różnorodności jest

intensywniej obecne w modelach ekonomicznych. Wykorzystuje się je między innymi do okre-

ślenia stopnia swobody wyboru podmiotu gospodarczego (Pattanaik, Xu 2000), rozważa jako

jedną z przyczyn wzrostu gospodarczego (Pyka, Saviotti 2009), a w przypadku różnorodności

biologicznej – stosuje na przykład do oceny usług zapewnianych przez środowisko naturalne

(Bartkowski 2017). Najczęściej jednak pojęcie różnorodności pojawia się w związku z proce-

sem ewolucyjnym zachodzącym w ekosystemie (więcej w tym temacie można znaleźć w pracy

(Magurran 2013)) lub w systemie ekonomicznym. W tym rozdziale podjęta została próba przed-

stawienia pojęcia różnorodności jako kategorii ekonomicznej: jej genezy, wybranych sposobów

jej definiowania oraz występowania w wybranych modelach ewolucji gospodarki.

1.1. Biologiczne i ekonomiczne podstawy definiowania różno-

rodności

Różnorodność istniejącego świata zachwycała ludzi od zawsze, wywołując w nich

zdumienie i lęk (zob. np. Biblia Jerozolimska 2006, Psalm 8). Już w starożytności człowiek
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poszukiwał elementów wspólnych w obserwowanych obiektach, kategoryzował te obiekty i sys-

tematyzował, a dostrzegając istniejące pomiędzy nimi różnice, pytał o ich przyczynę i konse-

kwencje ich istnienia. Idea zróżnicowania bytu leżała u podstaw teorii powszechnej zmienności

przyrody Heraklita (por. np. Tatarkiewicz 1970), a w czasach nowożytnych była obecna m.in.

w myśli Montaigne’a, w triadycznej koncepcji rozwoju świata Hegla, czy też w dialektyce Mark-

sa i Engelsa (ibid.). Gdy z czasem z filozofii zaczęły się wyodrębniać nauki szczegółowe, pojęcie

różnorodności stało się obiektem ich zainteresowania i systematycznego badania w ich ramach.

W drugiej połowie XX wieku w naukach przyrodniczych zaczął funkcjonować ter-

min „różnorodność biologiczna" (biological diversity), który obecnie jest stosowany zamiennie

z określeniem bioróżnorodność (biodiversity). Różnorodność biologiczna jest złożoną i abstrak-

cyjną koncepcją ekologiczną (Bartkowski et al. 2015). Wzrost bioróżnorodności jest jedną z pod-

stawowych cech ewolucji biologicznej (Ayres 1994). Bada się m.in. bioróżnorodność genetycz-

ną, gatunkową, filogenetyczną, taksonomiczną czy funkcjonalną (zob. Bartkowski et al. 2015).

Chociaż całkowita informacja o bioróżnorodności danego systemu ekologicznego może być wy-

rażona tylko przez jego pełny opis, to posługiwanie się pewną wielkością liczbową określającą

różnorodność ekosystemu ma swoje niewątpliwe zalety: pozwala porównywać systemy ze sobą

oraz daje podstawy ilościowe obserwacji zachodzących w nich zmian. Istnieje wiele wskaźników

bioróżnorodności (ibid.), konstruowanych dla różnych poziomów różnorodności biologicznej:

wewnątrzgatunkowego, międzygatunkowego oraz między ekosystemami. Różnorodność biolo-

giczną w „Konwencji o różnorodności biologicznej” ratyfikowanej przez Rzeczpospolitą Polską

definiuje się jako:

„zróżnicowanie wszystkich żywych organizmów pochodzących, inter alia, z eko-

systemów lądowych, morskich i innych wodnych ekosystemów oraz zespołów eko-

logicznych, których są one częścią. Dotyczy to różnorodności w obrębie gatunku,

pomiędzy gatunkami oraz ekosystemami” (Dz.U. 2002 nr 184 poz. 1533).

Niniejsza praca skupia się na badaniu różnorodności systemu ekonomicznego. W tym

kontekście, różnicowanie się społeczeństwa w „Badaniach nad naturą i przyczynami bogactwa

narodów” opisywał Adam Smith (1776), który stwierdził, że naturalna skłonność człowieka do

wymiany i handlu stanowi źródło zachodzącego w społeczeństwie podziału pracy:

„Bez skłonności do wymiany i handlu, każdy człowiek musiałby sam starać się dla
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siebie o wszystkie potrzeby i wygody życiowe. Wszyscy umieliby spełniać takie

same obowiązki i wykonywać jednakową pracę, i nie mogłaby powstać ta różnorod-

ność zajęć, która jedynie sprowadziła może tak wielką różnorodność uzdolnień. I jak

powyższa skłonność stwarza różnorodność uzdolnień, [...] tak też ta sama skłonność

czyni tę różnorodność użyteczną. [...] różne wytwory odnośnych uzdolnień [...] sta-

ją się, rzec można, wspólnym zasobem, z którego każdy człowiek może nabyć tę

część wytworu uzdolnień innych ludzi, której potrzebuje” (Smith 1776, tłum. Ein-

feld, Wolff 1954).

Pozytywny wpływ różnorodności społeczeństwa na dobrobyt społeczny nie jest jednak zdaniem

Smitha (1776) jedynie związany z podziałem pracy, ale również z „wynalazczością” społeczeń-

stwa, która „jest w stanie kojarzyć ze sobą siły najodleglejszych i najróżnorodniejszych rze-

czy” (ibid.), doprowadzając do powstawania nowych rozwiązań technologicznych. Podsumo-

wując myśl Smitha, można zauważyć, że dywersyfikacja systemów gospodarczych, która miała

miejsce w ciągu dziejów ludzkości, odbywała się poprzez zmiany dwóch rodzajów: po pierw-

sze przez podział pracy, po drugie przez tworzenie nowych technologii, które dawały początek

nowym procesom produkcyjnym i nowym towarom (por. Saviotti et al. 2020).

Myśl Adama Smitha dotycząca wpływu „wynalazczości” na zmiany zachodzące w spo-

łeczeństwie znalazła swoją kontynuację w pracach Josepha A. Schumpetera (1934; 1942). Ten

austriacki ekonomista zdefiniował proces prowadzący do powstania określonego produktu, ja-

ko ustaloną kombinację środków produkcyjnych, którymi są dostępne materiały oraz możliwe

działania („to produce means to combine the things and forces within our reach”) (por. Schum-

peter 1934). Zdaniem Schumpetera rozwój ekonomiczny (economic development) jest wynikiem

wykorzystania w nowy sposób istniejących zasobów środków produkcyjnych systemu gospodar-

czego (ibid.). Zachodzące w ten sposób innowacje, polegają na (Schumpeter 1934, por. Malawski

1999):

• wprowadzeniu nowego towaru, z którym konsumenci nie byli jeszcze zaznajomieni lub też

wprowadzenie nowej jakości towaru;

• wprowadzeniu nowej metody produkcji, to znaczy takiej, która nie została jeszcze spraw-

dzona przez doświadczenie w danej gałęzi przemysłu;

• otwarciu nowego rynku, to znaczy rynku, na którym dana gałąź produkcji nie była jeszcze
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obecna, niezależnie od tego, czy rynek ten istniał wcześniej, czy nie;

• zdobyciu nowego źródła dostaw surowców lub półfabrykatów, niezależnie od tego, czy źró-

dło to już istniało, czy też należało je najpierw stworzyć;

• wprowadzeniu nowej organizacji branży przemysłowej, np. ustanowieniu lub przełamaniu

monopolu.

To tworzenie nowości (novelty) jest podstawowym czynnikiem ewolucji każdego systemu, a zdol-

ność do tworzenia i rozpowszechniania nowości powoduje wytworzenie różnorodności form i za-

chowań w obrębie tego systemu (Witt 1999). O ile w biologii nowość polega na rekombinacji

i losowej mutacji genów w puli genowej populacji, o tyle w dziedzinie ekonomii

„Tworzenie nowości, zidentyfikowane [...] jako kluczowy element endogenicznej,

ewolucyjnej zmiany, może [..] być traktowane jako istotny wyraz ludzkiej wolnej

woli” (Witt 1999, tłum. własne).

Nowość, czyli innowacja powstaje zatem wewnątrz systemu gospodarczego poprzez twórcze

działanie przedsiębiorcy (entepreneur). O ile analizowany przez Adama Smitha (1776) podział

pracy we współczesnym języku nazwać można innowacją organizacyjną, to opisywana przez

niego „wynalazczość” nosi emblemat innowacji technologicznej (Saviotti et al. 2020). Endoge-

niczna zmiana związana z tworzeniem, a następnie rozprzestrzenianiem (dissemination) inno-

wacji, zmienia postać systemu gospodarczego, a zachodzące w jej wyniku podział i specjalizacja

przemysłu powoduje wzrost gospodarczy (por. Young 1928).

W systemie ekonomicznym, schumpeterowski przedsiębiorca, przez poszukiwanie

rozwiązań dotychczas nieznanych, przez łączenie dostępnych materiałów i działań w nowy spo-

sób, staje się twórcą i zmienia różnorodność gospodarczą.

1.2. Różnorodność w ujęciu matematycznym

Scott E. Page w książce pt. „Diversity and complexity” (Page 2011) zauważa, że róż-

norodność jest własnością, która charakteryzuje złożony (complex) system, którego składowe

wchodzą ze sobą w interakcje i wzajemnie na siebie wpływają. Miara różnorodności złożonego
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systemu wymaga ustalenia co dokładnie się mierzy i porównuje, ponieważ ta sama liczba wy-

znaczająca różnorodność dwóch różnych systemów nie gwarantuje istnienia między nimi żadne-

go podobieństwa. Page (ibid.) rozróżnia trzy poziomy na których można mierzyć różnorodność

systemu. Może ona dotyczyć:

• różnic w obrębie danego typu obiektów, czyli zmienności w obrębie pewnej cechy, która

to zmienność powoduje, że poszczególne obiekty danego typu różnią się między sobą;

• różnic pomiędzy rodzajami obiektów, które są związane z ich naturą lub funkcją;

• różnic w składzie badanej grupy obiektów, które dotyczą tego jakie elementy i w jakich

proporcjach tworzą daną strukturę.

U podstaw definiowania różnorodności systemu leży pojęcie różnorodności zbioru.

Istnieją dwa główne podejścia do definiowania różnorodności abstrakcyjnego zbioru obiektów:

jedno z nich opiera się na heterogeniczności, czyli niejednorodności elementów zbioru, drugie

jest podejściem ontologicznym, które wymaga spojrzenia na zbiór jako na fragment większej

całości (Nehring, Puppe 2002). Nehring i Puppe (2002) tłumaczą wprowadzone rozróżnienie

pomiędzy heterogenicznością a różnorodnością zbioru poprzez różnice jakie zachodzą w od-

powiedzi na pytanie o to, jak może zmienić się wartość heterogeniczności, albo różnorodności

zbioru, po dołączeniu do niego kolejnego elementu. Dodanie kolejnego elementu do zbioru mo-

że obniżyć heterogeniczność poprzez ujednolicenie elementów zbioru, natomiast różnorodność

zbioru rozumiana ontologicznie nie może się w ten sposób zmniejszyć, a co najwyżej zwiększyć,

ponieważ dodatkowy element może wnieść do zbioru nową jakość. Heterogeniczność znalazła

głównie zastosowanie w ekologii jako miara bioróżnorodności, natomiast podejście ontologicz-

ne jest zazwyczaj stosowane w ekonomii (por. np. Pattanaik, Xu 2000; Bavetta, Del Seta 2001;

Lipieta, Pliś 2022). Przegląd różnych koncepcji wyznaczania różnorodności zbioru z uwzględ-

nieniem podziału na różnorodność ontologiczną i heterogeniczność znaleźć można m. in. w pra-

cach: Gravela (2008), Nehringa i Puppego (2009) oraz Baumgärtnera (2004). W niniejszej roz-

prawie sformułowanie „różnorodność zbioru” będzie zarezerwowane dla różnorodności rozu-

mianej ontologicznie. Poniżej przedstawione zostały wybrane, istotne dla rozprawy, podejścia

do definiowania różnorodności i heterogeniczności zbioru.
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1.2.1. Wybrane podejścia do wyznaczania różnorodności zbioru

Niech X będzie niepustym i skończonym zbiorem, a 2X := {D : D ⊂ X} niech

oznacza rodzinę jego podzbiorów.

Pierwsza z obecnych w literaturze propozycji definiowania różnorodności zbioru skoń-

czonegoX , opiera się na podobieństwach istniejących pomiędzy jego elementami. Bavetta i Del

Seta (2001) określili relację podobieństwa S ⊂ X × X jako relację równoważności (zob. np.

Kuratowski 1962) i na jej bazie zdefiniowali różnorodność dowolnego podzbioruD ⊂ X ozna-

czoną przez ν(D), jako liczbę klas równoważności relacji S w zbiorze D, tzn. jako liczbę

ν(D) := #{[x] ⊂ X : [x] ∩D ̸= ∅}, (1.1)

gdzie zbiór [x] stanowi klasę równoważności elementu x ∈ X . Wówczas funkcja różnorodno-

ści ν : 2X → [0,+∞), każdemu podzbiorowi zbioru X przypisuje wartość określoną wzorem

(1.1). Pattanaik i Xu (2000) zaproponowali podobne, choć bardziej ogólne, podejście do porów-

nywania podzbiorów pod kątem ich różnorodności, Bervoets i Gravel (2007) podjęli próbę udo-

skonalenia tego podejścia przez uwzględnienie relacji zachodzącej pomiędzy parami obiektów

zbioru X , natomiast Gravel (2008) omówił własności jakie musi spełniać relacja porządkująca

podzbiory zbioruX ze względu na ich rosnącą różnorodność tak, by istniała zadawana przez nią

funkcja różnorodności. Różnorodność definiowania na bazie podobieństw pomiędzy elementami

zbioru znajduje zastosowanie m. in. do określania swobody wyboru podmiotów gospodarczych

(zob. np. Bavetta, Del Seta 2001)

Alternatywnie do porządkowania podzbiorów danego zbioru ze względu na różno-

rodność wyznaczaną przez podobieństwa istniejące między jego elementami, w literaturze eko-

nomicznej funkcjonuje podejście, w którym bierze się pod uwagę ilościowe różnice zachodzące

pomiędzy elementami skończonego zbioruX . Martin Weitzmann (1992; 1998) sformułował na-

stępujący problem, zwany w literaturze problemem Noego (zob. Weitzman 1998): Jeśli przyjmie

się, że arka Noego może pomieścić n par zwierząt różnych gatunków i w arce znajduje się już

ustalone n−1 par zwierząt, to mając wybór pomiędzy dwoma gatunkami, którego gatunku parę

powinien Noe wprowadzić do arki? Odpowiedź na to pytanie, według Weitzmana, zależy od

krańcowej różnorodności każdego z gatunków w stosunku do zbioru gatunkówD znajdujących

się już w arce. Mianowicie Noe powinien wprowadzić do swojej arki ten gatunek, którego różno-
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rodność krańcowa jest większa. Weitzman (1998) definiuje różnorodność krańcową dowolnego

podzbioru D zbioru skończonego X dla ustalonego elementu x ∈ X jako wartość wyrażenia

ν(D ∪ {x})− ν(D) = min
y∈D
d(x, y), (1.2)

gdzie d(x, y) określa wartość różnicy pomiędzy elementami x, y ∈ X zadaną przez wartość

pewnej funkcji d : X ×X → [0,+∞) takiej, że d(x, x) = 0 oraz d(x, y) = d(y, x) dla wszyst-

kich x, y ∈ X . W oparciu o rozwiązanie problemu Noego, Weitzman (1998) zaproponował

rekurencyjny sposób wyznaczania różnorodności dowolnego podzbioru zbioru skończonego.

Podejście Weitzmana (1992; 1998), które zakłada precyzyjną wiedzę o ilościowych różnicach

pomiędzy poszczególnymi elementami zbioru, znalazło zastosowanie m. in. w biologii, gdzie

jest wykorzystywane do badania różnorodności filogenetycznej gatunków (zob. np. Bartkow-

ski 2017; Gerber et al. 2018). W tym przypadku, różnica między dwoma gatunkami jest równa

łącznej odległości każdego z gatunków od ich ostatniego wspólnego przodka. Ogólny problem

dotyczący skonstruowania odpowiedniej funkcji różnorodności na podstawie różnic pomiędzy

elementami zbioru ukazany został w szerszej perspektywie w pracy (van Hees 2004). Teore-

tyczne podstawy i formalizacja podejścia Weitzmana zostały omówione w pracy (Bossert et al.

2003).

Oba przedstawione powyżej podejścia do wyznaczania różnorodności zbioru: pierw-

sze – oparte na podobieństwach oraz drugie – inkorporujące różnice pomiędzy elementami zbio-

ru, zostały połączone w jedno przez Klausa Nehringa i Clemensa Puppe w ich pracy pt. „A theory

of diversity”. W tej pracy, opublikowanej w 2002 r., autorzy przedstawili oryginalny „wieloatry-

butowy” model różnorodności dla skończonego zbioru obiektów. Nehring i Puppe (2002) oparli

swoją teorię różnorodności na pojęciu atrybutu. Atrybut stanowi pewną cechę elementów zbioru

rozumianą ekstensywnie (Malawski, Pliś 2007), tzn. atrybut jest utożsamiony z podzbiorem ele-

mentów, które go posiadają. Gdy każdy atrybut ma przypisana określoną wagę, to różnorodność

dowolnego podzbioru zbioru skończonego D ⊂ X wyznaczyć można przez zsumowanie wag

wszystkich tych atrybutów, które są w posiadaniu elementów zbioru D (Nehring, Puppe 2002).

Nehring i Puppe (2002) rozwinęli swoją koncepcję różnorodności w serii artykułów (Nehring,

Puppe 2003; 2004a; 2004b; 2009). Wykorzystano ją m. in. do modelowania komplementarności

kosztów dla spółek joint venture (Nehring, Puppe 2004a), do badania swobody wyboru kon-
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sumentów (Sher 2018; 2020), jak również do porównywania preferencji różnych grup społecz-

nych (Ammann, Puppe 2024). Koncepcja różnorodności zaprezentowana przez Nehringa i Puppe

(2002) zostanie dokładnie omówiona, a następnie zastosowana do wyznaczania różnorodności

systemu ekonomicznego w niniejszej rozprawie.

1.2.2. Wybrane wskaźniki heterogeniczności zbioru

W celu jasnego rozgraniczenia pojęć: różnorodność i heterogeniczność, z których

pierwsze jest przedmiotem niniejszej pracy, a drugie ma ugruntowaną pozycję w naukach bio-

logicznych, poniżej omówiono wybrane sposoby wyznaczania heterogeniczności zbioru.

W literaturze, zwłaszcza dotyczącej bioróżnorodności, rozpatruje się wiele wskaź-

ników, których konstrukcja oparta jest zazwyczaj na względnej częstotliwości występowania

obiektów w danym zbiorze. W kontekście bioróżnorodności mogą to być wskaźniki bazujące

na liczebności gatunkowej w danym ekosystemie, a w ekonomii – na liczebności różnych grup,

które zamieszkują dany obszar (zob. np. Abascal, Baldassarri 2020). Do wyznaczania hetero-

geniczności często stosowane są wskaźniki oparte na pojęciu entropii (Simpson 1949; Shannon

1948; Rényi 1961; Hirschman 1964; Havrda, Charvat 1968; Berger, Parker 1970; Nayak1985;

Tsallis 1988; Falniowski 2020; Tomezsko et al. 2020).

Niech D ⊂ X będzie zbiorem o liczebności n = 1, 2, ..., którego elementy można

podzielić na l grup. Dla wygody przyjmuje się, że zbiór D jest zbiorem organizmów, a liczba l

(l ¬ n) określa ilość gatunków występujących w zbiorze D. Zakłada się przy tym, że osobniki

przynależące do tego samego gatunku są nierozróżnialne. Liczbę l nazywa się bogactwem ga-

tunkowym zbioru D (Magurran 2013). Jeśli ki > 0 oznacza liczebność gatunku i w zbiorze D

(tzn. ki < n oraz k1+ ...+kl = n), to wektor q = (q1, ..., ql), gdzie qi = kin nazywa się wektorem

względnej liczebności gatunkowej zbioru D.

Na bazie bogactwa gatunkowego l oraz wektora q, który niesie informację o liczeb-

ności poszczególnych gatunków konstruuje się wskaźniki heterogeniczności zbioru D postaci:

νδ(l, q) :=
(
l∑
i=1

qδi

) 1
1−δ

, (1.3)

gdzie δ ∈ [0, 1) ∪ (1,+∞] jest ustalonym parametrem. Wskaźniki postaci (1.3) często stosuje
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się również w przekształconej formie:

Hδ(l, q) := log2 νδ(l, q) =
1
1− δ

log2
l∑
i=1

qδi , δ ̸= 1 (1.4)

i wówczas wartość określoną wzorem (1.4) nazywa się entropią zbioru D rzędu δ (por. Rényi

1961). Heterogeniczność zbioru określona wzorem (1.3) stanowi podstawę powszechnie używa-

nych wskaźników bioróżnorodności, którymi są (Baumgärtner 2004):

• dla δ = 0, bogactwo gatunkowe zbioru D równe l;

• dla δ = 2, wskaźnik Simpsona (1949) znany w ekonomii jako wskaźnik Herfindahla;

• dla δ = +∞, wskaźnik Bergera-Parkera (1970):

νδ(l, q) =
1
qī
,

gdzie ī ∈ {1, ..., l} reprezentuje gatunek o największej liczebności w zbiorze D.

Przechodząc z δ do 1, uzyskuje się wzór na entropię Shanona (1948), za pomocą której określa

się tzw. wskaźnik Shannona-Wienera, zdefiniowany następująco (Hill 1973, Wiener 1948):

ν1(l, q) := exp
(
−
l∑
i=1

qi log qi

)
. (1.5)

Można zauważyć (Baumgärtner 2004), że im większa wartość parametru δ ­ 0, tym większy

wpływ na wartość νδ(l, q) mają te gatunki w zbiorze D, których liczebność jest duża. W przy-

padku, gdy δ → +∞, liczebność najszerzej reprezentowanego gatunku staje się jedynym czyn-

nikiem decydującym o bioróżnorodności zbioru. Dla ustalonego δ, wartość νδ(l, q) rośnie wraz

ze wzrostem liczby gatunków l. Dla danych wartości δ oraz l, wskaźnik dany wzorem (1.3)

przyjmuje wartość największą (równą l), gdy wszystkie gatunki w zbiorze D są równolicz-

ne. Magguran (2013) zauważyła, że wybór odpowiedniego wskaźnika nie jest łatwy, również

ze względu na to, że istnieje nieskończenie wiele sposobów jego określenia. Shorrocks (1984)

scharakteryzował właściwości indeksów danych wzorem (1.3) w kontekście miary nierówności

dochodu. Baumgärtner (2004) spostrzegł, że konstrukcja wskaźników heterogeniczności opiera

się na ostrym podziale: dwa dowolne elementy zbioru są albo różne, albo identyczne, co wyklu-

cza możliwość uwzględnienia ich cech wspólnych.
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Stirling (2007) stwierdził, że ma sens opisywanie dowolnego zbioru obiektów przy

pomocy trzech liczb, z których pierwsza mierzy rozrzut jego elementów (variety) i w przypadku

bioróżnorodności oznacza bogactwo gatunkowe, druga wyznacza ich zrównoważenie (balance)

i może być wyrażona przez któryś z indeksów heterogeniczności, a trzecia określa zróżnico-

wanie (disparity) i odnosi się do różnic pomiędzy poszczególnymi gatunkami; różnice te mogą

być wyznaczone podobnie jak w podejściu Weitzmana (1992;1998) przedstawionym powyżej.

Wszystkie trzy wymienione charakterystyki, tzn. rozrzut, zrównoważenie i zróżnicowanie, są

wzajemnie związane i na ich bazie Stirling (2007) zaproponował konstrukcję innego wskaźnika

danego wzorem:

ν(D) =
l∑

i,j=1, i ̸=j
dijqiqj, (1.6)

gdzie liczba dij ­ 0 wyraża różnicę pomiędzy osobnikami gatunku i oraz j, natomiast qi oraz

qj określają względną liczebność tych gatunków. Podejście Stirlinga, w którym obecna jest za-

równo różnorodność jak i heterogeniczność zbioru, znalazło zastosowanie w badaniach empi-

rycznych (zob. np. Woerter 2009; Cooke et al. 2013).

1.3. Różnorodność jako element ewolucyjnego podejścia w eko-

nomii

Za inicjatora podejścia ewolucyjnego w ekonomii uważa się Josepha A. Schumpete-

ra, który w swojej książce pt. „Die Theorie der wirtschaftlichen Entwicklung” wydanej po raz

pierwszy w roku 1912, a przetłumaczonej na język angielski w roku 1934, określił czym jest

rozwój gospodarczy. Schumpeter zdefiniował go jako taką zmianę zachodzącą w systemie go-

spodarczym, która jest endogeniczna (czyli jest wywoływana przez czynniki wewnętrzne) i nie-

ciągła (w znaczeniu: duża, przełomowa). Schumpeter szczegółowo wytłumaczył na czym polega

rozwój gospodarczy w książce pt. „Kapitalizm, socjalizm, demokracja” (Schumpeter 1942). Za

podstawowy bodziec, który wprawia gospodarkę w ruch, uznał on wprowadzane przez kapitali-

styczne przedsiębiorstwo innowacje, które

„ilustrują ten sam proces przemysłowej mutacji – jeżeli mogę użyć tego biologicz-

nego terminu – który nieustannie rewolucjonizuje od środka strukturę gospodarczą,

nieustannie burzy starą i ciągle tworzy nową. Ten proces „twórczego burzenia” jest
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faktem o zasadniczym znaczeniu dla kapitalizmu” (ibid.).

W latach 80 XX wieku, Richard R. Nelson i Sidney G. Winter (1982) zainspirowani

schumpeterowską wizją rozwoju gospodarczego, stworzyli dynamiczny model ewolucji gospo-

darki respektujący paradygmat ograniczonej racjonalności podmiotów ekonomicznych. Zaini-

cjowali w ten sposób tzw. analizę neoschumpeterowską reprezentowaną np. w pracach: Freeman

1982; Dosi, Nelson 1994; Malerba, Orsenigo 1995; Witt 1996; Hanusch, Pyka 2007; Andersen

2009; Saviotti, Pyka 2009; Foster 2011; Cantner 2016; Nelson 2016; Fontana et al. 2021. Niedłu-

go po książce Nelsona i Wintera (1982), został opublikowany artykuł Philippe Aghiona i Petera

Howitta „A Model of Growth Through Creative Destruction” (1992), dając początek teorii endo-

genicznego wzrostu gospodarczego (zob. Aghion, Howitt 1998; Acemoglu 2009; Aghion et al.

2015). Powstały również modele makroekonomiczne uwzględniające przesłanki Schumpetera

(zob. np. Dosi et al. 2010; Assenza et al. 2015; Almudi et al. 2020, Dawid et al. 2019; Almudi,

Fatás-Villafranca 2021).

Nieprzerwanie od czasów Schumpetera rozwój gospodarczy inicjowany innowacja-

mi, w tym innowacjami finansowymi, jest obiektem analiz, w których wykorzystywane są m.in.

metody ilościowe (Dosi, Nelson 2010), teoria gier (Holm 2016), czy teoria modelowania me-

chanizmów ekonomicznych (Lipieta, Malawski 2016). Użycie narzędzi ewolucyjnej teorii gier

umożliwiło na przykład zbadanie jak awersja do ryzyka wpływa na innowacyjność firm (Beau-

chêne 2019), czy też wskazanie możliwości powstania ewolucyjnie stabilnej populacji schumpe-

terowskich producentów (Andersen 2007). Z kolei modelowanie mechanizmów ewolucji gospo-

darki w aparacie pojęciowym L. Hurwicza (1986) pozwoliło na przeanalizowanie roli informa-

cji w procesach rozwoju gospodarczego, zbadanie własności jakościowych mechanizmów oraz

wyznaczenie, w pewnych sytuacjach, mechanizmów optymalnych. Szczegółowe wyniki na ten

temat można znaleźć w pracach: Lipieta 2018; Lipieta, Malawski 2016; 2018; 2021; Lipieta,

Ćwięczek 2022 oraz Lipieta, Lipieta 2023.

W ewolucyjnym podejściu do analizy ekonomicznej pojęcie różnorodności (diversi-

ty) jest często używane, różnie formalizowane i stosowane wymiennie z pojęciem zróżnicowania

(variety) (zob. np. Dosi, Nelson 1994; Metcalfe 1994). Koncepcję różnorodności uwzględnia-

ją jednak w swoich badaniach również ekonomiści spoza tego nurtu, jak np. Aghion i Howitt

(1992) czy Romer (1986; 1992). Analizując modele ewolucyjne używane w ekonomii pod kątem

ich elementów składowych, Safarzyńska i van der Bergh (2010) uznali różnorodność za jeden
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z podstawowych komponentów takich modeli. Pojęcie różnorodności pojawia się często w li-

teraturze ekonomicznej w kontekście innowacji (zob. np. Saviotti, Mani, 1995; Saviotti 2001;

Saviotti, Pyka 2004; Kwaśnicki 2021), przy czym uznaje się, że stymulowanie wzrostu różno-

rodności poprzez innowacje powinno być celem prowadzonej polityki technologicznej (Metcalfe

1994). Innowację z tworzeniem różnorodności utożsamili w swoich badaniach Safarzyńska i van

den Bergh (2011). Pojęcie różnorodności jest obecne również w literaturze dotyczącej rozwoju

regionalnego, gdzie odróżnia się tzw. related i unrelated diversity (Frenken et al. 2007), przy

czym ta pierwsza dotyczy regionalnej koncentracji przedsiębiorstw, które wykazują podobień-

stwa między sobą (Asheim et al. 2011; Boschma 2014), a druga takich, które nie są wzajemnie

powiązane (Neffke et al. 2011; Content et al. 2016). Większość badań pokazuje, że regionalne

systemy gospodarcze muszą się różnicować, żeby się rozwijać (Content, Frenken 2016). Rów-

nież w badaniach nad koewolucją systemów ekonomicznych różnorodność jest obecna, a jej

zmiana postrzegana jako przyczyna lub też skutek zachodzących zmian (zob. np. Silverberg et

al. 1988; Fatás-Villafranca et al. 2009; Almudi et al. 2020; Almudi, Fatás-Villafranca 2021).

Na podstawie studium literatury można stwierdzić, że różnorodność w modelach eko-

nomicznych rozumie się na trzech poziomach: pierwszy dotyczy zróżnicowania produktów, dru-

gi – zróżnicowania przemysłu, a trzeci – zróżnicowania całego systemu gospodarczego. Zwięk-

szające się zróżnicowanie produktów rozważał np. Malerba (1992) analizując dwa typy innowa-

cji, będących przykładem stopniowych zmian technologicznych. Zmiany te mogą być poziome

(horyzontalne), gdy celem firm jest modyfikacja cech produktu w celu dotarcia do nowego seg-

mentu rynku lub nowej grupy klientów lub też pionowe (wertykalne), gdy polegają na popra-

wianiu jakości już wytwarzanych produktów. Z kolei badaniami nad zróżnicowaniem przemysłu

zajmował się m.in. Tisdell (1999), który stwierdził, że zróżnicowanie organizacyjne oraz techno-

logiczne firm pozytywnie wpływa na zdolność systemu gospodarczego do adaptacji w zmienia-

jącym się środowisku ekonomicznym. Podobnie Dosi, Orsenigo i Silverberg (1988) zauważyli,

że zróżnicowanie przedsiębiorstw, na które składają się asymetrie technologiczne, różnorod-

ność technologiczna i behawioralna, jest podstawową i trwałą cechą środowisk przemysłowych

podlegających zmianom technologicznym. Zróżnicowanie całego systemu gospodarczego bada

się często w makroekonomicznych modelach wzrostu gospodarczego. Zróżnicowanie to okre-

śla się zazwyczaj jako „liczbę podmiotów, działań i obiektów (towarów i usług) niezbędnych

do scharakteryzowania systemu gospodarczego” (zob. np. Saviotti, Mani, 1995; Saviotti 2001;
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Saviotti, Pyka 2004; Saviotti, Pyka 2009; Saviotti et al. 2020). Tak rozumiane zróżnicowanie

systemu ekonomicznego ma wpływ na zachodzącą w systemie gospodarczym zmianę jakościo-

wą i okazuje się stanowić warunek konieczny długookresowego wzrostu gospodarczego (zob.

np. Saviotti 2001; Pyka et al. 2018; Saviotti et al. 2020).

W modelu prezentowanym w pracy (Saviotti, Pyka 2004) sektor produkcji stanowiła

określona populacja firm, które konkurowały ze sobą w produkcji podobnego, ale nie identycz-

nego dobra (tzw. inter-sector competition). Każde dobro było reprezentowane poprzez swoje

właściwości technologiczne oraz użytkowe. Firmy w danym sektorze angażowały się w aktyw-

ność badawczą, która pozwalała na podniesienie jakości wytwarzanego dobra lub zwiększenie

wydajności procesu produkcji. Rozwój ekonomiczny w modelu rozpoczynał się od ustalonej

liczby sektorów, które produkowały znane konsumentom dobra. Każdy nowy sektor był two-

rzony przez schumpeterowskiego przedsiębiorcę wprowadzającego radykalną innowację, której

skutkiem było powstanie nowego rynku. W modelu tym, innowacja tworzyła tzw. lukę dosto-

sowawczą (adjustment gap), która była wyznaczona przez rozmiar populacji możliwych kon-

sumentów wytworzonego nowego produktu. Poprzez różnicowanie się i produkowanie nowych

dóbr, firmy konkurowały pomiędzy sektorami (intra-sector competition). Taka konkurencja (za

Metcalfe, Gibbons 1991) nazwana została konkurencją schumpeterowską. Mierząc różnorod-

ność systemu gospodarczego wyłącznie liczbą dających się wyodrębnić sektorów i nie biorąc

pod uwagę wewnętrznego zróżnicowania każdego sektora, Pyka i Saviotti (2004) otrzymali na-

stępujące wnioski z przeprowadzonej symulacji: dla długoterminowej kontynuacji rozwoju go-

spodarczego niezbędny jest wzrost różnorodności (liczby sektorów), z kolei wzrost produktyw-

ności w istniejących sektorach tworzy zasoby wymagane do działań badawczych, a tym samym

do powstawania nowych sektorów. W konsekwencji stwierdzili oni, że wzrost różnorodności

prowadzący do rozwoju nowych sektorów oraz wzrost produktywności w istniejących sektorach

są komplementarnymi składowymi procesu rozwoju gospodarczego.

Saviotti (2001) zwrócił uwagę na rolę konsumentów jako uczestników procesu roz-

woju gospodarczego (por. Ciałowicz 2015). Zauważył przy tym, że wprowadzenie radykalnej

innowacji nie może być stymulowane już istniejącym popytem, ani preferencjami konsumen-

tów, które dotyczą towarów już produkowanych. W ten sposób poddał krytyce pojęcie relacji

preferencji, jako nie znajdujące zastosowania przy analizowaniu rozwoju gospodarczego zwią-

zanego z wprowadzaniem radykalnych innowacji. Zamiast preferencji Saviotti (2001) uznał za
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zasadne w tym wypadku zastosowanie wyłożonej przez Karola Mengera w książce „Principles of

economics” (1871) hierarchicznej teorii potrzeb. Według Mengera (1871) każdy konsument war-

tościuje dobra na podstawie własnej subiektywnej oceny. Dobra same w sobie nie mają wartości,

a waga (wartość, znaczenie) jest nadawana danemu dobru przez konsumenta, gdy ten uświado-

mi sobie, że to dobro może zaspokoić jego konkretną potrzebę. Jednostka szereguje potrzeby

względem ich wag: im ważniejsza potrzeba, tym wyższą wagę przypisuje dobrom, które mogą

ją zaspokoić, przez co dobra służące zaspokojeniu potrzeb niezbędnych do życia mają najwyż-

szą wartość, a te, które służą zaspokojeniu potrzeb mniej ważnych – wartość względnie niższą.

Przy czym, choć każdy konsument ma takie same podstawowe potrzeby, konsumenci mogą się

różnić w potrzebach bardziej wysublimowanych. Saviotti (2001) zauważył, że teorię Mengera

można przełożyć na podejście ilościowe analizując dochód krytyczny (critical income), który

zdefiniował Bonus (1973), a którym jest minimalny poziom dochodu, jaki konsument musiałby

uzyskać, aby kupić dane dobro.

Podobnie Lancaster (1966b; 1982; 1990) poddał krytyce powszechnie używane w eko-

nomii podejście do wyboru konsumenta poprzez preferencje. W pracy „A new approach to con-

sumer theory” (Lancaster 1966b) zaproponował on spojrzenie na dobra konsumpcyjne poprzez

posiadane przez nie, mierzalne właściwości (characteristics), które stanowią niewielki podzbiór

wszystkich fizycznych cech rozważanych dóbr. Lancaster przyjął, że każde dobro posiada pewien

zbiór właściwości, a dobra różnią się między sobą składem ilościowym posiadanych właściwo-

ści, czyli swoją specyfikacją. Założył, że każdy konsument ma swoją „idealną” specyfikację da-

nego dobra. Jeśli ta idealna specyfikacja nie jest możliwa do osiągnięcia, to konsument wybiera

zastępcze dobro z inną specyfikacją, spośród dóbr o tych samych właściwościach, kierując się

tzw. funkcją kompensacji, opartą na różnicy miedzy dobrem idealnym a zastępczo konsumowa-

nym. W pracy „Innovative entry: profit hidden beneath the Zero”, Lancaster (1982) opisał przy-

padek zignorowanej właściwości (the ignored characteristic case). Przypadek ten może mieć

miejsce, gdy firmy które przyjmują do wiadomości istnienie k właściwości towarów, ignorują

istnienie k + 1 istotnej ich właściwości. Lancaster udowadnia, że możliwa jest wówczas taka

restrukturyzacja rynku, po której zysk wszystkich firm obecnych na rynku wzrasta, co więcej

zysk rośnie również, gdy liczba firm na rynku się zwiększa (ibid.).

Malawski i Woerter (2006) w formalnym modelu rozwoju gospodarczego wywoływa-

nego innowacjami wprowadzili pojęcie różnorodności zmiany ewolucyjnej. Wyróżnili trzy ro-
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dzaje różnorodności technologicznej odpowiadające trzem rodzajom zmian zachodzących w prze-

strzeni systemów produkcji gospodarki: różnorodność kumulatywną, innowacyjną oraz różno-

rodność odniesioną do twórczej destrukcji. Użyli przy tym (wspomnianej wyżej) koncepcji Stir-

linga (1998, 2007), określając różnorodność jako odwzorowanie, które danej zmianie (innowa-

cyjnej, kumulatywnej bądź będącej wynikiem twórczej destrukcji) w systemie produkcji przy-

pisuje trzy liczby nieujemne odpowiadające wartości wielości, zrównoważenia i zróżnicowania

dla tej zmiany. By uzyskać możliwość porównywania wartości różnorodności zmian, Malawski

i Woerter (2006) przyjęli założenie o hierarchicznej strukturze różnorodności, traktując wielość

jako dominującą składową, a zróżnicowanie jako najmniej istotną. Dzięki temu mogli stwierdzić,

między innymi, że rosnąca różnorodność jest warunkiem koniecznym dla zmiany innowacyjnej,

a różnorodność zmian innowacyjnych oraz dotyczących twórczej destrukcji jest nierozróżnialna.

Malawski i Pliś (2007) zauważyli, że funkcji różnorodności zbioru Nehringa i Puppego (2002)

można użyć w modelu analizowanym przez Malawskiego i Woertera (2006).

1.4. Podsumowanie

Niniejszy rozdział stanowi przegląd literatury na temat pojęcia różnorodności w na-

ukach ekonomicznych. Przedstawiono w nim genezę tego pojęcia, która łączy się z początkami

badań nad ekonomiczną działalnością człowieka.

Definiowanie różnorodności systemu ekonomicznego wymaga odwołania się do ma-

tematycznej definicji różnorodności zbioru. W tym rozdziale wprowadzono podział definicji

różnorodności zbioru na takie, które dotyczą różnorodności rozumianej ontologicznie oraz te,

w których różnorodność jest rozumiana jako heterogeniczność elementów zbioru. Uwagę w tym

rozdziale skupiono na różnorodności w sensie ontologicznym, która jest obiektem zaintereso-

wania badań prowadzonych w ramach niniejszej rozprawy.

Szczególne miejsce zajmuje pojęcie różnorodności w badaniach poświęconych ewo-

lucji ekonomicznej. Stąd w tym rozdziale przedstawiono główne przesłanki teorii rozwoju go-

spodarczego, wywodzącej się z myśli J. A. Schumpetera. Omówiono także różne koncepcje róż-

norodności w szeroko rozumianym obszarze badań ekonomii ewolucyjnej. Wskazując na stronę

podażową rynku jako na obszar generowania innowacji oraz stronę popytową rynku, która wpro-

wadzane innowacje poddaje wartościowaniu, zwrócono uwagę na konieczność uwzględnienia
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udziału obu stron rynku przy określaniu różnorodności systemu gospodarczego.
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Rozdział 2

Różnorodność systemu ekonomicznego
ze skończoną liczbą producentów
i konsumentów

Poprzedni rozdział zawierał przegląd podejść do problemu definiowania różnorod-

ności, która choć obecna w badaniach ekonomicznych w rozmaitych kontekstach, często rozu-

miana jest wyłącznie intuicyjnie i nieformalnie. Celem niniejszego rozdziału jest zdefiniowanie

różnorodności systemu ekonomicznego w sposób ścisły i wprowadzenie jej do modelu systemu

gospodarczego.

Przedstawiony w tym rozdziale model systemu gospodarczego, zawiera opis podmio-

tów gospodarczych charakterystyczny dla modelu Arrowa-Debreu (1954). Wpisuje się on rów-

nocześnie w ewolucyjne podejście do analizy ekonomicznej, które cechowało prace Andrzeja

Malawskiego (zob. np. Malawski 1999). Obecnie modele tego rodzaju są używane np. do defi-

niowania mechanizmów ekonomicznych (zob. np. Lipieta, Malawski 2016; 2021). Zmiany ewo-

lucyjne w proponowanym modelu definiuje się zgodnie z teorią rozwoju gospodarczego Josepha

A. Schumpetera (1912; 1934), tzn. przyjmuje się, że ewolucja gospodarki jest wywołana przez

producentów-innowatorów, którzy decydują się na wprowadzenie oryginalnych rozwiązań tech-

nologicznych, będących skutkiem ich działalności naukowo-badawczej.

Do zdefiniowania różnorodności systemu ekonomicznego, które jest pierwszym z ce-

lów badań prowadzonych w ramach niniejszej rozprawy, zostanie w tym rozdziale użyte wielo-

atrybutowe ujęcie różnorodności zbioru zaproponowane przez Klausa Nehringa oraz Clemensa

Puppe (2002). To podejście, używane w różnych kontekstach (zob. np. Nehring, Puppe 2002;

2004a; 2004b; 2009), a wpisujące się w teorię produktu zainicjowaną przez Kevina J. Lanca-
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stera (1966a; 1966b; 1977), wymaga określenia atrybutów posiadanych przez elementy zbioru.

Stąd obiekty ekonomiczne, takie jak koszyki towarów czy plany produkcji będą w prezentowa-

nym modelu opisywane poprzez posiadane przez nie atrybuty.

Wieloatrybutowe ujęcie różnorodności (Nehring, Puppe 2002) przedstawiono w Roz-

dziale 2.1, przy czym podane w nim przykłady pochodzą od autora rozprawy. Rozdział 2.2 za-

wiera model systemu gospodarczego oraz opis jego ewolucji zaczerpnięty, przy drobnych zmia-

nach w oznaczeniach, z pracy (Lipieta 2018). Pozostałe wyniki tego rozdziału, a więc pochodzą

od autora i zostały częściowo przedstawione wcześniej w pracy „Diversity and innovation in

economic evolution” (Pliś 2020). Najważniejsze zmiany, jakie zostały wprowadzone w niniej-

szym rozdziale w stosunku do pracy (Pliś 2020) polegają na doprecyzowaniu definicji funkcji

różnorodności określonej w przestrzeni towarów i zostały wprowadzone w Rozdziale 2.3.

2.1. Różnorodność skończonego zbioru obiektów w ujęciu wie-

loatrybutowym

2.1.1. Podstawowe pojęcia

Centralne miejsce w teorii różnorodności zaprezentowanej w pracy (Nehring, Pup-

pe 2002) zajmuje pojęcie atrybutu (Nehring, Puppe 2002). O ile w języku potocznym atrybut

oznacza zazwyczaj cechę lub własność pewnego obiektu, to w zaproponowanym przez Nehrin-

ga i Puppego (2002) podejściu, atrybut jest rozumiany jako zbiór elementów, które posiadają

określoną cechę lub własność.

NiechX będzie niepustym zbiorem skończonym. Jeśli atrybut A charakteryzuje nie-

które elementy zbioru X , to można rozważać zbiór:

{x ∈ X : x posiada atrybut A}. (2.1)

W rozprawie, podobnie jak w pracy (Nehring, Puppe 2002), atrybutA utożsamia się ze zbiorem

określonym formułą (2.1). Formalnie zatem A ⊂ X . Stąd fakt, że element x ∈ X posiada

atrybut A zapisuje się jako x ∈ A. Sformułowanie atrybut A jest realizowany w zbiorze D

oznacza, że w zbiorzeD występuje element, który posiada atrybutA, czyli zachodzi:A∩D ̸= ∅
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(Nehring, Puppe 2002). Atrybutów w skończonym zbiorze X może być co najwyżej 2#X − 1,

czyli tyle, ile jest jego niepustych podzbiorów.

Przykład 2.1 Niech X będzie (niepustym) zbiorem odzieży dostępnej w pewnym centrum han-

dlowym. Atrybutem w zbiorzeX może być np. zbiór odzieży ustalonego koloru, ustalonego roz-

miaru, ustalonej marki itp. Jeśli asortyment pewnego sklepu, mieszczącego się w rozważanym

centrum handlowym, składa się wyłącznie z rozmaitych białych koszul, koszul koloru niebieskie-

go oraz niebieskich spodni, to asortyment tego sklepu reprezentuje zbiór

R = {białe koszule, niebieskie koszule, niebieskie spodnie} ⊂ X.

Atrybuty realizowane w zbiorze R to na przykład: A1 = {x ∈ X : x ma kolor niebieski},

A2 = {x ∈ X : x jest koszulą}, A3 = {x ∈ X : x ma kolor biały} itp. Z kolei A4 = {x ∈

X : x stanowi nakrycie głowy} nie jest realizowany w zbiorze R, podobnie atrybut A5 = {x ∈

X : x ma kolor czerwony}.

Przyjmuje się, że każdy atrybut A ⊂ X ma określoną wagę λA, która jest liczbą

nieujemną niosącą informację o istotności atrybutu A.

Definicja 2.1 (Nehring, Puppe 2002) Funkcję λ : 2X ∋ A 7→ λA ∈ [0,+∞), która przypisuje

każdemu atrybutowi A jego wagę λA nazywa się funkcją ważącą atrybuty w zbiorze X .

Istotnym atrybutem nazywa się taki atrybut A ⊂ X , którego waga jest dodatnia, tzn. λA > 0.

Rodzinę istotnych atrybutów w zbiorze X oznacza się przez

Λ := {A ⊂ X : λA > 0}. (2.2)

Niech λ : 2X ∋ A 7→ λA ∈ [0,+∞) będzie funkcją ważącą atrybuty w zbiorze X .

Definicja 2.2 (Nehring, Puppe 2002) Funkcję v : 2X → [0,+∞) nazywa się funkcją różno-

rodności dla zbioru X , jeśli dla każdego niepustego zbioru D ⊂ X zachodzi równość

v(D) =
∑

A⊂X:A∩D ̸=∅
λA, (2.3)

przy czym dla zbioru pustego przyjmuje się, że v(∅) := 0.
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Z faktu, że zbiór X jest skończony wynika, że suma występująca we wzorze (2.3) jest również

skończona.

Uwaga 2.1 Funkcja różnorodności v : 2X → [0,+∞) każdemu podzbiorowi D ⊂ X przypo-

rządkowuje łączną wagę atrybutów realizowanych w zbiorze D wynoszącą v(D), którą nazywa

się różnorodnością zbioru D.

Wybrane własności funkcji różnorodności określonej Definicją 2.2 zostaną omówione w Roz-

dziale 2.1.2.

Przykład 2.2 Niech do centrum handlowego opisanego w Przykładzie 2.1 trafi osoba, dla której

istotne są tylko atrybuty A1 oraz A2 z Przykładu 2.1, przy czym atrybut A1 ma dwukrotnie więk-

sze znaczenie niż A2. Można przyjąć, że osoba odwiedzająca sklep poszukuje koszuli i istotny

jest dla niej niebieski kolor wybieranego ubrania. Wtedy rodzinę istotnych atrybutów stanowi

zbiór Λ = {A1, A2}, a wagi atrybutów można określić następująco: λA1 = a, λA2 = 2a przy

czym a > 0 oraz λA = 0 dla każdego A ⊂ X takiego, że A ∈ 2X\{A1, A2}. Funkcja ważąca

atrybuty λ : 2X → [0,+∞)+ wyznacza funkcję różnorodności v : 2X ∋ D 7→ v(D) ∈ [0,+∞),

której wartość v(R) określa różnorodność opisanego w Przykładzie 2.1 zbioru R (zob. Uwaga

2.1) następująco: v(R) = λA2 + λA1 = 3a.

2.1.2. Własności funkcji różnorodności zbioru skończonego

Poniżej przedstawiono wybrane własności funkcji różnorodności określonej Definicją

2.2 zaczerpnięte z pracy (Nehring, Puppe 2002), które są używane w dalszej części rozprawy.

Niech X będzie skończonym zbiorem niepustym.

Spostrzeżenie 2.1 (Nehring, Puppe 2002) Funkcja różnorodności v : 2X → [0,+∞) jest mo-

notoniczna, tzn. dla dowolnych D,T ⊂ X zachodzi implikacja: jeśli D ⊂ T , to v(D) ¬ v(T ).

Własność monotoniczności oznacza, że różnorodność zbioru (zob. Uwaga 2.1) nie maleje po

dołączeniu do niego kolejnego obiektu.

Spostrzeżenie 2.2 (Nehring, Puppe 2002) Jeżeli v : 2X → [0,+∞) jest funkcją różnorodno-

ści, to dla dowolnychD,T ⊂ X takich, żeD ⊂ T oraz dla dowolnego x ∈ X zachodzi nierów-

ność:

v(D ∪ {x})− v(D) ­ v(T ∪ {x})− v(T ). (2.4)
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Funkcję v : 2X → [0,+∞), która spełnia warunek (2.4) nazywa się funkcją submodularną

(Nehring, Puppe 2002). Własność submodularności funkcji różnorodności oznacza, że wraz ze

wzrostem liczby elementów zbioru przyrost różnorodności związany z dołączeniem do zbioru

kolejnego elementu się nie zwiększa. Z powyższych spostrzeżeń można wyciągnąć następujący

wniosek.

Wniosek 2.1 Jeśli v : 2X → [0,+∞) jest funkcją różnorodności, to dla dowolnych D,T ⊂ X

zachodzi nierówność:

v(D) + v(T ) ­ v(D ∪ T )− v(D ∩ T ). (2.5)

Definicja 2.3 (Nehring, Puppe 2002) Różnorodnością krańcową zbioru D ⊂ X dla ustalo-

nego x ∈ X (distinctveness of x from the set D) nazywa się liczbę

d(x,D) := v(D ∪ {x})− v(D) =
∑

A:x∈A,A⊂X\D
λA. (2.6)

Różnorodność krańcowa zbioru jest wyznaczona przez przyrost wartości funkcji różnorodności

wynikający z dołączenia do tego zbioru ustalonego elementu x ∈ X (por. wzór (1.2)). Spostrze-

żenie 2.2 gwarantuje, że dla każdego x ∈ X funkcja: 2X ∋ D 7→ d(x,D) ∈ [0,+∞), która

każdemu podzbiorowi D ⊂ X przypisuje jego różnorodność krańcową daną wzorem (2.6) jest

nierosnąca.

Definicja 2.4 (Nehring, Puppe 2002) Dla dowolnych x, y ∈ X liczbę

d(x, y) := d(x, {y}) = v({x, y})− v({y}) =
∑

A:x∈A, y/∈A
λA (2.7)

nazywa się różnicą między x a y (dissimilarity of x from y).

Różnica między x a y jest równa łącznej wadze wszystkich tych atrybutów posiadanych przez

x, których nie posiada y. W ogólnym przypadku d(x, y) ̸= d(y, x).

Spostrzeżenie 2.3 Jeśli funkcja d : X × X → [0,+∞) jest określona wzorem (2.7), to dla

każdego x, y, z ∈ X:

(i) d(x, x) = 0, tzn. różnica między danym elementem a nim samym wynosi zero;

(ii) d(x, y) + d(y, z) ­ d(x, z), tzn. funkcja d spełnia warunek trójkąta;
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(iii) d(x, y) = d(y, x) wtedy i tylko wtedy, gdy v({x}) = v({y}), tzn. funkcja d jest symetrycz-

na wtedy i tylko wtedy, gdy różnorodność wszystkich zbiorów jednoelementowych jest taka

sama.

Dowód. Własności (i) oraz (iii) wynikają wprost z Definicji 2.4. Niech A′ := X\A. Warunek

trójkąta dla funkcji d : X ×X → [0,+∞) można pokazać następująco:

{A : x ∈ A ∧ z ∈ A′} = {A : x ∈ A ∧ z ∈ A′ ∧ (y ∈ A ∨ y ∈ A′)} =

= {A : (x ∈ A ∧ z ∈ A′ ∧ y ∈ A) ∨ (x ∈ A ∧ z ∈ A′ ∧ y ∈ A′)} =

= {A : (x ∈ A ∧ z ∈ A′ ∧ y ∈ A)} ∪ {A : (x ∈ A ∧ z ∈ A′ ∧ y ∈ A′)} ⊂

⊂ {A : z ∈ A′ ∧ y ∈ A} ∪ {A : x ∈ A ∧ y ∈ A′}.

Zatem ∑
A:x∈A∧z∈A′

λA ¬
∑

A:x∈A∧y∈A′
λA +

∑
A:y∈A∧z∈A′

λA,

czyli

d(x, z) ¬ d(x, y) + d(y, z).
■

Funkcja różnorodności określona Definicją 2.2 jest jednoznacznie wyznaczona przez

postać funkcji ważącej atrybuty (zob. Definicja 2.1). Oznacza to, że wyróżnienie rodziny istot-

nych atrybutów i przypisanie im wag jednoznacznie definiuje różnorodność dowolnego pod-

zbioru zbioru skończonego. Z drugiej strony można pokazać, że również funkcja różnorodności,

określona na rodzinie podzbiorów zbioru skończonego, jednoznacznie wyznacza postać funkcji

ważącej atrybuty. Mówi o tym poniższe twierdzenie.

Twierdzenie 2.1 (Nehring, Puppe 2002) Dla dowolnej funkcji v : 2X → [0,+∞) takiej, że

v(∅) = 0 istnieje dokładnie jedna funkcja ważąca atrybuty λ : 2X → [0,+∞) taka, że λ∅ = 0

oraz dla każdego D ⊂ X wartość v(D) jest dana wzorem (2.3). Ponadto dla dowolnego A ̸= ∅

zachodzi równość:

λA =
∑
D⊂A
(−1)#(A\D)+1 · v(X\D).

Struktura rodziny istotnych atrybutów Λ ⊂ 2X decyduje o postaci funkcji różnorod-

ności dla zbioru skończonego X . W niektórych przypadkach, określenie funkcji różnorodności
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dla zbioru skończonego, może sprowadzić się do wyznaczenia różnic danych wzorem (2.7),

między poszczególnymi elementami tego zbioru.

2.1.3. Modele różnorodności skończonego zbioru obiektów

Niech X będzie niepustym zbiorem skończonym. Każdą niepustą rodzinę atrybutów

A ⊂ 2X nazywa się modelem różnorodności (Nehring, Puppe 2002). O funkcji różnorodności

v : 2X → [0,+∞)mówi się, że jest zgodna z modelemA, jeśliΛ ⊂ A. Warunek ten oznacza, że

tylko atrybut wchodzący w skład rodzinyAmoże mieć niezerową wagę. Poniżej zaprezentowano

trzy podstawowe modele różnorodności zbioru skończonego (zob. Nehring, Puppe 2002).

I. Model hierarchiczny

Rodzina atrybutów A ⊂ 2X zadaje hierarchiczny model różnorodności, jeśli dla dowol-

nych atrybutów: A1, A2 ∈ A zachodzi warunek (Nehring, Puppe 2002):

jeśli A1 ∩ A2 ̸= ∅, to [A1 ⊂ A2 lub A2 ⊂ A1]. (2.8)

Powyższa własność oznacza, że dla funkcji różnorodności v : 2X → [0,+∞) zgodnej

z modelem hierarchicznym dla dowolnych x ∈ X i D ⊂ X zachodzi równość (Nehring,

Puppe 2002):

d(x,D) = min
y∈D
d(x, y), (2.9)

gdzie d(x, y) jest różnicą między x a y daną wzorem (2.7).

II. Model liniowy

Niech w zbiorze skończonym X = {x1, ..., xk} będzie określona relacja liniowego po-

rządku �, tzn. relacja przechodnia, antysymetryczna i spójna w X . Rodzina atrybutów

A ⊂ 2X określa liniowy model różnorodności, jeśli każdy atrybut A ∈ A jest przedzia-

łem w X , tzn. jest postaci A = {x ∈ X : xi � x � xj}, dla xi, xj ∈ X , gdzie i ¬ j.

Przykładem niech będzie relacja „starszeństwa”: x � y, gdy y ma lat co najmniej ty-

le ile x. Wówczas przedziałami są zbiory typu: {x ∈ X : x ma nie mniej niż a lat} lub

{x ∈ X : x ma więcej lat niż a, ale nie mniej niż b lat}, gdzie a, b ∈ N.

Jeśli v : 2X → [0,+∞) jest funkcją różnorodności zgodną z modelem liniowym, to dla

dowolnego zbioru D = {x̄1, ..., x̄j} ⊂ X , gdzie x̄1 � ... � x̄j , j ¬ k zachodzi równość
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(zob. Nehring, Puppe 2002):

v({x̄1, ..., x̄j}) = v({x̄j}) +
j∑
i=1

d(x̄i, x̄i−1). (2.10)

Zarówno liniowy jak i hierarchiczny model różnorodności stanowią przykłady takich modeli,

w których funkcja różnorodności jest jednoznacznie wyznaczona przez jej wartości na podzbio-

rach co najwyżej dwuelementowych zbioru skończonego (Nehring, Puppe 2002). Oznacza to,

że w tych modelach do wyznaczenia różnorodności dowolnego podzbioru zbioruX , wymagana

jest jedynie znajomość wartości różnorodności każdego zbioru jednoelementowego oraz war-

tość różnicy d(x, y) określonej wzorem (2.7) między dowolnymi dwoma elementami x, y ∈ X .

III. Model drzewa

Niech dany będzie skończony zbiór X . Dowolny podzbiór dwuelementowy {x, y} ⊂ X

nazywa się krawędzią. Grafem nazywa się parę (X,µ), gdzie µ stanowi podzbiór zbio-

ru krawędzi. Elementy zbioru X nazywa się wierzchołkami. Drzewem nazywa się taki

graf, którego każde dwa wierzchołki łączy dokładnie jedna droga (rozumiana jako ciąg

sąsiadujących ze sobą, połączonych krawędziami wierzchołków, z których żaden się nie

powtarza) (zob. np. Chartrand, Zhang 2012). Rodzina atrybutów A zadaje model różno-

rodności w postaci drzewa, jeśli każdy atrybut A ∈ Ama postać drzewa (Nehring, Puppe

2002).

Funkcja różnorodności v : 2X → [0,+∞) zgodna z modelem drzewa nie musi być jedno-

znacznie wyznaczona poprzez wartości, jakie przyjmuje na zbiorach jedno i dwuelementowych.

Wskazuje na to poniższy przykład.

Przykład 2.3 Niech parę (X,µ), gdzie X = {x, y1, y2, y3} oraz µ = {{x, yi}, i = 1, 2, 3} bę-

dzie drzewem. Niech dane będą następujące wartości atrybutów: λ{x} := 1, λX := 2 oraz

λAij := 1, gdy i, j = 1, 2, 3, i ̸= j. Niech v oraz v̄ będą dwiema funkcjami różnorodności

zgodnymi z modelem w postaci drzewa, przy czym:

• rodzinę istotnych atrybutów funkcji v : 2X → [0,+∞) stanowi Λ := {{x}, X}; wówczas:

v({x}) = λ{x} + λX = 3,

v({yi}) = λX = 2 dla i = 1, 2, 3,
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v({x, yi}) = v({yi, yj}) = λ{x} + λX = 3 dla i, j = 1, 2, 3, i ̸= j.

• dla v̄ : 2X → [0,+∞) rodziną istotnych atrybutów jest

Λ̄ := {A12 = {y1, x, y2}, A13 = {y1, x, y3}, A23 = {y2, x, y3}}.

Wtedy:

v̄({x}) = λ̄A12 + λ̄A13 + λ̄A23 = 3,

v̄({yi}) =
∑
yi∈Aij

λ̄Aij = 2 dla i = 1, 2, 3, i ̸= j,

v̄({x, yi}) = λ̄A12 + λ̄A13 + λ̄A23 = 3,

v̄({yi, yj}) =
∑

Aij∩{yi,yj}≠∅
λ̄Aij = 3 dla i, j = 1, 2, 3, gdzie i ̸= j.

Zatem wartości funkcji v oraz v̄ są równe dla zbiorów składających się z co najwyżej dwóch

elementów. Jednak dla zbioru D = {y1, y2, y3} ⊂ X

v(D) = λX = 2 oraz v̄(D) = λ̄A12 + λ̄A13 + λ̄A23 = 3,

więc wartości funkcji v oraz v̄ są różne.

Funkcja różnorodności jest jednoznacznie określona poprzez zadanie jej wartości na zbiorach co

najwyżej dwuelementowych w przypadku tzw. jednowymiarowych modeli różnorodności (zob.

Nehring, Puppe 2002). Do takich modeli zalicza się zarówno hierarchiczny jak i liniowy model

różnorodności, a także szczególny przypadek modelu różnorodności w postaci drzewa filogene-

tycznego, który rozważał Weitzman (1992; 1998) (por. część 1.2.1).

2.2. System ekonomiczny ze skończoną liczbą podmiotów

Zaprezentowane w podrozdziale 2.1 podejście do różnorodności zbioru skończonego

można po odpowiedniej modyfikacji zastosować w modelu gospodarki, w którym podmioty eko-

nomiczne, tzn. producenci i konsumenci, operują w przestrzeni towarów, opisanej jako skończe-

nie wymiarowa przestrzeń euklidesowa (por. Arrow, Debreu 1954). W przestrzeni tej definiuje
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się zbiory konsumpcji, składające się z koszyków towarów, które chcieliby realizować poszcze-

gólni konsumenci oraz zbiory produkcji, które definiują możliwości wytwórcze firm. Procesy

produkcji i konsumpcji utożsamia się z wektorami typu „wejście-wyjście” (por. Arrow, Debreu

1954). Jednak przestrzeń euklidesowa składa się z nieprzeliczalnej ilości obiektów (choć zbiory

produkcji i konsumpcji mogą być skończone), a definicja funkcji różnorodności, podana przez

Nehringa i Puppego (2002), została określona dla zbioru skończonego. Odpowiednie dostoso-

wanie rodziny istotnych atrybutów pozwala jednak na użycie funkcji różnorodności Nehringa

i Puppego (2002) w rozpatrywanym modelu gospodarki.

2.2.1. Definicja systemu ekonomicznego ze skończoną liczbą podmiotów

W rozprawie przyjmuje się, że miejscem działania skończonej liczby podmiotów jest

przestrzeń towarów określona jako skończenie wymiarowa przestrzeń euklidesowa

Rl = {(x1, x2, ...) : xk ∈ R,∀k>l xk = 0}. (2.11)

Każdy towar jest rozumiany jako dobro lub usługa w pełni określona przez zespół swoich cech

fizycznych oraz miejsce i czas swojej dostępności. Każdy towar może być rozpatrywany zarówno

z perspektywy producenta jak i konsumenta, a jego ilość jest reprezentowana przez dowolną

liczbę rzeczywistą (por. Malawski 1999).

Ceny towarów wyraża wektor p ∈ Rl, przy czym, zgodnie z przyjętą konwencją (zob.

Mas-Colell et al. 1995), ceny dóbr rzadkich wyrażone są poprzez liczby dodatnie, szkodliwych

– za pomocą liczb ujemnych, a ceny dóbr wolnych są równe zero. Wartość obiektu przestrzeni

towarów y ∈ Rl można obliczyć używając standardowego iloczynu skalarnego:

p · y = (p1, p2, ...) · (y1, y2, ...) =
∞∑
k=1

pkyk. (2.12)

Ze względu na sposób określenia przestrzeni towarów, cenowa wartość wektora y ∈ Rl, okre-

ślona wzorem (2.12), jest liczbą rzeczywistą.
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System produkcji ze skończoną liczbą producentów jako model strony podażowej systemu

gospodarczego

W tej części rozprawy przyjmuje się, że zbiór producentów (firm) działających w przestrzeni

towarówRl jest zbiorem skończonym postaci B = {b1, ..., bn}, gdzie n ∈ N. Proces produkcji,

który jest możliwy do przeprowadzenia przez producenta b ∈ B, ze względu na dostępne dla

niego technologie, jest utożsamiony w modelu z wektorem typu input-output, zwanym planem

produkcji. Plan produkcji yb ∈ Rl opisuje technologię, która jest używana w procesie produkcji

przez firmę b, przy czym wejścia procesu wskazują ujemne współrzędne wektora yb, a wyjścia

– jego współrzędne dodatnie (por. Mas-Colell et al. 1995). Odwzorowanie

y : B ∋ b 7→ Y b ⊂ Rl, (2.13)

przypisuje każdemu producentowi b ∈ B jego niepusty zbiór produkcji Y b, który składa się

z planów produkcji yb ∈ Rl. W rozprawie przyjmuje się, że zbiór produkcji każdego producenta

jest zbiorem domkniętym.

Uwaga 2.2 Jeśli dla pewnego b ∈ B zbiór produkcji jest postaci Y b = {0} ⊂ Rl, to producenta

b ∈ B nazywa się nieaktywnym.

Definicja 2.5 Parę P = (B, y), gdzie B jest skończonym zbiorem producentów, a y jest od-

wzorowaniem opisanym formułą (2.13), nazywa się systemem produkcji ze skończoną liczbą

producentów.

Zbiór planów produkcji, które są możliwe do zrealizowania w systemie produkcji P oznacza się

przez

Y :=
⋃
b∈B
Y b. (2.14)

W rozważanym modelu ceny dane są egzogenicznie, tzn. każdy producent traktuje wektor cen

jako dany i wybiera plan produkcji możliwy do wykonania, określając swoje wejścia (używane

materiały, przewidywane inwestycje) oraz wyjścia (wytwarzane produkty). Przy danym systemie

cen p ∈ Rl zysk z realizacji planu produkcji yb ∈ Y b jest określony przez iloczyn p · yb.

Przy danym systemie cen definiuje się zbiór takich planów produkcji, które maksymalizują zysk
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producenta b ∈ B. Zbiór ten ma postać:

ηb(p) := {y∗b ∈ Y b : p · y∗b = max
yb∈Y b
p · yb}.

Dla ustalonego systemu cen p ∈ Rl zbiór ηb(p) może być pusty. Dzieje się tak na przykład, gdy

przy p ∈ Rl zysk z realizacji każdego planu produkcji yb ∈ Y b jest dodatni, a równocześnie

dla każdego c ­ 1 zachodzi c yb ∈ Y b (czyli zbiór Y b spełnia własność niemalejących korzyści

skali). Jeżeli p = (0, 0, ...) = 0 ∈ Rl, to każdy wektor ze zbioru Y b maksymalizuje zysk

producenta b, tzn. ηb(0) = Y b.

W badanym modelu przyjmuje się, że znając wektor cen p, każdy aktywny producent

b ∈ B realizuje pewien plan produkcji przy czym:

• jeśli ηb(p) ̸= ∅, to:

– producent może zdecydować się na realizację planu y∗b ∈ ηb(p), dzięki czemu uzy-

ska zysk maksymalny; taki sposób postępowania producenta nazywa się zachowa-

niem racjonalnym (por. Simon 1955);

– producent może wybrać do realizacji plan yb ∈ Y b\ηb(p), który nie maksymalizuje

jego zysku, a środki zaoszczędzone na nakładach produkcji przeznaczyć na działa-

nia, które umożliwią mu w przyszłości wprowadzenie innowacji (czyli np. na zakup

nowych technologii, albo na badania nad stworzeniem takich technologii);

• jeśli ηb(p) = ∅, to producent wybiera plan yb ∈ Y b zgodnie ze swoim indywidualnym kry-

terium; wówczas także może część swojego zysku przeznaczyć na działania zmierzające

do wprowadzenia innowacji w przyszłości.

System konsumpcji ze skończoną liczbą konsumentów jako model strony popytowej syste-

mu gospodarczego

W tej części rozprawy przyjmuje się, że zbiór konsumentów działających w przestrzeni towarów

Rl jest zbiorem skończonym postaciH = {a1, ..., am}, gdziem ∈ N. Każdy konsument a ∈ H

scharakteryzowany jest przez swój zbiór konsumpcji Xa ⊂ Rl+ = {x ∈ Rl : xi ­ 0 dla i =

1, ..., l} oraz zwrotną, przechodnią i spójną relację preferencji⪯a określoną w zbiorzeXa. Niech
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przyporządkowanie

ξ : H ∋ a 7→ Xa ⊂ Rl+ (2.15)

przypisuje każdemu konsumentowi jego zbiór konsumpcji, odwzorowanie

ε : H ∋ a 7→⪯a⊂ Xa ×Xa (2.16)

określa relację preferencji każdego konsumenta, a funkcja

ω : H ∋ a 7→ ωa ∈ Rl (2.17)

przyporządkowuje każdemu konsumentowi jego wektor zasobu.

Definicja 2.6 Czwórkę C = (H, ξ, ε, ω), gdzieH jest skończonym zbiorem konsumentów, a od-

wzorowania: ξ, ε oraz ω określone są wzorami: (2.15), (2.16) oraz (2.17), nazywa się systemem

konsumpcji ze skończoną liczbą konsumentów.

W rozpatrywanym modelu przyjmuje się, że konsumenci są właścicielami firm (za Arrow, De-

breu 1954). Udziały konsumentów w zyskach producentów określa odwzorowanie

θ : H ×B → [0, 1], (2.18)

przy czym ∑
a∈H
θ(a, b) = 1 dla każdego b ∈ B

Liczba θ(a, b) opisuje udział konsumenta a ∈ H w zysku producenta b ∈ B. Ze względu na

to, że zbiory konsumentów i producentów nie muszą być rozłączne, producent b ∈ B może

posiadać udziały w dowolnej firmie ze zbioru B. Dla każdego konsumenta a ∈ H przy danym

systemie cen p ∈ Rl określa się jego zbiór budżetowy zdefiniowany jako

βa(p) := {xa ∈ Xa : p · xa ¬ p · ωa + p ·
∑
b∈B
θ(a, b) yb},

gdzie yb ∈ Y b jest planem produkcji zrealizowanym przez firmę b ∈ B przy systemie cen p. Dla

każdego konsumenta a ∈ H przyjmuje się, że dla analizowanych wektorów cen p ∈ Rl, zbiór

budżetowy βa(p) jest niepusty. Przy danym wektorze cen p konsument a ∈ H może zrealizować
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dowolny plan konsumpcji xa ∈ βa(p). Wybrany plan może maksymalizować preferencje kon-

sumenta w zbiorze budżetowym lub też nie; w tym drugim przypadku konsument może środki

niewykorzystane na konsumpcję przeznaczyć na inwestycje w firmie, w której ma udziały.

Wspólne funkcjonowanie sfery podażowej i popytowej gospodarki, w której działa

skończona liczba podmiotów ekonomicznych, określa działanie systemu ekonomicznego jako

całości.

Definicja 2.7 (Lipieta 2018) Ekonomią ze skończoną liczbą podmiotów nazywa się trójkę E

= (P,C, θ), w którejP = (B, y) jest systemem produkcji ze skończoną liczbą producentów,C =

(H, ξ, ε, ω) jest systemem konsumpcji ze skończoną liczbą konsumentów, a udziały konsumentów

w zyskach producentów określa przyporządkowanie θ dane wzorem (2.18).

W systemie ekonomicznym E, przy danym wektorze cen p ∈ Rl, każdy producent b ∈ B re-

alizuje wybrany przez siebie plan produkcji yb ∈ Y b. Zyski z działalności producentów dzielą

między siebie konsumenci (zgodnie z udziałami określonymi przez odwzorowanie θ). Każdy

konsument a ∈ H realizuje wybrany przez siebie plan konsumpcji xa ∈ βa(p). Stan systemu

ekonomicznego ze skończoną liczbą podmiotów przy danym wektorze cen p ∈ Rl można za-

tem opisać określając plany działania poszczególnych konsumentów i producentów. Utworzona

w ten sposób macierz Ml×(m+n), której kolumny stanowią poszczególne wektory konsumpcji

i produkcji:
(
(xa)a∈H , (yb)b∈B

)
nazywa się alokacją. Dla danej alokacji

(
(xa)a∈H , (yb)b∈B

)
,

przy oznaczeniach x̃ :=
∑
a∈H x

a oraz ỹ :=
∑
b∈B y

b:

• popytem netto nazywa się wektor

x̃− ỹ :=
∑
a∈H
xa −

∑
b∈B
yb,

• popyt nadwyżkowy to wektor

z̃ = x̃− ỹ − ω̄, (2.19)

gdzie ω̄ =
∑
a∈H ω

a jest zasobem całkowitym ekonomii. Wektor z̃ opisuje nadwyżkę popytu

netto nad zasobami całkowitymi ekonomii E.

Szczególny i często badany przypadek stanowi alokacja, w której wszystkie podmioty

realizują swoje optymalne plany działania, a popyt nadwyżkowy jest równy zero.
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Definicja 2.8 Stanem równowagi (w sensie Walrasa) ekonomii ze skończoną liczbą podmio-

tów, przy danym wektorze cen p ∈ Rl, nazywa się alokację
(
(x∗a)a∈H , (y∗b)b∈B

)
, w której każdy

konsument a ∈ H realizuje plan konsumpcji x∗a maksymalizujący jego preferencje w zbiorze bu-

dżetowym βa(p), a każdy producent b ∈ B realizuje plan produkcji y∗b ∈ ηb(p), który zapewnia

mu maksymalny zysk oraz zachodzi warunek:

∑
a∈H
x∗a −

∑
b∈B
y∗b = ω̄.

W tak zdefiniowanym stanie równowagi popyt nadwyżkowy z̃ wynosi zero, co oznacza, że popyt

netto jest równy całkowitym zasobom ekonomii E. Arrow i Debreu (1954) pokazali, że w pew-

nych szczególnych warunkach stan równowagi ekonomii ze skończoną liczbą podmiotów istnie-

je. Analiza problemu istnienia stanów równowagi systemu ekonomicznego jest podstawowym

zadaniem w teorii równowagi ogólnej. W przypadku ewolucyjnego podejścia do modelowania

procesów ekonomicznych uznaje się, że stan równowagi jest przejściowym stadium w procesie

zachodzenia zmian gospodarczych (zob. np. Lipieta, Malawski 2016).

2.2.2. Zmiany ewolucyjne w systemie ekonomicznym ze skończoną liczbą

podmiotów

W tej części rozprawy modeluje się w czasie dyskretnym zmiany zachodzące w sys-

temie ekonomicznym opisanym w części 2.2.1. Od momentu rozpoczęcia obserwacji, oś czasu

dzieli się na przeliczalną sumę rozłącznych przedziałów, otwartych z prawej i domkniętych z le-

wej strony. Przedziały te nazywa się okresami. Kolejne okresy oznacza się przez t1, t2, t3, ... ∈ N,

gdzie t1 < t2 < t3 < .... Zakłada się, że w każdym okresie charakterystyki podmiotów ekono-

micznych pozostają niezmienione, a wszelkie zmiany zachodzące w systemie ekonomicznym są

odnotowywane w momencie, który rozpoczyna kolejny okres. Gdy rozważne są tylko dwa okre-

sy, to stosuje się dla nich oznaczenia: t oraz t′ i w takim wypadku dla charakterystyk podmiotów

gospodarczych w okresie t pomija się wskaźnik czasu, a charakterystyki w okresie t′ zapisuje

używając wskaźnika „′ ”.

Niech t oraz t′, gdzie t < t′, oznaczają dwa następujące po sobie okresy. W rozprawie

przyjmuje się, że sformułowanie „transformacja systemu ekonomicznego” ma dwa znaczenia:

oznacza ona zarówno proces przemian gospodarczych zachodzących przy przejściu od okresu t
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do t′, jak również efekt tego procesu, czyli przekształcony system ekonomiczny. Wprowadzony

poniżej formalny opis transformacji systemu ekonomicznego ze skończoną liczbą podmiotów

gospodarczych pochodzi z pracy (Pliś 2020).

Definicja 2.9 Ekonomię E ′ = (P ′, C ′, θ′) ze skończoną liczbą podmiotów nazywa się trans-

formacją ekonomii E= (P,C, θ), jeśli składowe systemów produkcji P = (B, y) i konsumpcji

C = (H, ξ, ε, ω) ekonomii E zostały przekształcone na składowe systemów P ′ = (B′, y′) oraz

C ′ = (H ′, ξ′, ε′, ω′) ekonomii E ′.

Fakt, że ekonomiaE ′ jest transformacją ekonomiiE zapisuje się jako:E ⊏ E ′. Podobne notacje

stosuje się dla systemów produkcji i konsumpcji.

Uwaga 2.3 Formalnie systemy E i E ′ stanowią dwa różne modele ekonomiczne. Jeśli jednak

składowe systemu E z okresu t zostały przekształcone na składowe systemu E ′ zdefiniowanego

w okresie t′, gdzie t′ > t, to w rozprawie używa się sformułowań: „system ekonomiczny E

ewoluuje” lub „w systemie ekonomicznym E zachodzi transformacja”. Podobnie rozumie się

sformułowania dotyczące systemów konsumpcji i systemów produkcji.

Przyjmując schumpeterowskie podejście do rozwoju gospodarczego i skupiając uwagę na sfe-

rze podażowej, analizuje się zmiany zachodzące w systemie produkcji ekonomii ze skończoną

liczbą podmiotów przy przejściu od okresu t do t′. Niech E = (P,C, θ) będzie systemem

ekonomicznym ze skończoną liczbą podmiotów (zob. Definicja 2.7) danym w okresie t. Niech

E ′ = (P ′, C ′, θ′), E ′ ̸= E będzie taką transformacją systemu E w okresie t′, że w obu sys-

temach ekonomicznych działają konsumenci z tego samego zbioru H = H ′ oraz producenci

ze zbioru B = B′, przy czym w jednym z rozważanych okresów pewna liczba producentów

może być nieaktywna (zob. Uwaga 2.2). Zbiory planów produkcji, które są możliwe do zreali-

zowania odpowiednio w systemie produkcji: P oraz P ′ oznacza się przez: Y oraz Y ′ (zob. wzór

(2.14)). W rozważanym modelu przyjmuje się, że zmiany zachodzące przy przejściu od okresu

t do t′, które zachodzą w systemie produkcji, wiążą się z odkryciem i wykorzystaniem nowych

możliwości działania przez producentów ze zbioru B. Wprowadzenie innowacji przez pewne-

go producenta w okresie t′ oznacza, że może on w okresie t′ zrealizować taki plan produkcji,

który wykraczał poza możliwości technologiczne wszystkich firm w okresie t. W konsekwencji,

w systemie ekonomicznym w okresie t′ może pojawić się nowy towar lub powstać nowa metoda

produkcji.
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Definicja 2.10 System produkcji P ′ nazywa się innowacyjną transformacją systemu P (ozn.

P ⊏in P ′), jeśli w systemie P ′ istnieje plan produkcji, który jest innowacyjny, w odniesieniu do

systemu P , tzn. zachodzi warunek

istnieją b ∈ B oraz y′b ∈ Y ′b takie, że y′b /∈ Y. (2.20)

Producenta b ∈ B, który realizuje innowacyjny plan produkcji y′b ∈ Y ′b\Y nazywa się inno-

watorem w okresie t′ w odniesieniu do okresu t.

Uwaga 2.4 Dla dwóch ustalonych okresów: t i t′, w rozprawie używa się krótkich określeń, pi-

sząc: „innowator”, zamiast: „innowator w okresie t′ w odniesieniu do okresu t” oraz „plan

innowacyjny”, zamiast: „plan innowacyjny, w odniesieniu do systemu P”.

Wniosek 2.2 System produkcji P ′ jest innowacyjną transformacją systemu P wtedy i tylko wte-

dy, gdy zachodzi warunek: Y ′\Y ̸= ∅.

Wprowadzona innowacja staje się nowym elementem zasobu wiedzy technologicznej systemu

ekonomicznego, rozumianej jako zbiór planów produkcji, z których każdy opisuje sposób pro-

dukcji konkretnych towarów.

Definicja 2.11 System produkcjiP ′ nazywa się imitacyjną transformacją systemuP (ozn.P ⊏im

P ′), jeśli P ′ jest taką transformacją P , która nie jest innowacyjna.

W przypadku transformacji imitacyjnej, w systemie produkcji w okresie t′ nie jest produkowane

żadne nowe dobro, ani nie jest używana żadna nowa technologia w odniesieniu do okresu t.

Wniosek 2.3 System produkcji P ′ jest imitacyjną transformacją systemu P wtedy i tylko wtedy,

gdy zachodzi warunek: Y ′ ⊂ Y .

Niezależnie od tego czy transformacja jest imitacyjna czy innowacyjna, system produkcji może

w wyniku tej transformacji ulec destrukcji.

Definicja 2.12 System produkcji P ′ nazywa się destrukcyjną transformacją systemu P (ozn.

P ⊏d P ′), jeśli w okresie t′ zachodzi co najmniej jeden z poniższych warunków:

(i) Y \Y ′ ̸= ∅, tzn. pewna technologia używana w okresie t, nie jest używana w okresie t′;

39



(ii) istnieje b ∈ B takie, że Y b ̸= {0} i Y ′b = {0} tzn. któryś z producentów aktywnych

w okresie t jest nieaktywny w okresie t′ (zob. Uwaga 2.2).

W szczególnym przypadku, warunek (i)może oznaczać, że pewien towar produkowany w okre-

sie t nie jest produkowany w okresie t′. Specjalnym przypadkiem transformacji innowacyjnej

jest tzw. twórcza destrukcja systemu produkcji.

Definicja 2.13 Transformację P ′ systemu produkcji P nazywa się twórczą destrukcją (creative

detruction) i oznacza P ⊏cd P ′, jeśli P ′ jest równocześnie innowacyjną i destrukcyjną transfor-

macją systemu P .

Zaobserwowanie zmian innowacyjnych w systemie produkcji pozwala stwierdzić, że w systemie

ekonomicznym E został zainicjowany rozwój gospodarczy (Lipieta, Malawski 2018).

Definicja 2.14 Ekonomię E ′ nazywa się innowacyjną transformacją ekonomii E (ozn. E ⊏in

E ′), jeśli zachodzi warunek: P ⊏in P ′.

Ewolucja w przedstawionym modelu może przebiegać w następujący sposób. Niech

dane będą okresy t1 < t2 < t3.

1. W okresie t1 przy danym systemie cen p(t1) system ekonomicznyE(t1) znajduje się w sta-

nie równowagi (zobacz Definicja 2.8). Oznacza to, że każdy producent b ∈ B maksyma-

lizuje swój zysk, każdy konsument a ∈ H maksymalizuje swoje preferencje na zbiorze

budżetowym, a popyt nadwyżkowy określony wzorem (2.19) jest równy zero.

2. W okresie t2 pewien producent b̄ ∈ B może przeznaczyć część posiadanych środków

na badania, dzięki czemu wdraża innowacyjny plan produkcji yb̄(t2) ∈ Y b̄(t2)\Y b̄(t1).

Skutkiem wdrożenia planu yb̄(t2) jest pojawienie się na rynku nowego towaru, którego

cenę ustala innowator b̄ zgodnie z własnym kryterium. W ten sposób równowaga systemu

ekonomicznego E(t2) zostaje zachwiana.

3. Jeśli w okresie t3 żadna innowacja nie jest planowana lub wprowadzana przez producen-

tów to, przy cenach z okresu t3, system ekonomicznyE(t3)może osiągnąć stan równowa-

gi. Wówczas powtarza się sytuacja przedstawiona w punkcie 1. W przeciwnym wypadku,

tzn. jeśli któryś z producentów decyduje się na wprowadzenie innowacji, dochodzi do

sytuacji analogicznej, jak opisana w punkcie 2.
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Szczegółowa konstrukcja stanu równowagi przy niezmienionych cenach dla niewielkiej zmiany

zachodzącej w systemie produkcji znajduje się w pracy (Lipieta 2018).

2.3. Różnorodność systemu ekonomicznego ze skończoną licz-

bą producentów i konsumentów

Przestrzeń towarówRl stanowi obszar działania skończonej liczby podmiotów w sys-

temie ekonomicznym zaprezentowanym w części 2.2.1. W przestrzeni tej można określić funkcję

różnorodności zgodnie z podejściem zaprezentowanym w podrozdziale 2.1. Atrybutami w prze-

strzeni towarów mogą być podzbiory towarów posiadających ustalone cechy (takie jak kolor,

waga itp.), jak również zbiory towarów, do wytwarzania których użyta została określona tech-

nologia. W rozważanym modelu systemu gospodarczego przyjmuje się, że atrybuty stanowią

domknięte podzbiory przestrzeniRl.

Definicja 2.15 Funkcję v : 2Rl → [0,+∞) nazywa się funkcją różnorodności w przestrzeni

Rl, jeśli istnieje funkcja λ : 2Rl → [0,+∞) ważąca atrybuty (por. Definicja 2.1) w przestrzeni

towarówRl taka, że dla dowolnego D ⊂ Rl istnieje skończona wartość

v(D) =
∑

A⊂Rl:A∩D ̸=∅
λA =

∑
A∈Λ̄:A∩D ̸=∅

λA, (2.21)

gdzie Λ̄ := {A ⊂ Rl : λA > 0} oznacza rodzinę istotnych atrybutów.

Uwaga 2.5 Można zauważyć, że jeżeli #Λ̄ < +∞, tzn. rodzina istotnych atrybutów jest skoń-

czona, to funkcja różnorodności określona Definicją 2.15 istnieje.

2.3.1. Funkcja różnorodności w przestrzeni towarów w modelu ze skończo-

ną liczbą konsumentów

Niech dany będzie system konsumpcji C = (H, ξ, ε, ω) określony Definicją 2.6,

w którym działają konsumenci ze skończonego zbioru H . W rozprawie zakłada się, że każ-

dy konsument a ∈ H zna swoje aktualne i przyszłe potrzeby oraz ma ustaloną ich hierarchię

(por. Menger 1871). Oznacza to, każdy konsument a ∈ H potrafi rozpoznać istotne atrybuty
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dowolnego z towarów, a także, że potrafi jednoznacznie przypisać wagi wszystkim atrybutom

w przestrzeni Rl. Dzięki temu wagi atrybutów w przestrzeni towarów są jednoznacznie okre-

ślone przez konsumentów działających w danym systemie konsumpcji.

W rozprawie zakłada się, że każdy z konsumentów ze zbioru H wybiera istotne dla

siebie atrybuty ze skończonego zbioru

A = {A1, , ..., Ak}, gdzie Ai ⊂ Rl, dla każdego i = 1, ..., k, (2.22)

gdzie k jest pewną liczbą naturalną.

Definicja 2.16 Funkcję λa : 2Rl ∋ A 7→ λaA ∈ [0,+∞) nazywa się funkcją ważącą atrybuty

konsumenta a ∈ H , jeśli

1) Λa := {A ⊂ Rl : λaA > 0} ⊂ A, gdzie A jest rodziną określoną formułą (2.22);

2) ∑A∈Λa λaA = 1, tzn. łączna waga istotnych atrybutów konsumenta a wynosi 1.

Niech dla każdego a ∈ H dana będzie funkcja λa : 2Rl ∋ A 7→ λaA ∈ [0,+∞) ważąca atrybuty

konsumenta a określona zgodnie z Definicją 2.16.

Definicja 2.17 Funkcję λ : 2Rl ∋ A 7→ λA ∈ [0,+∞), która każdemu atrybutowi A ⊂ Rl

przypisuje wagę λA ­ 0 nadaną mu przez konsumentów ze zbioru skończonego H równą

λA :=
∑
a∈H
λaA, (2.23)

nazywa się funkcją ważącą atrybuty konsumentów ze zbioru skończonego H .

Waga przypisana przez konsumentów ze zbioru H atrybutowi A ⊂ Rl, jest równa sumie wag,

jakie temu atrybutowi przypisali poszczególni konsumenci ze zbioru H . Drugi warunek z De-

finicji 2.16, spełniony dla każdego konsumenta a ∈ H , powoduje że wszyscy konsumenci ze

zbioru H są „traktowani równo”, tzn. wagi przypisane atrybutowi przez każdego z konsumen-

tów mają podobne znaczenie. Suma występująca we wzorze (2.23) jest skończona dla każdego

A ⊂ Rl, ze względu na sposób zdefiniowania funkcji ważącej atrybuty każdego z konsumentów.

Zbiór

Λ :=
⋃
a∈H
Λa = {A ⊂ Rl : istnieje a ∈ H taki, że λaA > 0} (2.24)
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stanowi rodzinę atrybutów istotnych dla konsumentów ze zbioru H . W skład rodziny Λ okre-

ślonej wzorem (2.24) wchodzą wszystkie te atrybuty z przestrzeni towarów Rl, które są istotne

dla przynajmniej jednego konsumenta ze zbioru H .

Definicja 2.18 Funkcją różnorodności określoną przez konsumentów ze zbioru skończone-

go H nazywa się taką funkcję v : 2Rl → [0,+∞), której wartość dla dowolnego D ⊂ Rl

określona jest wzorem:

v(D) =
∑

A∈Λ:A∩D ̸=∅
λA, (2.25)

gdzie dla każdego A ⊂ Rl wartość λA jest dana formułą (2.23).

Funkcja różnorodności określona Definicją 2.18 wyznacza różnorodność dowolnego podzbioru

przestrzeni towarów z punktu widzenia konsumentów ze zbioruH . Wartość v(D), zdefiniowana

wzorem (2.25), nazywa się różnorodnością zbioru D określoną przez konsumentów ze zbioru

skończonego H lub krótko różnorodnością zbioru D.

Uwaga 2.6 Funkcja różnorodności określona Definicją 2.18 istnieje dla każdego skończonego

zbioru konsumentów H , ze względu na to, że rodzina istotnych atrybutów funkcji określona for-

mułą (2.24) jest skończona (por. Uwaga 2.5).

Uwaga 2.7 Analogicznie jak w części 2.1.1, dla danego atrybutu A ⊂ Rl, elementu przestrzeni

towarów y ∈ Rl oraz podzbioruD ⊂ Rl używa się określeń: „y posiada atrybutA”, gdy y ∈ A

oraz „atrybut A jest realizowany w zbiorze D”, jeśli zachodzi warunek A ∩D ̸= ∅.

Funkcja różnorodności spełniająca Definicję 2.18 posiada wszystkie istotne własności funkcji

różnorodności określonej Definicją 2.2, w szczególności jest ona zarówno monotoniczna (zob.

Spostrzeżenie 2.1) jak i submodularna (zob. Spostrzeżenie 2.4).

Spostrzeżenie 2.4 Jeśli v : 2Rl → [0,+∞) jest funkcją różnorodności określoną przez konsu-

mentów ze zbioru skończonego H , to dla dowolnych podzbiorów D,T ⊂ Rl takich, że D ⊂ T

oraz dla dowolnego elementu x ∈ Rl zachodzą nierówności:

v(D) ¬ v(T ) oraz v(T ∪ {x})− v(T ) ¬ v(D ∪ {x})− v(D). (2.26)
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Analogicznie jak w części 2.1.2, dla D ⊂ Rl oraz x, y ∈ Rl liczbę

d(x,D) := v(D ∪ {x})− v(D) =
∑

A⊂Rl:x∈A,A∩D=∅
λA (2.27)

nazywa się różnorodnością krańcową zbioru D. Podobnie liczbę

d(x, y) := d(x, {y}) = v({x, y})− v({y}) =
∑

A⊂Rl:x∈A, y/∈A
λA. (2.28)

nazywa się różnicą między x a y z punktu widzenia konsumentów ze zbioru H .

2.3.2. Funkcja różnorodności w systemie ekonomicznym ze skończoną licz-

bą podmiotów

Niech v : 2Rl → [0,+∞) będzie funkcją różnorodności określoną przez konsumen-

tów ze zbioru skończonegoH , którzy działają w systemie konsumpcjiC. W rozważanym mode-

lu przyjmuje się, że dla każdego konsumenta a ∈ H , funkcja ważąca atrybuty tego konsumenta,

określona Definicją 2.16, wyznacza jego relację preferencji (por. wzór (2.16)) następująco: dla

dowolnych x, y ∈ Xa

x ⪯a y wtedy i tylko wtedy, gdy
∑

A∈Λ:x∈A
λaA ¬

∑
A∈Λ: y∈A

λaA. (2.29)

Funkcja v, która mierzy różnorodność poszczególnych podzbiorów przestrzeni towarów ze wzglę-

du na potrzeby istniejące wśród konsumentów z ustalonego skończonego zbioruH , może zostać

zastosowana w dowolnym systemie ekonomicznym E = (P,C, θ), w którym w systemie kon-

sumpcji C działają konsumenci ze zbioru H . Za pomocą tej funkcji można porównywać np.

zbiory budżetowe poszczególnych konsumentów przy danym systemie cen i w ten sposób ana-

lizować ich wolność wyboru lub ubóstwo w danym systemie ekonomicznym. Dla analizy zmian

ewolucyjnych, związanych z innowacyjną działalnością przedsiębiorstw, szczególnie znaczenie

ma różnorodność zbioru Y =
⋃
b∈B Y

b (por. wzór (2.14)) składającego się z tych planów pro-

dukcji, które są możliwe do zrealizowania w badanym systemie ekonomicznym.

Definicja 2.19 Różnorodnością ekonomii E = (P,C, θ) ze skończoną liczbą podmiotów na-

zywa się liczbę v(Y ).
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Różnorodność systemu ekonomicznego E jest wyznaczona przez wartość funkcji v : 2Rl →

[0,+∞), określonej przez skończoną liczbę konsumentów działających w systemie konsump-

cji C (zob. Definicja 2.18), na zbiorze planów produkcji, możliwych do zrealizowania przez

skończoną liczbę producentów działających w systemie produkcji P . Tak zdefiniowana liczba

v(Y ) określa możliwy poziom zaspokojenia potrzeb konsumentów przez działalność producen-

tów w systemie ekonomicznymE. Można porównywać różnorodność dwóch różnych systemów

ekonomicznych: E oraz E ′ pod warunkiem, że w obu systemach działają konsumenci z ustalo-

nego zbioru skończonego H i dla każdego konsumenta a ∈ H funkcja ważąca jego atrybuty,

określona Definicją 2.16, jest w obu systemach ekonomicznych taka sama.

2.4. Podsumowanie

W tym rozdziale zaprezentowano wieloatrybutowy model różnorodności skończone-

go zbioru obiektów, pochodzący od Nerhinga i Puppego (2002). Przedstawiono w nim również

model systemu gospodarczego ze skończoną liczbą podmiotów ekonomicznych oraz omówiono

sposób ewolucji modelowanego systemu w czasie dyskretnym. W zdefiniowanym systemie eko-

nomicznym określono funkcję różnorodności w przestrzeni towarów, zdefiniowaną przez skoń-

czoną liczbę konsumentów działających w tym systemie. Podano również definicję różnorod-

ności systemu ekonomicznego ze skończoną liczbą podmiotów, jako różnorodność zbioru tych

planów produkcji, które są możliwe do zrealizowania przez skończoną liczbę producentów dzia-

łających w tym systemie. W ten sposób zrealizowano pierwszy z podstawowych celów niniej-

szej rozprawy, którym było uogólnienie definicji różnorodności zbioru zaproponowanej przez

Nehringa i Puppego (2002) na różnorodność systemu ekonomicznego. Cel ten został zrealizo-

wany w modelu systemu gospodarczego, w którym działa skończona liczba podmiotów, przy

założeniu że każdy z konsumentów wybiera istotne dla siebie atrybuty, ze skończonej rodziny

podzbiorów przestrzeni towarów.
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Rozdział 3

Wpływ zmian ewolucyjnych
na różnorodność systemu ekonomicznego
ze skończoną liczbą podmiotów

W poprzednim rozdziale przedstawiono model systemu ekonomicznego, w którym

w przestrzeni towarów działa skończona liczba podmiotów. W modelu tym skonstruowano funk-

cję różnorodności, określoną przez konsumentów, dzięki której możliwe stało się wyznacze-

nie różnorodności dowolnego podzbioru przestrzeni towarów. W szczególności, różnorodność

zbioru planów produkcji, możliwych do zrealizowania w systemie ekonomicznym, posłużyła do

zdefiniowania różnorodności tego systemu. W tym rozdziale zbadany zostanie wpływ rodzaju

zachodzącej transformacji, modelowanej w czasie dyskretnym, na różnorodność systemu eko-

nomicznego ze skończoną liczbą podmiotów.

Zmiany ewolucyjne zachodzące w systemie gospodarczym mogą być wynikiem pew-

nych mechanizmów, które można modelować przy użyciu narzędzi matematycznych typowych

dla teorii projektowania mechanizmów ekonomicznych (mechanism design). Nowatorski po-

mysł Leonida Hurwicza analizowania procesów ekonomicznych jako mechanizmów, został do

teorii ekonomii wprowadzony w 1960 roku jego pracą „Optimality and informational efficiency

in resource allocation processes” (Hurwicz 1960). Rozwój teorii projektowania mechanizmów

(Hurwicz 1972; 1973; 1986; Hurwicz et al. 1975; Myerson 1979; 1981; Maskin, Riley 1984;

Maskin 1999; Hurwicz, Reiter 2006) i jej praktyczna implementacja, zaowocowały przyzna-

niem Leonidowi Hurwiczowi, Ericowi Maskinowi oraz Rogerowi Myersonowi Nagrody Nobla

w 2007 roku. Teoria projektowania mechanizmów ekonomicznych podkreśla znaczenie prze-

pływu informacji w gospodarce, a mechanizmy zazwyczaj konstruuje się w celu rozwiązania
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problemów, w których komunikacja pomiędzy podmiotami gospodarczymi jest konieczna do

osiągnięcia pożądanego społecznie rezultatu. Hurwiczowskich mechanizmów ekonomicznych

używa się między innymi do modelowania rezultatów ewolucji schumpeterowskiej zachodzą-

cej w systemie gospodarczym. Stąd, wyróżnia się takie mechanizmy, których wyniki są typo-

we dla zmian obserwowanych w dwóch formach gospodarki opisywanych przez Schumpetera

(1934), tzn. mechanizm cenowy dla ruchu okrężnego (circular flow) i mechanizm jakościowy

dla rozwoju gospodarczego (economic development) (Lipieta, Malawski 2016). Bada się tak-

że właściwości mechanizmów imitacyjnych (Lipieta 2018), eko-mechanizmów, które prowadzą

system ekonomiczny do stanu równowagi (Lipieta, Malawski 2021) czy też mechanizmów pro-

wadzących do równowagi w systemie gospodarczym z rynkiem finansowym (Lipieta, Ćwięczek

2022).

Celem badań przeprowadzonych w tym rozdziale jest określenie wzajemnych zależ-

ności pomiędzy różnorodnością systemu ekonomicznego i jego ewolucją, poprzez weryfikację

hipotez badawczych: H1 i H2. Analiza zmian ewolucyjnych zachodzących w wyniku transforma-

cji systemu ekonomicznego, zostanie w tym rozdziale przeprowadzona przy założeniu, że w sys-

temie ekonomicznym działa skończona liczba podmiotów, a zmiany obserwowane są w czasie

dyskretnym. Do określenia wyników zachodzącej transformacji systemu ekonomicznego zosta-

ną użyte metody projektowania mechanizmów ekonomicznych. Porównywanie różnorodności

systemu ekonomicznego oraz jego transformacji zostanie przeprowadzone w oparciu o wartości

funkcji różnorodności, określonej tak samo dla obu systemów, przy założeniu, że działają w nich

konsumenci z tego samego zbioru skończonego. Wyniki przedstawione w podrozdziale 3.1 zo-

stały w większości opublikowane wcześniej w pracy (Pliś 2020), natomiast wyniki podrozdziału

3.2 pochodzą z pracy (Lipieta, Pliś 2022).

3.1. Różnorodność a ewolucja systemu ekonomicznego ze skoń-

czoną liczbą podmiotów ekonomicznych

Do opisu zmian ewolucyjnych zachodzących w czasie dyskretnym w systemie eko-

nomicznym ze skończoną liczbą podmiotów, używa się w proponowanym modelu terminologii

przedstawionej w części 2.2.2 niniejszej rozprawy.
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3.1.1. Zmiana różnorodności systemu ekonomicznego

Niech będą ustalone dwa okresy: t oraz t′, przy czym t < t′. Niech E = (P,C, θ)

będzie systemem ekonomicznym w okresie t, opisanym w części 2.2.1 (zob. Definicja 2.7),

a E ′ = (P ′, C ′, θ′) – jego transformacją w okresie t′ (zob. Definicja 2.9), przy czym E ̸= E ′.

Niech w obu systemach ekonomicznych: E oraz E ′ działają konsumenci z tego samego skoń-

czonego zbioru H . Wówczas funkcja różnorodności v : 2Rl → [0,+∞) określona przez kon-

sumentów ze zbioru H zgodnie z Definicją 2.18, może zostać użyta do wyznaczania różno-

rodności podzbiorów przestrzeni towarów w obu systemach ekonomicznych: E oraz E ′. Niech

w obu systemach: E oraz E ′ działają producenci z tego samego skończonego zbioru B. Niech

Y oznacza zbiór technologicznie możliwych planów produkcji w systemie produkcji P (zob.

Definicja 2.14), natomiast Y ′ oznacza zbiór tych planów produkcji, które są możliwe do wy-

konania w systemie produkcji P ′. Wówczas różnorodność systemu ekonomicznego E, zgodnie

z Definicją 2.19 wyznacza liczba v(Y ), natomiast liczba v(Y ′) określa różnorodność systemu

ekonomicznego E ′.

Uwaga 3.1 Przy powyższych ustaleniach sformułowanie: „różnorodność systemu ekonomicz-

nego E rośnie” oznacza, że zachodzi warunek: v(Y ) < v(Y ′). Podobnie, sformułowanie: „róż-

norodność E maleje” oznacza, że zachodzi nierówność: v(Y ) > v(Y ′), a określenie: „różno-

rodność ekonomii E nie zmienia się” oznacza, że: v(Y ) = v(Y ′).

Można zauważyć, że pomiędzy poszczególnymi rodzajami transformacji systemu produkcji opi-

sanymi w części 2.2.2 a zmianą różnorodności systemu ekonomicznego zachodzą następujące

zależności.

Spostrzeżenie 3.1 (Pliś 2020) Warunkiem koniecznym wzrostu różnorodności systemu ekono-

micznegoE, jest zrealizowanie innowacyjnego planu produkcji (zob. Uwaga 2.4) przez pewnego

producenta b ∈ B, tzn. zachodzi implikacja:

jeśli v(Y ) < v(Y ′), to P ⊏in P
′. (3.1)

Dowód. Niech zgodnie z założeniem zachodzi nierówność: v(Y ) < v(Y ′). Dla dowodu nie

wprost można przyjąć, że nie zachodzi następnik implikacji, tzn. nie zachodzi warunek:P (t) ⊏in
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P (t′). Wówczas z Definicji 2.10 zachodzi inkluzja: Y ′ ⊂ Y . Na mocy Spostrzeżenia 2.4 funk-

cja różnorodności określona Definicją 2.18 jest monotoniczna, zatem v(Y ′) ¬ v(Y ), co jest

sprzeczne z przyjętym założeniem. Wobec powyższego, implikacja (3.1) jest prawdziwa. ■

Na podstawie powyższego spostrzeżenia, można stwierdzić, że innowacyjna transformacja sys-

temu produkcji jest jedynym rodzajem transformacji, która może wywołać wzrost różnorodności

systemu ekonomicznego.

Wniosek 3.1 Jeśli zachodzi transformacja imitacyjna systemu produkcji, to różnorodność sys-

temu ekonomicznego E nie rośnie, tzn. zachodzi implikacja:

jeśli P ⊏im P ′, to v(Y ) ­ v(Y ′).

Wniosek 3.2 Niech P ⊏in P ′. Jeśli różnorodność systemu ekonomicznego E maleje, to trans-

formacja systemu produkcji jest destrukcyjna, tzn. zachodzi implikacja:

jeśli v(Y ′) < v(Y ), to P ⊏d P ′.

Okazuje się, że twierdzenie przeciwne do Wniosku 3.2 nie jest prawdziwe i nie każda transfor-

macja destrukcyjna powoduje zmniejszenie różnorodności systemu ekonomicznego (zob. część

3.1.3).

Wniosek 3.3 Niech P ⊏in P ′. Jeśli różnorodność systemu ekonomicznego E maleje, to trans-

formacja systemu produkcji jest destrukcyjna, tzn. zachodzi implikacja:

jeśli v(Y ′) < v(Y ), to P ⊏d P ′.

3.1.2. Innowacje i istotne innowacje w systemie ekonomicznym

Spostrzeżenie 3.1 określa warunek konieczny dla wzrostu różnorodności systemu eko-

nomicznego. Jest nim użycie przez pewnego producenta b ∈ B innowacyjnego planu produkcji

y′ ∈ Y ′\Y . Wprowadzenie takiego planu produkcji nie musi jednak spowodować wzrostu róż-

norodności systemu ekonomicznego. Może to być związane z tym, że:

1) w systemie produkcji zachodzi równocześnie transformacja destrukcyjna, która powoduje,

że różnorodność systemu ekonomicznego maleje;
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2) wprowadzony przez innowatora plan produkcji nie posiada żadnego atrybutu, który jest

równocześnie: istotny dla konsumentów i niemożliwy do zrealizowania w poprzednim

okresie.

Intuicję zawartą w punkcie drugim można, wykorzystując definicje przedstawione w podroz-

dziale 2.2, sformalizować następująco. Niech Λ będzie rodziną atrybutów istotnych dla konsu-

mentów ze zbioruH (zob. wzór (2.24)), a y′ ∈ Y ′\Y – innowacyjnym planem produkcji. Niech

dla każdego atrybutu A ∈ Λ zachodzi implikacja: jeśli y′ ∈ A, to Y ∩A ̸= ∅, tzn. każdy istotny

atrybut posiadany przez plan y′ jest realizowany w zbiorze Y . Wówczas v(Y ∪ {y′}) = v(Y ).

Definicja 3.1 Plan produkcji y′ ∈ Y ′ nazywa się planem istotnie innowacyjnym w systemie

produkcji P ′ w odniesieniu do systemu P , jeśli zachodzi warunek:

d(y′, Y ) = v(Y ∪ {y′})− v(Y ) > 0. (3.2)

Uwaga 3.2 Gdy systemy produkcji P oraz P ′ są ustalone, to istotnie innowacyjny plan pro-

dukcji w systemie produkcji P ′ w odniesieniu do systemu P , krótko nazywa się planem istotnie

innowacyjnym.

Plan produkcji możliwy do zrealizowania w systemie produkcji P ′ jest planem istotnie inno-

wacyjnym, jeśli powoduje on przyrost różnorodności krańcowej zbioru Y określonej formułą

(2.27).

Spostrzeżenie 3.2 Każdy istotnie innowacyjny plan produkcji jest planem innowacyjnym, tzn.

dla każdego y′ ∈ Y ′ zachodzi implikacja:

jeśli d(y′, Y ) > 0, to y′ ∈ Y ′\Y .

Powyższe Spostrzeżenie wynika z monotoniczności funkcji różnorodności (zob. Spostrzeżenie

2.4). Można zauważyć, że jeśli y′ jest planem istotnie innowacyjnym, a y – dowolnym planem

technologicznie możliwym do wykonania w systemie produkcji P , to różnica ekonomiczna mię-

dzy y′ a y określona wzorem (2.28) jest dodatnia. Formalnie można to zapisać w poniższy spo-

sób.

Spostrzeżenie 3.3 Jeśli y ∈ Y oraz d(y′, Y ) > 0, to d(y′, y) > 0.
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Dowód. W oparciu o Spostrzeżenie 2.4, można zauważyć, że: d(y′, y) = v({y, y′})− v({y}) ­

v(Y ∪ {y′})− v(Y ) = d(y′, Y ) > 0.
■

Definicja 3.2 System produkcji P ′ nazywa się istotnie innowacyjną transformacją systemu P

(ozn. P ⊏inn P ′), jeśli w P ′ istnieje istotnie innowacyjny plan produkcji określony Definicją 3.1.

Definicja 3.3 System ekonomiczny E ′ nazywa się istotnie innowacyjną transformacją systemu

E (ozn. E ⊏inn E ′), jeśli zachodzi P ⊏inn P ′.

Wniosek 3.4 Każda istotnie innowacyjna transformacja systemu ekonomicznego jest jego trans-

formacją innowacyjną.

Spostrzeżenie 3.4 Jeśli system produkcjiP ′ jest taką transformacją sytemuP , która jest istotnie

innowacyjna oraz nie jest transformacją destrukcyjną, to różnorodność systemu ekonomicznego

rośnie, tzn. zachodzi implikacja:

jeśli P ⊏inn P
′ i nie zachodzi warunek P ⊏d P

′, to v(Y ) < v(Y ′). (3.3)

3.1.3. Różnorodność a twórcza destrukcja systemu ekonomicznego

Z Wniosku 3.3 wiadomo, że zmniejszenie różnorodności systemu ekonomicznego jest

spowodowane zachodzącą w systemie produkcji transformacją destrukcyjną, która może spowo-

dować eliminację z systemu produkcji niektórych towarów lub technologii (por. Definicja 2.12).

Można jednak wskazać taką rodzinę destrukcyjnych transformacji systemu produkcji, które nie

powodują zmniejszenia różnorodności systemu ekonomicznego. Zaliczają się do niej transfor-

macje destrukcyjne, w których:

• z systemu produkcji eliminowane są jedynie atrybuty nieistotne dla konsumentów;

• równoczesna transformacja innowacyjna powoduje przejęcie istotnych atrybutów elimi-

nowanych planów produkcji przez plany innowacyjne.

Jako przykład dla tej ostatniej intuicji niech służy atrybut: „narzędzie służące do prania odzie-

ży”. Atrybut ten posiadała, używana kiedyś w Polsce, tara do prania. Obecnie to narzędzie nie

jest już powszechnie używane w Polsce, ale wspomniany atrybut jest nadal realizowany przez
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producentów, o czym świadczyć może obecność pralek czy też pralko-suszarek w większości

polskich gospodarstw domowych.

NiechΛ będzie rodziną atrybutów istotnych dla konsumentów ze zbioruH (zob. wzór

(2.24)). Transformacja P ′ „zachowuje” wszystkie istotne atrybuty systemu produkcji P , gdy dla

każdego A ∈ Λ zachodzi następująca implikacja:

jeśli Y ∩ A ̸= ∅, to Y ′ ∩ A ̸= ∅. (3.4)

Można zauważyć, że spośród transformacji innowacyjnych warunek (3.4) jest spełniony w przy-

padku, gdy Y ⊂ Y ′, tzn. dla każdej transformacji, która nie jest destrukcyjna. Spośród trans-

formacji, które zakładają twórczą destrukcję systemu produkcji (zob. Definicja 2.13) można

wyróżnić rodzinę transformacji, które spełniają warunek (3.4).

Definicja 3.4 (Lipieta, Pliś 2022) Niech P ⊏cd P ′. Jeśli zachodzi warunek (3.4), to system

produkcji P ′ nazywa się v-twórczą destrukcją systemu P .

Transformacja systemu ekonomicznego, w której system produkcji podlega v-twórczej destruk-

cji jest transformacją innowacyjną, w której zachodzące zmiany destrukcyjne obejmują jedynie

przestarzałe rozwiązania produkcyjne i niechciane towary. Taki rodzaj zmian, który jest natural-

nym sposobem ewoluowania gospodarki, odpowiada procesowi opisywanemu przez Josepha A.

Schumpetera jako twórcza destrukcja (por. Schumpeter 1942).

Spostrzeżenie 3.5 (Lipieta, Pliś 2022) W przypadku v-twórczej destrukcji systemu produkcji

różnorodność systemu ekonomicznego nie maleje, tzn.

jeśli P ⊏v P ′, to v(Y ) ¬ v(Y ′).

W pewnych przypadkach transformacja, która jest v-twórczą destrukcją systemu produkcji, mo-

że spowodować wzrost różnorodności systemu ekonomicznego. Mianowicie, dzięki Spostrzeże-

niom 3.4 oraz 3.5 można zauważyć co następuje.

Spostrzeżenie 3.6 Jeśli w v-twórczej destrukcji P ′ systemu P istnieje istotnie innowacyjny plan

produkcji, to różnorodność systemu ekonomicznegoE rośnie, tzn. jeśli d(y′, Y ) > 0 dla pewnego

y′ ∈ Y ′ i spełniony jest warunek (3.4), to v(Y ) < v(Y ′).
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Wniosek 3.5 Istotnie innowacyjna transformacja systemu ekonomicznego E, która spełnia wa-

runek (3.4), tzn. zachowuje wszystkie istotne atrybuty sprawia, że różnorodność systemu E ro-

śnie.

3.2. Różnorodność a mechanizmy ewolucji ekonomicznej

Opisywany w podrozdziale 3.1, wzajemny wpływ zmian zachodzących w systemie

ekonomicznym na jego różnorodność, można analizować dla mechanizmów ewolucyjnych zde-

finiowanych zgodnie z podejściem Leonida Hurwicza (1960).

3.2.1. Mechanizm ekonomiczny w ujęciu L. Hurwicza

Hurwiczowski mechanizm ekonomiczny można rozumieć jako system wymiany i prze-

twarzania informacji pomiędzy podmiotami gospodarczymi. Konstrukcja takiego mechanizmu

wymaga wyodrębnienia środowiska ekonomicznego, a także określenia przestrzeni informacji

oraz funkcji celu działań podmiotów ekonomicznych. Środowisko ekonomiczne opisuje podmio-

ty gospodarcze. Przyjmuje się, że podmioty gospodarcze generują sygnały, które mogą służyć

do wzajemnej komunikacji. Sygnały tworzą tzw. przestrzeń informacji. Z kolei funkcja celu,

każdemu środowisku ekonomicznemu przypisuje rezultat mechanizmu.

Niech E oznacza zbiór środowisk ekonomicznych,M będzie przestrzenią informacji,

a Z składa się z wyników działań podjętych przez podmioty ekonomiczne na podstawie wysy-

łanych sygnałów. Zbiory E,M i Z są ze sobą związane poprzez dwa odwzorowania: korespon-

dencję zatwierdzania informacji oraz funkcję wyniku. Korespondencją zatwierdzania informa-

cji nazywa się przyporządkowanie µ : E → M , które środowisku ekonomicznemu przypisuje

zbiór możliwych sygnałów wysyłanych przez podmioty ekonomiczne. Funkcją wyniku nazywa

się przyporządkowanie h : M → Z, które każdemu sygnałowi przypisuje rezultat działań pod-

jętych w odpowiedzi na ten sygnał przez podmioty.

Definicja 3.5 (Hurwicz, Reiter 2006) Mechanizmem ekonomicznym w sensie Hurwicza (me-

chanizmem hurwiczowskim) nazywa się trójkę Γ = (M,µ, h), w którejM stanowi przestrzeń

informacji, µ : E → M jest korespondencją zatwierdzania informacji, a h : M → Z stanowi

funkcję wyniku.
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3.2.2. System ekonomiczny jako środowisko hurwiczowskiego mechanizmu

Zmiany ewolucyjne zachodzące w systemie ekonomicznym można modelować po-

przez mechanizm hurwiczowski. Środowisko mechanizmu jest w tym przypadku utożsamione

z systemem ekonomicznym, a sygnały stanowią działania realizowane w tym systemie przez pro-

ducentów i konsumentów. Mechanizm hurwiczowski, którego wyniki są obserwowane w syste-

mie ekonomicznym, który stanowi jego środowisko, nazywa się mechanizmem statycznym. Jeśli

rezultaty mechanizmu są obserwowane w transformacji systemu ekonomicznego, to taki mecha-

nizm nazywa się mechanizmem dynamicznym. Szczegółowy opis kluczowych, z punktu widze-

nia schumpeterowskiej wizji rozwoju gospodarczego, własności mechanizmów hurwiczowskich

można znaleźć w pracy (Lipieta, Malawski 2021).

NiechK := B∪H będzie zbiorem podmiotów, gdzieB iH są odpowiednio zbiorami:

producentów i konsumentów, działających na rynku l towarów. Zbiór K jest zbiorem o liczeb-

ności#K = κ ¬ n+m, przy czym n ∈ N oznacza skończoną liczbę producentów, am ∈ N –

skończoną liczbę konsumentów. Niech dany będzie system ekonomiczny E = (P,C, θ) w okre-

sie t, gdzie P = (B, y) jest systemem produkcji, a C = (H, ξ, ε, ω) jest systemem konsumpcji

(por. Definicja 2.7). W prezentowanym modelu zakłada się, że każdy podmiot k ∈ K, działający

w systemie ekonomicznym E, może zostać scharakteryzowany jako producent lub konsument.

Określa się zatem dla każdego podmiotu k ∈ K w okresie t (por. część 2.2.1):

• zbiór produkcji Y k i zbiór konsumpcji Xk:

Y k :=

 Y
b, k ∈ B

{0}, k /∈ B
, Xk :=

 X
a, k ∈ H

{0}, k /∈ H
;

• wektor zasobu ωk oraz relację preferencji ⪯k:

ωk :=

 ωa, k ∈ H

0 ∈ Rl, k /∈ H
, ⪯k:=

 ⪯
a, k ∈ H

∅, k /∈ H
.

Udziały konsumentów w zyskach producentówΘ: K×K → [0, 1] w okresie t definiuje się dla
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każdego podmiotu k ∈ K następująco:

Θ(k, ·) :=

 0, k /∈ H

θ(a, ·), k ∈ H
oraz Θ(·, k) :=

 0, k /∈ B

θ(·, b), k ∈ B
.

Jeśli k ∈ K jest podmiotem działającym w systemie ekonomicznymE, to zestaw charakterystyk

ek :=
(
Y k, Xk, ωk,⪯k, Θ

)
(3.5)

nazywa się środowiskiem podmiotu k w okresie t. Każde środowisko ustalonego podmiotu

k ∈ K w okresie t składa się więc ze: zbioru produkcji Y k, zbioru konsumpcji Xk, wektora

zasobu ωk, relacji preferencji ⪯k oraz wielkości udziałów w zyskach przypisanych podmiotowi

k w pewnym systemie ekonomicznym E. Wszystkie możliwe charakterystyki podmiotu k jako

konsumenta i producenta w okresie t określa zbiór:

Ek :=
{
ek : ek jest środowiskiem podmiotu k w okresie t

}
.

Iloczyn kartezjański:

E = E1 × ...× Eκ

tworzy zbiór środowisk w okresie t, a każdy element tego iloczynu postaci

e :=
(
e1, ..., eκ

)
∈ E (3.6)

nazywa się środowiskiem w okresie t. Każde tak zdefiniowane środowisko w okresie t można

utożsamić z pewnym systemem ekonomicznym E w okresie t.

W środowisku e ∈ E, przy wektorze cen p ∈ Rl, każdy podmiot k ∈ K wybiera swoje

plany działania jako producent oraz konsument, tzn. ustala swój plan produkcji yk ∈ Y k oraz

plan konsumpcji xk ∈ βk(p), gdzie βk(p) stanowi zbiór budżetowy podmiotu k jako konsumenta

w systemie ekonomicznym E. Każdy sygnał wysyłany przez podmiot k ∈ K w środowisku

e ∈ E ma postać:

mk(e) :=
(
p, yk, xk

)
(3.7)

i należy go rozumieć jako zestaw działań, które podejmuje podmiot k jako producent i konsu-
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ment w systemie ekonomicznymE przy systemie cen p. Zakłada się przy tym, że każdy podmiot

wie jakie działania w trwającym okresie podejmują pozostali uczestnicy rynku, tzn. zna wszyst-

kie plany konsumpcji i plany produkcji realizowane w okresie t. Zbiór możliwych sygnałów

wysyłanych przez podmiot k w środowisku e ∈ E oznacza się przez

Mk(e) :=
{
mk(e) =

(
p, yk, xk

)
: yk ∈ Y k, xk ∈ βk(p)

}
.

W rozpatrywanym modelu zakłada się, że dla każdego k zbiórMk(e) jest niepusty. Przyjmuje się

również, że spośród możliwych sygnałów ze zbioruMk(e) podmiot k wybiera dokładnie jeden.

Każdy sygnał wysyłany przez środowisko e ∈ E jest zestawieniem sygnałów mk(e) ∈ Mk(e)

poszczególnych podmiotów ekonomicznych k ∈ K i ma postać:

m(e) :=
((
p, y1, x1

)
, . . . , (p, yκ, xκ)

)
. (3.8)

Zbiór wszystkich sygnałów wysyłanych przez środowisko e ∈ E oznacza się przez

M(e) =M1(e)× . . .×Mκ(e). (3.9)

Zbiór sygnałów wysyłanych przez wszystkie możliwe środowiska ekonomiczne (czyli wszystkie

systemy ekonomiczne w okresie t) jest postaci:

M :=
⋃
e∈E
M(e). (3.10)

Odwzorowanie µ : E → M przypisuje każdemu środowisku e ∈ E zbiór M(e) możliwych

sygnałów wysyłanych przez to środowisko.

3.2.3. Mechanizmy ewolucji schumpeterowskiej

Mechanizm opisujący zmiany zachodzące w systemie ekonomicznym jest mechani-

zmem dynamicznym, co oznacza, że jego rezultaty są obserwowane w pewnej transformacji

systemu gospodarczego (zob. część 2.2.2).

Niech będą ustalone dwa okresy: t < t′. Niech E = (P,C, θ) będzie systemem eko-

nomicznym (zob. Definicja 2.7) w okresie t. NiechP = (B, y) stanowi system produkcji tej eko-
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nomii, aC = (H, ξ, ε, ω) – jej system konsumpcji. NiechE ′ = (P ′, C ′, θ′) będzie transformacją

systemu E w okresie t′ zgodnie z Definicją 2.9. Niech P ′ = (B′, y′) oraz C ′ = (H, ξ′, ε′, ω′)

będą odpowiednio: systemem produkcji i systemem konsumpcji ekonomii E ′.

Niech dane będzie przekształcenie przestrzeni towarów Q : Rl → Rl.

Twierdzenie 3.1 Jeśli dla każdego k ∈ K i dla każdego yk ∈ Y k plan produkcji Q(yk)

jest możliwy do zrealizowania przez producenta k w systemie produkcji P ′, to odwzorowanie

Q : Rl → Rl określa dynamiczny mechanizm hurwiczowski, którego rezultaty są obserwowane

w transformacji E ′ systemu ekonomicznego E.

Dowód. W celu zdefiniowania mechanizmu Γ = (M,µ, h) określa się:

• korespondencję informacji µ : E→M , która każdemu środowisku e ∈ E przypisuje zbiór

sygnałów wysyłanych przez podmioty działające w tym środowisku, tzn.: µ(e) =M(e);

• zbiór wyników postaci:

Z :=
{(
x′1, . . . , x′k

)
,
(
y′1, . . . , y′k

)
: x′k ∈ Rl, y′k ∈ Y ′k, k ∈ K

}
;

• funkcję wyniku h : M(e)→ Z, gdzie dla dowolnego sygnałum(e) ∈M(e):

h (m(e)) =
((
x′1, . . . , x′κ

)
,
(
Q(y1), . . . , Q(yκ)

))
.

Transformacja E ′ = (P ′, C ′, θ′) systemu ekonomicznego E = (P,C, θ), w której obserwowane

są rezultaty mechanizmu, jest określona w ten sposób, że:

• Y ′k = Q(Y k),

• X ′k = Xk, ω′k = ωk, ⪯′k=⪯k, Θ′ = Θ.

Tak skonstruowany mechanizm Γ = (M,µ, h), jest mechanizmem dynamicznym. ■

Można również analizować mechanizmy, w których dochodzi do zmiany charakterystyk całego

systemu ekonomicznego, w szczególności również charakterystyk systemu konsumpcji, ale nie

są one analizowane w niniejszej rozprawie.
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Rodzaj mechanizmu hurwiczowskiego Γ = (M,µ, h) skonstruowanego w dowodzie

Twierdzenia 3.1 zależy od tego, jaką transformację systemu produkcji (zob. część 2.2.2) uzy-

skuje się w jego rezultacie.

Definicja 3.6 (Lipieta, Malawski 2021) Γ = (M,µ, h) nazywa się mechanizmem

• imitacyjnym, gdy jego rezultatem jest transformacja P ′ taka, że P ⊏im P ′;

• innowacyjnym, jeśli skutkuje transformacją P ′ taką, że P ⊏in P ′,

• twórczej destrukcji, pod warunkiem, że równocześnie zachodzi P ⊏in P ′ oraz P ⊏d P ′.

Rodzaj transformacji systemu produkcji, którą określa mechanizm hurwiczowski, zależy od spo-

sobu zdefiniowania odwzorowania Q : Rl → Rl, które przekształca zbiory produkcji poszcze-

gólnych podmiotów.

Spostrzeżenie 3.7 (Lipieta, Malawski 2021) NiechQ : Rl → Rl będzie odwzorowaniem okre-

ślonym w dowodzie Twierdzenia 3.1. Wówczas

(i) jeżeli dla każdego y ∈ Y zachodzi Q(Y ) ⊂ Y , to Γ jest mechanizmem imitacyjnym;

(ii) jeżeli istnieje y ∈ Y taki, że Q(y) /∈ Y , to Γ jest mechanizmem innowacyjnym;

(iii) jeśli zachodzi (ii) oraz istnieje y ∈ Y takie, że y /∈ Q(Y ), to Γ jest mechanizmem twórczej

destrukcji.

3.2.4. Różnorodność a mechanizmy ewolucji schumpeterowskiej

NiechE = (P,C, θ) będzie systemem ekonomicznym w okresie t, aE ′ = (P ′, C ′, θ′)

– transformacją systemu E w okresie t′, w której obserwowane są rezultaty mechanizmu hur-

wiczowskiego Γ, zdefiniowanego w dowodzie Twierdzenia 3.1. Można zauważyć, na podsta-

wie sposobu zdefiniowania mechanizmu Γ, że w systemach ekonomicznych E oraz E ′ działają

konsumenci z tego samego zbioru H . Można więc porównywać różnorodność systemów eko-

nomicznych E oraz E ′ używając funkcji różnorodności v : 2Rl → [0,+∞) określonej przez

konsumentów ze zbioru H zgodnie z Definicją 2.18 jednakowo w obu systemach ekonomicz-

nych.

Dynamiczny mechanizm hurwiczowski skonstruowany w dowodzie Twierdzenia 3.1

może skutkować zmianą różnorodności systemu ekonomicznego (zob. Definicje: 2.19 oraz 3.1).
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Wniosek 3.6 Niech dany będzie mechanizmΓ określony w dowodzie Twierdzenia 3.1. Wówczas:

1) jeśli różnorodność systemu ekonomicznego zwiększa się, to Γ jest mechanizmem innowa-

cyjnym (por. Spostrzeżenie 3.1);

2) jeśli Γ jest mechanizmem imitacyjnym, to różnorodność systemu ekonomicznego się nie

zwiększa (por. Wniosek 3.1);

3) jeśli różnorodność systemu ekonomicznego się zmniejsza, to Γ jest mechanizmem destruk-

cyjnym (por. Wniosek 3.2);

4) jeśli Γ jest mechanizmem twórczej destrukcji, to różnorodność systemu ekonomicznego

mogła zmienić się w dowolny sposób (zob. części 3.1.2 oraz 3.1.3).

Szczególnie interesujący jest ostatni przypadek mechanizmu, który będąc równocześnie destruk-

cyjnym jak i innowacyjnym, może wywołać dowolną zmianę różnorodności systemu ekonomicz-

nego.

Na bazie funkcji różnorodności określonej przez konsumentów ze zbioru skończone-

go H (zob. Definicja 2.18), w systemie można zdefiniować dodatkowe dwa rodzaje dynamicz-

nego mechanizmu hurwiczowskiego Γ, który występuje w dowodzie Twierdzenia 3.1.

Definicja 3.7 Mechanizm Γ nazywa się istotnie innowacyjnym, jeśli jego rezultatem transfor-

macja P ′ systemu produkcji P , która spełnia warunek P ⊏inn P ′ (zob. Definicja 3.2).

Definicja 3.8 Mechanizm Γ nazywa się mechanizmem v-twórczej destrukcji, jeśli jego rezul-

tatem jest taka transformacja P ′ systemu produkcji P , dla której zachodzi warunek P ⊏v P ′

(zob. Definicja 3.4).

Hurwiczowski mechanizm v-twórczej destrukcji ma szczególne znaczenie dla różnorodności

systemu ekonomicznego. Następujące wnioski otrzymuje się na podstawie Spostrzeżeń 3.5 oraz

3.6, odpowiednio.

Wniosek 3.7 JeśliΓ jest mechanizmem hurwiczowskim zdefiniowanym w dowodzie Twierdzenia

3.1, który jest mechanizmem v-twórczej destrukcji, to Γ nie zmniejsza różnorodności systemu

ekonomicznego; jeśli dodatkowo Γ jest mechanizmem istotnie innowacyjnym, to w jego wyniku

zwiększa się różnorodność systemu ekonomicznego.
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Zaprojektowanie takiego mechanizmu hurwiczowskiego, którego wyniki byłyby obserwowane

w istotnie innowacyjnej v-twórczej destrukcji systemu ekonomicznego ma szczególne znacze-

nie z punktu widzenia konsumentów danej ekonomii. Zgodnie z Twierdzeniem 3.1 konstrukcja

mechanizmu Γ opiera się na odpowiednim zdefiniowaniu odwzorowania Q : Rl → Rl, który

przekształca każdy ze zbiorów produkcji Y k na zbiór Y ′k. Mechanizm Γ jest istotnie innowa-

cyjny, o ile istnieje podmiot ekonomiczny k dla którego zachodzi warunek (por. Definicja 3.1)

v(Y ∪ {y′}) > v(Y ), gdzie y′ = Q(y) dla pewnego y ∈ Y. (3.11)

Mechanizm Γ jest mechanizmem v-twórczej destrukcji, o ile każdy istotny atrybut realizowany

w zbiorze Y jest również realizowany przez pewien zbiór Q(Y k) (por. wzór (3.4)), tzn.

jeśli Y ∩ A ̸= ∅, to istnieje k taki, że Q(Y k) ∩ A ̸= ∅ dla każdego A ∈ Λ, (3.12)

gdzie Λ jest rodziną istotnych atrybutów opisaną formułą (2.24).

Wniosek 3.8 Jeśli odwzorowanie Q : Rl → Rl spełnia warunki (3.11) oraz (3.12), to mecha-

nizm skonstruowany w dowodzie Twierdzenia 3.1 skutkuje wzrostem różnorodności systemu eko-

nomicznego.

3.2.5. Różnorodność a mechanizmy eko-innowacyjne

Szczególnego rodzaju mechanizmem, którego rezultatem może być zwiększenie róż-

norodności systemu ekonomicznego, jest tzw. mechanizm eko-innowacyjny (zob. Lipieta, Pliś

2022). Poniżej przedstawiono konstrukcję takiego mechanizmu eko-innowacyjnego, w wyniku

którego szkodliwy towar przestaje być używany przez producentów. Ten rodzaj mechanizmu

stanowi przykład mechanizmu destrukcyjnego.

Niech w systemie ekonomicznymE ze skończoną liczbą podmiotów, jeden z towarów

z przestrzeni Rl jest towarem szkodliwym. Dla ustalenia uwagi i bez straty ogólności można

przyjąć, że jest to jeden towar i jest to towar pierwszy. Mimo, że towar ten jest używany przez

producentów w systemie ekonomicznym E, to konsumenci działający w tym systemie nie chcą

by był on obecny w ich planach konsumpcji, a także nie chcą, by inne towary były produkowane

z użyciem tego towaru oraz żeby był on wynikiem jakiegokolwiek planu produkcji.
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Przestrzenią eko-planów nazywa się podprzestrzeń Rl bez pierwszego dobra, czyli

zbiór towarów

W = {x = (x1, x2, . . . , xl, 0, . . .) ∈ Rl : x1 = 0}. (3.13)

Podmiot ekonomiczny k ∈ K nazywa się eko-konsumentem w okresie t, jeśli nie konsumuje on

szkodliwego towaru w okresie t, tzn. jego zbiór konsumpcji Xk spełnia warunek

Xk ⊂ W. (3.14)

Można rozważać sytuację, w której eko-konsumenci nie tylko nie chcą konsumować towarów

uznanych za szkodliwe, ale również wymagają od producentów zaprzestania używania takich

towarów w procesach produkcyjnych. Jeśli wszyscy konsumenci w okresie t eliminują kon-

sumpcję koszyków towarów, które zawierają szkodliwy towar, to tym samym wymuszają zmianę

w działalności producentów w okresie t′. Dzięki temu szkodliwy towar zostaje wyeliminowany

z systemu produkcji w okresie t′, tzn. spełniony jest warunek

Y ′ ⊂ W. (3.15)

Uzasadnione zatem jest modelowanie takiego mechanizmu ekonomicznego, w którym środo-

wisko, czyli system ekonomiczny E spełnia warunek (3.14), a wyniki są obserwowane w takiej

transformacji E ′, w której spełniony jest warunek (3.15). Można udowodnić następujące twier-

dzenie.

Twierdzenie 3.2 Jeśli E jest systemem ekonomicznym, w którym wszyscy konsumenci są eko-

konsumentami, czyli dla każdego k spełniony jest warunek (3.14), to istnieje mechanizm hurwi-

czowski, który skutkuje taką transformacją E ′ systemu E, w której zachodzi warunek (3.15).

Dowód. Analogicznie jak w przypadku Twierdzenia 3.1, dowód polega na określeniu odwzoro-

wania Q : Rl → Rl. Należy jednak doprecyzować postać odwzorowania Q tak, żeby spełniony

był warunek (3.15). Niech g : Rl → R będzie funkcją taką, że dla każdego y ∈ Rl zacho-

dzi g(y1, . . . , yl) = y1. Wówczas istnieje wektor q ∈ Rl o tej własności, że g(q) = 1. Niech

Q(y) := y − g(y)q. Tak określone odwzorowanie Q : Rl → W jest projekcją w podprzestrzeń

W (zob. Cheney 1966). Zatem Q(Y ) ⊂ W , gdzie Q(Y ) jest obrazem zbioru Y przez odwzoro-

wanie Q. Stąd spełniony jest warunek (3.15). ■
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Wektor −q ∈ Rl, występujący w dowodzie Twierdzenia 3.2, można interpretować jako techno-

logię pozwalającą na eliminację szkodliwego, pierwszego towaru z procesu produkcji (zob. Li-

pieta 2022). Można zauważyć, że zrealizowanie planu produkcji −q = (−1,−q2, ...,−gl) ∈ Rl

wymaga zużycia jednej jednostki pierwszego, szkodliwego towaru. Zatem plan q ∈ Rl, o ile

jest realizowany łącznie z dowolnym wektorem y ∈ Rl z intensywnością określoną przez liczbę

g(y), pozwala na wyeliminowanie pierwszego towaru z procesu produkcyjnego poprzez zastą-

pienie planu y planem y − g(y)q ∈ Rl.

Twierdzenie 3.2 można uogólnić do sytuacji, w której k szkodliwych towarów, gdzie

1 < k < l, ma być wyeliminowane z systemu ekonomicznego, w którym wszyscy konsumenci

spełniają warunek (3.14) dla odpowiednio zdefiniowanej podprzestrzeniW określonej podobnie

jak we wzorze (3.13).

Jeśli w systemie ekonomicznym E istnieje producent k ∈ K, który w okresie t re-

alizuje plan produkcji y ∈ Y k, a w okresie t′ realizuje innowacyjny plan y′ = Q(y) /∈ Y ,

to mechanizm rozważany w Twierdzeniu 3.2 skutkuje technologiczną eko-innowacją, polega-

jącą na wyeliminowaniu szkodliwego towaru z procesu produkcyjnego tego producenta. Plan

y′ nazywa się w takiej sytuacji planem eko-innowacyjnym, a opisany mechanizm nazywa się

mechanizmem eko-innowacyjnym (Lipieta, Malawski 2021).

Niech v : 2Rl → [0,+∞) będzie funkcją różnorodności określoną przez konsumen-

tów działających w systemie ekonomicznymE, a λ : 2Rl → [0,+∞) niech będzie funkcją ważą-

cą atrybuty tych konsumentów (zob. Definicja 2.18). Zbiór eko-planów opisany formułą (3.13),

można interpretować jako atrybut w przestrzeni towarów Rl. Co więcej, jeśli przyjmuje się, że

każdy konsument w systemie ekonomicznym E jest eko-konsumentem, to zbiór W ⊂ Rl jest

istotnym atrybutem, tzn. W ∈ Λ, gdzie Λ jest rodziną istotnych atrybutów opisaną formułą

(2.24). Gdy w systemie ekonomicznym E wszystkie plany produkcji wymagają użycia szkodli-

wego towaru, to atrybut W nie jest realizowany w zbiorze planów produkcji Y , tzn. zachodzi

warunek

W ∩ Y = ∅. (3.16)

Spostrzeżenie 3.8 Jeśli zbiór W określony formułą (3.13) jest atrybutem istotnym dla konsu-

mentów w systemie ekonomicznym E, który nie jest realizowany w zbiorze planów produkcji Y ,

to zdefiniowany w dowodzie Twierdzenia 3.2 mechanizm hurwiczowski jest istotnie innowacyjny.

Dowód. Należy pokazać, że w zbiorze Y ′ istnieje taki plan produkcji, dla którego zachodzi nie-
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równość d(y′, Y ) > 0. Niech y′ ∈ Y ′. Z warunku (3.14) wynika, że y′ posiada atrybutW (tzn.

y′ ∈ W ), a równocześnie wiadomo, że ten istotny atrybut nie jest realizowany w zbiorze Y , czyli

W ∩ Y = ∅. Zatem d(y′, Y ) = v(Y ∪ {y′})− v(Y ) ­ λW > 0. ■

Z Wniosku 3.7 wiadomo, że hurwiczowski mechanizm v-twórczej destrukcji nie powoduje zmniej-

szenia różnorodności systemu ekonomicznego, a jeśli jest on dodatkowo mechanizmem istot-

nie innowacyjnym, to różnorodność systemu ekonomicznego się w jego wyniku zwiększa. Za-

tem również mechanizm eko-innowacyjny występujący w Spostrzeżeniu 3.8 może spowodować

wzrost różnorodności systemu ekonomicznego, o ile tylko mechanizm ten zachowuje wszystkie

istotne dla konsumentów atrybuty obecne w zbiorze Y .

Wniosek 3.9 Jeśli zachodzą założenia Spostrzeżenia 3.8 oraz mechanizm eko-innowacyjny zde-

finiowany w dowodzie Twierdzenia 3.2 jest mechanizmem twórczej destrukcji, to w wyniku dzia-

łania tak skonstruowanego eko-mechanizmu różnorodność systemu ekonomicznego rośnie.

Oznacza to, że mechanizm eko-innowacyjny, który jest w swej istocie mechanizmem destruk-

cyjnym, może spowodować wzrost różnorodności systemu ekonomicznego.

3.3. Podsumowanie

Analiza wpływu zmiany ewolucyjnej, modelowanej jako transformacja systemu eko-

nomicznego, na różnorodność tego systemu, która została przeprowadzona w tym rozdziale,

pozwoliła na częściowe zrealizowanie drugiego z podstawowych celów badań prowadzonych

w ramach niniejszej rozprawy t.j. określenie wzajemnych zależności pomiędzy zmianami róż-

norodności systemu ekonomicznego a jego ewolucją. Dostarczyła ona również odpowiedzi na

pierwsze z postawionych pytań badawczych. Dowodząc, w badanym modelu, prawdziwości Spo-

strzeżenia 3.1, wykazano równocześnie że wprowadzenie innowacji jest warunkiem koniecznym

zwiększenia różnorodności analizowanego systemu ekonomicznego (zob. Wniosek 3.7).

Zmiany ewolucyjne zachodzące w systemie ekonomicznym pod wpływem innowacji

wprowadzanych przez producentów mogą zwiększyć różnorodność systemu ekonomicznego,

o ile wprowadzane rozwiązania posiadają nowe atrybuty, które są istotne z punktu widzenia

operujących na rynku konsumentów. W toku badań stwierdzono, że wprowadzenie innowacji nie

zawsze zwiększa różnorodność systemu ekonomicznego (por. Spostrzeżenie 3.4). Warunkiem
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wystarczającym dla wzrostu różnorodności analizowanego systemu ekonomicznego, okazało się

być wprowadzenie istotnej innowacji przy założeniu, że zachodząca transformacja jest v-twórczą

destrukcją systemu produkcji.

Proces twórczej destrukcji, polegający na zanikaniu przestarzałych rozwiązań produk-

cyjnych w wyniku wprowadzania innowacji przez producentów okazał się możliwy do opisania

w języku różnorodności. Proces ten nie musi powodować zmniejszenia różnorodności systemu

ekonomicznego, o ile istotne z punktu widzenia konsumentów atrybuty posiadane przez eli-

minowane rozwiązania produkcyjne są przejmowane przez wprowadzane innowacje. Konstru-

ując przykład takiego mechanizmu destrukcyjnego, który prowadzi do zwiększenia różnorod-

ności systemu ekonomicznego (zob. Wniosek 3.9) wykazano, że nie każda zmiana destrukcyjna

zmniejsza różnorodność systemu ekonomicznego, co dowodzi, że hipoteza druga nie jest praw-

dziwa.

Modelowanie ewolucji gospodarki przy użyciu teorii mechanizmów pozwoliło na uka-

zanie złożoności zachodzących procesów oraz ich rezultatów w badanym systemie ekonomicz-

nym. Okazało się, że dynamiczne mechanizmy hurwiczowskie, których wynikiem są zmiany

innowacyjne zachodzące w rozważanym systemie ekonomicznym różnią się między sobą, nie

tylko środowiskami ekonomicznymi, przestrzeniami informacji, czy zbiorem rezultatów, ale tak-

że swoim wpływem na różnorodność analizowanego systemu ekonomicznego.

Należy zauważyć, że wyniki zaprezentowane w tym rozdziale nie zależą od sposo-

bu konstrukcji funkcji różnorodności w przestrzeni towarów i pozostają prawdziwe dla każdej

funkcji, która spełnia Definicję 2.15.
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Rozdział 4

Różnorodność w modelu gry
schumpeterowskiej

Model przedstawiony w rozdziałach 2 i 3 umożliwił zbadanie wpływu zmian ewolu-

cyjnych, w tym wprowadzanych innowacji, na różnorodność systemu ekonomicznego, w którym

działa skończona liczba podmiotów. Nasuwa się naturalne pytanie dualne: Jak zmiana różno-

rodności systemu gospodarczego wpływa na jego ewolucję? Jest to równocześnie drugie z py-

tań badawczych postawionych w niniejszej rozprawie. Próba odpowiedzi na to pytanie wiąże

się z weryfikacją ostatniej z hipotez badawczych, która stwierdza, że przyrost różnorodności

w systemie ekonomicznym spowodowany wprowadzeniem innowacji ma wpływ na skłonność

producentów do podjęcia działalności innowacyjnej. Do weryfikacji tej hipotezy wykorzystane

zostaną narzędzia teorii gier, która pozwala na uwzględnienie motywacji kierujących producen-

tami wprowadzającymi innowacje. Stąd też, model ewolucji schumpeterowskiej przedstawiony

w niniejszym rozdziale różni się od modelu analizowanego w rozdziałach 2 i 3, bazując na po-

dejściu charakterystycznym dla ewolucyjnej teorii gier, a mianowicie analizowane w systemie

ekonomicznym zmiany zachodzą w czasie ciągłym i dotyczą nieprzeliczalnej populacji podmio-

tów.

Twórcami teorii gier byli John von Neumann oraz Oskar Morgenstern (1944), którzy

postawili sobie za cel stworzenie matematycznej teorii opisującej ludzkie zachowania w sytu-

acjach wymagających podejmowania strategicznych decyzji. W teorii gier bada się zachowania

graczy, z których każdy optymalizuje rezultat gry (maksymalizuje swoją wypłatę), warunkując

swoje działania zachowaniami innych graczy. Narzędzia teorii gier, pierwotnie skonstruowane

dla celów badań ekonomicznych, znalazły swoje zastosowanie również w innych dziedzinach

nauki. Pracą wyznaczającą nowe kierunki zastosowań teorii gier, był opublikowany w Nature
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w 1973 r. artykuł Johna Mayarda Smitha i George’a Price’a pt. „The Logic of Animal Conflict”

(Smith, Price 1973). Ewolucyjna teoria gier, której prekursorami obok Smitha i Price’a byli

Peter Taylor, Josef Hofbauer oraz Karl Sigmund, pozwala odejść od założenia o racjonalności

graczy, wymaga jednak zazwyczaj istnienia dużej populacji, której jednostki wchodzą ze sobą

w interakcje. Rozważając ewolucję populacji najczęściej zakłada się, że każda jej jednostka ma

ustaloną strategię i wchodzi w interakcje z innymi jednostkami losowo (tzw. model symmetric

random matching). Wypłata z danej strategii zależy od stanu populacji, czyli od tego jaki odsetek

graczy używa każdej ze strategii. Zazwyczaj te strategie, które uzyskują wyższe wypłaty, jako

korzystniejsze, rozprzestrzeniają się w populacji, natomiast strategie, które radzą sobie gorzej

są używane rzadziej.

W niniejszym rozdziale rozważa się system ekonomiczny, w którym przedsiębiorstwa

konkurują ze sobą używając strategii, z których każda jest związana z wyborem planu produkcji

o określonych cechach. Każde przedsiębiorstwo może wybrać do realizacji znany plan produk-

cji, czyli użyć strategii polegającej na imitacji. Zamiast tego, firma może zdecydować się na

wprowadzenie innowacji, która w istotny sposób różni się od znanych planów produkcji. Wy-

płata producenta używającego konkretnej strategii: imitacyjnej albo innowacyjnej, zależy od

stanu populacji przedsiębiorstw, czyli od tego jaki odsetek populacji stanowią producenci sto-

sujący daną strategię. W populacji składającej się z samych imitatorów, wprowadzenie istotnej

innowacji będzie się wiązać z wysoką wypłatą. Jeśli jednak wielu producentów zdecyduje się na

wprowadzanie innowacji, to zysk innowatora może nie przewyższać poniesionych przez niego

kosztów. Okazuje się, że tak zdefiniowana gra populacyjna gwarantuje w pewnych warunkach

powstanie stabilnej struktury w populacji producentów, w której konkurują ze sobą innowato-

rzy i imitatorzy. Odzwierciedla to kluczową cechę rozwoju gospodarczego opisywanego przez

Schumpetera (1934).

W pierwszej części niniejszego rozdziału przedstawiono podstawowe narzędzia ewo-

lucyjnej teorii gier. Następnie opisano system ekonomiczny, w którym działają producenci po-

dejmujący decyzje o wprowadzaniu innowacji oraz zaproponowano grę populacyjną modelującą

tak rozumianą konkurencję schumpeterowską. Analiza modelu składa się na ostatnią część roz-

działu.
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4.1. Podstawowe pojęcia ewolucyjnej teorii gier

Zdefiniowanie gry wymaga określenia zbioru graczy, czyli ustalenia kto rozgrywa

daną grę, przy czym zbiór graczy może być skończony lub nie. Konieczne jest też określenie

możliwych strategii dla każdego gracza, czyli ustalenia jakie działania może on podjąć w grze.

Przyjmuje się ponadto, że każde działanie gracza niesie ze sobą określone konsekwencje, wy-

rażone liczbowo jako wypłata z wybranej przez gracza strategii.

Ewolucyjna teoria gier zakłada zazwyczaj istnienie dużego zbioru graczy, który okre-

śla się mianem populacji. Przyjmuje się, że nieprzeliczalną populację graczy B utożsamia się

z przedziałem jednostkowym [0, 1] (zob. np. Hadikhanloo et al. 2022) wyposażonym w miarę

Lebesgue’a µ (zob. np. Łojasiewicz 1976). Niech funkcja mierzalna χ : B → S określa wybór

strategii ze zbioru S = {s1, ..., sn}. Wówczas dla ustalonej strategii si ∈ S zbiór

χ−1(si) := {b ∈ B : χ(b) = si},

stanowi podzbiór tych graczy w populacji B, którzy używają strategii si ∈ S. Miarę zbioru

χ−1(si) nazywa się odsetkiem graczy w populacji B stosujących strategię si ∈ S.

Definicja 4.1 Stanem populacji nazywa się wektor postaci x = (x1, ..., xn), gdzie xi ∈ [0, 1]

oznacza odsetek graczy w populacji stosujących strategię si ∈ S, tzn. xi ­ 0 i ∑si∈S xi = 1.
Zbiór wszystkich możliwych stanów populacji stanowi sympleks

∆(S) := {x = (x1, ..., xn) ∈ Rn+ :
n∑
i=1

xi = 1}.

Definicja 4.2 Jeśli w stanie x ∈ ∆(S) wszyscy członkowie populacji stosują wyłącznie jedną

strategię, tzn. xi = 1 dla pewnego i ∈ S, a co za tym idzie xj = 0 dla każdego j ̸= i, to populację

w stanie x nazywa się monomorficzną. Populację, która nie jest monomorficzna nazywa się

polimorficzną.

Niech dana będzie rodzina funkcji ciągłych πi : ∆(S)→ R, i = 1, ..., n. Wartość πi(x) nazywa

się wypłatą gracza stosującego i-tą strategię w stanie populacji x ∈ ∆(S). Ze względu na to,

że każdy gracz w populacji B, który w stanie x ∈ ∆(S) stosuje strategię si uzyskuje taką samą

wypłatę wynoszącą πi(x), wartość tę nazywa się również wypłatą ze strategii si ∈ S.
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Definicja 4.3 Funkcją wypłaty nazywa się odwzorowanie π : ∆(S)→ Rn, które każdemu sta-

nowi populacji x ∈ ∆(S) przypisuje odpowiadający mu wektor wypłat z poszczególnych strate-

gii π(x) := (π1(x), ..., πn(x)) ∈ Rn.

Definicja 4.4 Grą populacyjną nazywa się parę G := G(S, π), gdzie S = {s1, ..., sn} jest

zbiorem strategii, a π : ∆(S)→ Rn stanowi funkcję wypłaty.

Tak zdefiniowana gra populacyjna jest tzw. grą bezatomową, co oznacza, że zmiana zachowania

przez mały zbiór graczy w populacji, tzn. zbiór graczy, który ma miarę zero, nie wpływa na prze-

bieg gry (por. Hadikhanloo et al. 2022). Dodatkowo, gracze w grze są anonimowi, tzn. wypłaty

każdego gracza zależą od stanu populacji jako całości, a nie od tego, którzy gracze wybierają

dane strategie.

Gra populacyjna dopuszcza różne interpretacje interakcji zachodzących pomiędzy

graczami. Zazwyczaj przyjmuje się, że każda jednostka w populacji używa w danym momencie

jednej strategii ze zbioru S (tzw. strategii czystej). Wówczas wektor x = (x1, ..., xn) ∈ ∆(S)

jest stanem populacji, którego współrzędna xi ∈ [0, 1] stanowi odsetek graczy wybierających

strategię si ∈ S. Możliwa jest też alternatywna interpretacja (por. np. Webb 2007), w której

przyjmuje się, że każda jednostka w populacji stosuje strategie ze zbioru S zgodnie z pewnym

rozkładem prawdopodobieństwa. Wówczas wektor (x1, ..., xn) ∈ ∆(S) stanowi tzw. strategię

mieszaną, której współrzędna xi określa prawdopodobieństwo użycia strategii si ∈ S przez

każdego gracza w populacji. Ze względu na prezentowany kontekst ekonomiczny, jak również

klarowność wywodu, w tym rozdziale przyjmuje się pierwszą z wymienionych perspektyw.

Jednym z najważniejszych pojęć teorii gier jest pojęcie równowagi Nasha.

Definicja 4.5 (Sandholm 2010a) Stan populacji x ∈ ∆(S) nazywa się równowagą Nasha gry

populacyjnej G, jeśli każda używana w tym stanie strategia zapewnia maksymalną wypłatę, tzn.

dla dowolnego si ∈ S zachodzi implikacja:

jeśli xi > 0, to πi(x) = max
sj∈S
πj(x). (4.1)

Równoważnie, każdy gracz w populacji wybiera strategię optymalną wobec wyborów wszystkich

graczy.
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Twierdzenie 4.1 (Sandholm 2010b) W każdej grze populacyjnej istnieje co najmniej jedna rów-

nowaga Nasha.

Średnią wypłatą w grze populacyjnej G w stanie x ∈ ∆(S) nazywa się wartość

πav(x) =
n∑
i=1

xiπi(x). (4.2)

Średnia wypłata może stanowić punkt odniesienia dla oceny jakości strategii używanej przez

graczy. Gracz może być zmotywowany do używania takiej strategii, która gwarantuje wypłaty

przekraczające wartość (4.2). Co więcej wielkość ta może służyć jako utylitarystyczna miara

dobrobytu społecznego w populacji.

4.1.1. Struktura gry populacyjnej

Gry populacyjne konstruuje się najczęściej przyjmując tzw. scenariusz ewolucyjny

(zob. Płatkowski 2012). Zakłada się w nim, że gracze z nieprzeliczalnej populacji B są losowo

łączeni w pary, w których rozgrywają symetryczną grę dwuosobową.

Symetryczna gra dwuosobowa

NiechK = {k1, k2} ⊂ B będzie 2-elementowym zbiorem graczy. Gracza k1 nazywa się pierw-

szym, a gracza k2 – drugim graczem. Niech S = {s1, ..., sn} będzie zbiorem strategii każdego

z graczy.

Definicja 4.6 Profilem strategii nazywa się parę (si, sj) ∈ S×S, gdzie si, sj ∈ S są ustalonymi

strategiami, odpowiednio – pierwszego i drugiego gracza.

Niech f : S×S → R przypisuje dowolnemu profilowi strategii (si, sj) ∈ S×S wartość wypłaty

pierwszego gracza.

Definicja 4.7 Symetryczną grą dwuosobową nazywa się parę G2 := G2 (S, f), gdzie K =

{k1, k2} ⊂ B jest dwuelementowym zbiorem graczy, S = {s1, ..., sn} jest zbiorem strategii

obu graczy, a wartości funkcji f : S × S → R, która każdemu profilowi strategii (si, sj) ∈

S × S przypisuje wypłatę pierwszego gracza, są zadane przez wyrazy macierzy M = Mn×n
następująco:

f(si, sj) =Mij, (4.3)
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gdzie i, j = 1, ..., n.

W symetrycznej grze dwuosobowej wypłaty drugiego gracza określone są przez wyrazy macie-

rzyMT , powstałej przez transponowanie macierzyM .

Scenariusz ewolucyjny

Przyjmuje się, że w populacji B wielokrotnie powtarza się następujący schemat:

• każdy z graczy używa określonej wybranej strategii ze zbioru S,

• gracze losowo łączą się w pary, w których rozgrywają jednorazowo tę samą dwuosobową

grę symetryczną G2(S, f),

• każdy z graczy otrzymuje wypłatę zgodnie z macierzą wypłat Mn×n gry dwuosobowej

G2(S, f).

W grze populacyjnej G rozgrywanej według powyższego scenariusza, wypłata z każdej strategii

zależy od stanu populacji, stąd konieczność spojrzenia na oczekiwane wypłaty graczy. Oczeki-

wana wypłata gracza, który stosuje strategię si ∈ S, gdy jego przeciwnik jest członkiem popu-

lacji, która znajduje się w stanie x ∈ ∆(S) wynosi:

Ef(si, x) =
n∑
j=1

f(si, sj)xj, (4.4)

natomiast całkowita oczekiwana wypłata graczy w populacji w stanie x̄ ∈ ∆(S) przeciw popu-

lacji w stanie x ∈ ∆(S) jest równa:

Ef(x̄, x) = x̄MxT =
n∑
i=1

n∑
j=1

x̄if(si, sj)xj. (4.5)

Przyjmuje się, że wypłata ze strategii si ∈ S w stanie populacji x ∈ ∆(S) jest dana wzorem:

πi(x) := Ef(si, x). (4.6)

Funkcję wypłaty π : ∆(S) → Rn określa wektor wypłat, który w stanie x ∈ ∆(S) jest zadany

przez

π(x) =MxT . (4.7)
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Tak zdefiniowaną grę populacyjną G nazywa się grą typu symmetric random matching (Weibull

1995; Sigmund 1998; Sandholm 2010b). W niniejszej rozprawie rozważa się wyłącznie gry po-

pulacyjne tego typu, nazywając je krótko grami populacyjnymi. Symetryczną grę dwuosobową

G2(S, f) rozgrywaną w populacji B według scenariusza ewolucyjnego nazywa się grą dwu-

osobową skojarzoną z grą populacyjną G. MacierzM , której współczynniki określają wypłaty

pierwszego z graczy, nazywa się macierzą wypłat gry populacyjnej.

Ewolucyjnie stabilny stan populacji

Niech G będzie grą populacyjną, a G2(S, f) skojarzoną z nią grą dwuosobową. Niech x∗, x ∈

∆(S) i x∗ ̸= x, tzn. w stanie x pewnej strategii używa inny odsetek graczy niż w stanie x∗.

Definicja 4.8 (Thomas 1984) (por. Sandholm 2010c) Stan populacji x∗ ∈ ∆(S) nazywa się

ewolucyjnie stabilnym, jeśli dla każdego stanu populacji x ∈ ∆(S), gdzie x ̸= x∗, istnieje ϵ̄

takie, że dla każdego 0 < ϵ < ϵ̄ i dla każdego stanu populacji xϵ = (1 − ϵ)x∗ + ϵx zachodzi

nierówność:

Ef(x, xϵ) < Ef(x∗, xϵ).

Stan populacji jest ewolucyjnie stabilny, jeśli populacja powraca do niego po zaistnieniu nie-

wielkiej zmiany. Stan taki nazywa się czasem stanem odpornym na mutację. Wówczas tę część

populacji xϵ, która znajduje się w stanie x określa się jako podpopulacją „mutantów”, a war-

tość ϵ̄ nazywa się barierą inwazyjną; po jej przekroczeniu odsetek „mutantów” może przetrwać

w populacji B.

Spostrzeżenie 4.1 (Sandholm 2010b (Proposition 8.3.4)) Ewolucyjnie stabilny stan populacji

stanowi równowagę Nasha gry populacyjnej.

Twierdzenie 4.2 (Webb 2007 (Theorem 8.14)) Stan populacji x∗ ∈ ∆(S) jest ewolucyjnie sta-

bilny wtedy i tylko wtedy, gdy zachodzą oba poniższe warunki:

1) Ef(x∗, x∗) ­ Ef(x, x∗) dla każdego x ∈ ∆(S);

2) dla każdego x ∈ ∆(S), jeśliEf(x∗, x∗) = Ef(x, x∗) i x ̸= x∗, toEf(x∗, x) > Ef(x, x).
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Mikroekonomiczne podstawy ewolucyjnej teorii gier

Ewolucyjna teoria gier została zaproponowana w celu modelowania ewolucji zachodzącej w po-

pulacjach biologicznych. Przyjmowano przy tym, że strategia każdego gracza jest mu przypisana

na podstawie jego przynależności gatunkowej lub cech osobniczych (genetycznych), czyli gracz

ma zakodowaną strategię, której używa. Takie założenie nie znajduje uzasadnienia w przypadku

modeli ekonomicznych, ponieważ podmioty gospodarcze mogą świadomie decydować o używa-

niu określonej strategii. Dlatego w latach dziewięćdziesiątych XX. wieku stworzono ekonomicz-

ne podstawy ewolucyjnej teorii gier, oparte o tzw. protokoły postępowania (revision protocols)

(zob. np. Helbing 1992; Schlag 1994; 1998; Hofbauer, Sigmund 2003; Sandholm 2005; 2010b;

Falniowski, Mertikopoulos 2024).

Formalnie, protokół postępowania jest przyporządkowaniem: ρ : Rn ×∆(S)→ R2n+ ,

które definiuje sposób podejmowania decyzji o zmianie strategii przez graczy w danej popula-

cji. Przyjmuje się, że w toku gry, jej losowo wybrani uczestnicy uzyskują możliwość zmiany

używanej przez siebie strategii na inną, przy czym wylosowany gracz zamienia używaną przez

siebie strategię si ∈ S na inną strategię sj ∈ S z prawdopodobieństwem proporcjonalnym do

wartości ρij(π(x), x) (conditional switch rate), która zależy od stanu populacji x oraz wektora

wypłat π(x). Jeśli w danej populacji jest używany protokół postępowania ρ, to dynamikę popu-

lacji określa zmiana odsetka graczy, którzy używają danej strategii si ∈ S opisana równaniem

różniczkowym (mean dynamics) postaci (Hofbauer, Sandholm 2009):

ẋi(t) =
∑
j ̸=i
xj(t)ρji(π(x(t)), x(t))− xi(t)

∑
j ̸=i
ρij(π(x(t)), x(t)), (4.8)

gdzie pierwsza suma wyznacza odsetek graczy, którzy w chwili t zmieniają strategię z dowolnej

innej na si, czyli napływ graczy (inflow) do strategii si, natomiast odsetek graczy, którzy w chwili

t zmieniają strategię z si na dowolną inną, czyli odpływ graczy (outflow) ze strategii si określa

wyrażenie xi(t)
∑
j ̸=i ρij(π(x(t), x(t)).

Okazuje się, że fundamentalne dynamiki ewolucyjnej teorii gier można otrzymać po-

przez naturalne wybory protokołów postępowania opisane poniżej.

• Jeśli gracz porównuje używaną przez siebie strategię si ∈ S ze strategią sj ∈ S, która

jest używana przez niezerowy odsetek graczy i zmienia swoją strategię proporcjonalnie do
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korzyści płynącej z takiej zmiany (tzw. pairwise proportional imitation) (Schlag 1998), to

ρij(π(x), x) = xj[πj(x)− πi(x)]+, (4.9)

gdzie [m]+ := max{m, 0}, dla m ∈ R. Równanie (4.8) prowadzi do prawdopodobnie

najbardziej znanej i najczęściej badanej dynamiki ewolucyjnej teorii gier, czyli dynamiki

replikatorowej Taylora i Jonkera (1978) postaci:

ẋi(t) = xi(πi(x)− πav(x)), (4.10)

gdzie πav(x) jest średnią wypłatą w populacji w stanie x, określoną wzorem (4.2).

• Gdy gracz porównuje swój wybór strategii sj ∈ S ze średnią wypłatą w populacji:

ρij(π(x), x) = [πj(x)− πav(x)]+, (4.11)

to formuła (4.8) prowadzi do równania dynamiki Browna-von Neumanna-Nasha (zob.

Brown, von Neumann 1950), w której

ẋi(t) =
∑
j ̸=i
xj(t)[πi(x)− πav(x)]+ − xi(t)

∑
j ̸=i
[πj(x)− πav(x)]+. (4.12)

• Jeżeli gracz porównuje wypłaty: z używanej przez siebie strategii si i dowolnej możliwej

strategii sj ∈ S, czyli

ρij(π(x), x) = [πj(x)− πi(x)]+, (4.13)

to wówczas równanie (4.8) definiuje dynamikę Smitha (Smith 1984):

ẋi(t) =
∑
j ̸=i
xj(t)[πi(x)− πj(x)]+ − xi(t)

∑
j ̸=i
[πj(x)− πi(x)]+. (4.14)

Szczególne znaczenie przy analizowaniu dynamiki ma określenie jej punktów stałych, czyli sta-

nów stacjonarnych populacji.

Definicja 4.9 Stanem stacjonarnym populacji nazywa się taki stan x = (x1, ..., xn) ∈ ∆(S),

który jest punktem stałym dynamiki określonej wzorem (4.8), co oznacza, że ẋi(t) = 0 dla każ-
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dego i = 1, ..., n.

Gdy populacja znajduje się w stanie stacjonarnym, to różnica pomiędzy napływem a odpływem

graczy w przypadku każdej ze strategii wynosi 0, a odsetek graczy używających każdej ze stra-

tegii pozostaje stały.

Uwaga 4.1 Jeśli stan populacji x ∈ ∆(S) jest równowagą Nasha gry populacyjnej, to x jest

stanem stacjonarnym dynamiki określonej równaniem (4.8) (zob. Sandholm 2010b).

4.1.2. Gry populacyjne o dwóch strategiach

Zmiany zachodzące w populacji producentów, które będą analizowane w dalszej czę-

ści rozprawy, są związane z możliwością wyboru przez każdego producenta jednej z dwóch

możliwych strategii. W związku z tym, poniżej zebrano najistotniejsze fakty, dotyczące gier po-

pulacyjnych typu symmetric random matching, w których zbiór strategii jest dwuelementowy.

Jeśli S = {s1, s2} jest zbiorem strategii graczy z populacji B, to każdy stan populacji

jest postaci x = (x1, x2), gdzie x1 oznacza odsetek populacji stosujący strategię s1, natomiast

x2 = 1−x1 jest odsetkiem populacji stosującym strategię s2. Zbiór możliwych stanów populacji

wyznacza sympleks ∆(S) = {x = (x1, x2) ∈ R2+ : x1 + x2 = 1}, który można utożsamić

z odcinkiem [0, 1]. Wierzchołki sympleksu∆(S), czyli wektory: (1, 0) oraz (0, 1), reprezentują

monomorficzne stany populacji, w których używana jest wyłącznie jedna z dwóch dostępnych

strategii.

Niech G będzie grą populacyjną o zbiorze strategii S = {s1, s2} i macierzy wypłat

postaci:

M =

a b
c d

 , (4.15)

gdzie a, b, c, d ∈ R oraz a−c ̸= b−d. Alternatywnie do wzoru (4.15) stosuje się przedstawienie

macierzy wypłatM w postaci przedstawionej w Tabeli 4.1.

Gracz 2
s1 s2

Gracz 1 s1 a, a b, c

s2 c, b d, d

Tabela 4.1: Macierz wypłat symetrycznej gry dwuosobowej
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Wówczas w stanie x = (x1, 1− x1) ∈ ∆(S):

• wypłata ze strategii s1 wynosi:

π1(x) = ax1 + b(1− x1); (4.16)

• wypłata ze strategii s2 jest równa:

π2(x) = cx1 + d(1− x1); (4.17)

• średnia wypłata wynosi:

πav(x) = x21(a− c+ d− b) + x1(b− 2d+ c) + d. (4.18)

Ewolucyjnie stabilny stan populacji w grze populacyjnej o dwóch strategiach

W przypadku dowolnej gry populacyjnej ewolucyjnie stabilny stan populacji nie musi istnieć.

Wiadomo jednak, że każdy stan ewolucyjnie stabilny jest równowagą Nasha (zob. 4.1) i że każ-

da gra populacyjna posiada równowagę Nasha (zob. Twierdzenie 4.1). W grze populacyjnej

o dwóch strategiach ewolucyjnie stabilne mogą być zarówno monomorficzne stany populacji:

xs1 = (1, 0) lub xs2 = (0, 1), jak i stan x∗ = (x∗1, 1 − x∗1), w którym populacja jest poli-

morficzna, tzn. odsetek graczy równy x∗1 > 0 używa strategii s1, natomiast odsetek wynoszący

1− x∗1 > 0, stosuje strategię s2.

Jeśli polimorficzny stan populacji x∗ = (x∗1, 1−x∗1) ∈ ∆(S) jest ewolucyjnie stabilny,

to na podstawie Spostrzeżenia 4.1 stanowi on równowagę Nasha gry G. W tym stanie populacji

używane są obie strategie, tzn. x∗1 > 0 oraz x∗2 > 0, zatem z Definicji 4.5 zachodzi równość:

π1(x∗) = π2(x∗). (4.19)

Wypłata z użycia strategii s1 przeciwko populacji w stanie x∗ wynosi

π1(x∗) = ax∗1 + b(1− x∗1), (4.20)
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natomiast oczekiwana wypłata z zastosowania strategii s2 jest równa

π2(x∗) = cx∗1 + d(1− x∗1). (4.21)

Z równań (4.19), (4.20) oraz (4.21) otrzymuje się możliwą postać odsetka graczy używającego

każdej ze strategii w stanie ewolucyjnie stabilnym, tzn.:

x∗1 =
d− b

a− c+ d− b
,

x∗2 = 1− x∗1 =
a− c

a− c+ d− b
.

Wielkości x∗1 oraz x∗2 = 1− x∗1 reprezentują dodatni odsetek populacji, należy zatem sprawdzić

kiedy x∗1 ∈ (0, 1). Z warunku

0 <
d− b

a− c+ d− b
< 1 (4.22)

wynika, że wyrażenia a− c oraz d− b muszą być tych samych znaków, tzn.

(a− c)(d− b) > 0. (4.23)

Można zatem sformułować następujące spostrzeżenie zadające warunek konieczny, by w grze

populacyjnej o dwóch strategiach istniał stabilny stan populacji, w którym używane są obie

możliwe strategie (stan polimorficzny).

Spostrzeżenie 4.2 Jeśli w grze populacyjnejG o dwóch strategiach polimorficzny stan populacji

jest ewolucyjnie stabilny, to zachodzi warunek (4.23).

Wniosek 4.1 W grze populacyjnej o dwóch strategiach istnieje co najwyżej jeden polimorficzny

stan populacji, który jest ewolucyjnie stabilny. Ma on postać x∗ = (x∗1, 1 − x∗1) ∈ ∆(S), gdzie

odsetek graczy używających strategii s1 jest równy

x∗1 =
d− b

a− c+ d− b
, (4.24)

a odsetek graczy stosujących strategię s2 wynosi

x∗2 =
a− c

a− c+ d− b
. (4.25)
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Warunkiem koniecznym istnienia ewolucyjnie stabilnego stanu populacji z dwiema możliwymi

strategiami czystymi, który gwarantuje jej polimorficzność, jest zatem prosty zestaw zależności

pomiędzy parametrami gry dwuosobowej określony wzorem (4.23). Zarówno wartość wyraże-

nia a− c jak i wartość d− b wyrażają różnice w wypłatach, wynikające ze zmiany strategii z tej

samej, na przeciwną do strategii używanej przez oponenta. Jeśli warunek (4.23) nie jest speł-

niony, to w grze populacyjnej o dwóch strategiach nie istnieje taki polimorficzny stan populacji,

który byłby równocześnie ewolucyjnie stabilny.

Konsekwencją Twierdzenia 4.2 oraz przyjętego założenia o parametrach gry (tzn. a−

c ̸= b− d) jest następujące stwierdzenie.

Spostrzeżenie 4.3 Niech G będzie grą populacyjną o dwóch strategiach ze zbioru S = {s1, s2}

i macierzy wypłat określonej formułą (4.15).

• Monomorficzny stan populacji xs1 = (1, 0) ∈ ∆(S) jest stanem ewolucyjnie stabilnym

wtedy i tylko wtedy, gdy a > c lub równocześnie: a = c i d < b.

• Monomorficzny stan populacji xs2 = (0, 1) ∈ ∆(S) jest stanem ewolucyjnie stabilnym

wtedy i tylko wtedy, gdy d > b lub równocześnie: d = b i a < c.

Zatem istnienie monomorficznej populacji jest jednym z możliwych stabilnych rozwiązań gry

populacyjnej o dwóch strategiach. Spostrzeżenie 4.3 można uzupełnić o pozostałe przypadki

zależności zachodzących pomiędzy parametrami a i c oraz b i d. Jeśli spełniony jest warunek

(4.23), to w zależności od tego czy różnice: a − c oraz d − b, są równocześnie dodatnie, czy

równocześnie ujemne, otrzymuje się różne rezultaty gry.

Spostrzeżenie 4.4 Niech G będzie grą populacyjną o dwóch strategiach ze zbioru S = {s1, s2}

i macierzy wypłat określonej formułą (4.15), której współczynniki spełniają warunek (4.23).

1. Jeśli a > c i d > b, to ewolucyjnie stabilne są oba monomorficzne stany populacji:

xs1 = (1, 0) i xs2 = (0, 1).

2. Jeśli a < c i d < b, to jedynym stanem ewolucyjnie stabilnym jest polimorficzny stan

populacji postaci x∗ = (x∗1, x∗2), gdzie x∗1 oraz x∗2 są dane wzorami: (4.24) oraz (4.25)

odpowiednio.
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Dowód. Punkt pierwszy jest konsekwencją Spostrzeżenia 4.3. Dowód punktu drugiego opiera się

na Twierdzeniu 4.2. Wzór (4.5) w grze populacyjnej o dwóch strategiach dla (x̄1, x̄2), (x1, x2) ∈

∆(S) przyjmuje formę:

Ef(x̄, x) = ax̄1x1 + bx̄1x2 + cx1x̄2 + dx̄2x2. (4.26)

Niech a < c i d < b oraz x∗ = (x∗1, x∗2), gdzie x∗1 jest dane wzorem (4.24), a x∗2 = 1−x∗1. Można

zauważyć, że wówczas dla każdego x = (x1, x2) ∈ ∆(S) zachodzi równość: Ef(x∗, x∗) =

Ef(x, x∗) (por. Twierdzenie 4.2 punkt 1). Ze wzoru (4.26) otrzymuje się:

Ef(x∗, x) = x1[x∗1a+ (1− x∗1)c] + (1− x1)[(x∗1b+ (1− x∗1)d] (4.27)

oraz

Ef(x, x) = x1[x1a+ (1− x1)c] + (1− x1)[(x1b+ (1− x1)d]. (4.28)

Odejmując stronami równania (4.27) oraz (4.28) dostaje się równanie:

Ef(x∗, x)− Ef(x, x) = (x∗1 − x1)[x1(d− b+ a− c)− (d− b)],

które po podstawieniu x∗1 ze wzoru (4.24) przyjmuje postać:

Ef(x∗, x)− Ef(x, x) = −(x∗1 − x1)2(d− b+ a− c).

Skoro a < c i d < b, to d − b + a − c < 0. Zatem Ef(x∗, x) − Ef(x, x) > 0, stąd na mocy

Twierdzenia 4.2, polimorficzny stan x∗ jest ewolucyjnie stabilny. ■

Wniosek 4.2 W grze populacyjnej o dwóch strategiach zawsze istnieje ewolucyjnie stabilny stan

populacji.

Punkt 2 Spostrzeżenia 4.4 podaje warunek wystarczający istnienia polimorficznego stanu ewo-

lucyjnie stabilnego gry populacyjnej o dwóch strategiach. Na jego podstawie oraz dzięki Spo-

strzeżeniu 4.2 otrzymuje się następujący wniosek.

Wniosek 4.3 Gra populacyjna o dwóch strategiach posiada polimorficzny ewolucyjnie stabilny

stan populacji wtedy i tylko wtedy, gdy wypłaty zadane przez macierz (4.15) spełniają układ
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zależności: a < c i b > d. Stan ten ma postać:

x∗ = (x∗1, x
∗
2) =

(
d− b

a− c+ d− b
,

a− c
a− c+ d− b

)
. (4.29)

Ze Spostrzeżenia 4.4 i Wniosku 4.2 wynika, że określenie ewolucyjnie stabilnego polimorficz-

nego rozwiązania gry populacyjnej o dwóch strategiach może sprowadzać się do wyznaczenia

jedynej istniejącej równowagi Nasha takiej gry.

Wniosek 4.4 Jeśli jedyną równowagę Nasha gry populacyjnej o dwóch strategiach stanowi po-

limorficzny stan populacji, to jest on jedynym stanem ewolucyjnie stabilnym.

Dowód. Niech jedyną równowagę Nasha gry populacyjnej o dwóch strategiach stanowi taki po-

limorficzny stan populacji, który nie jest stanem ewolucyjnie stabilnym. Wówczas z Wniosku

4.2 istnieje inny stan, który ma tę własność. Skoro istnieją dwa stany ewolucyjnie stabilne, to ze

Spostrzeżenia 4.4 gra posiada dwie równowagi Nasha, co jest sprzeczne z przyjętym założeniem.

■

Dynamika gry populacyjnej o dwóch strategiach

Każdy stan ewolucyjnie stabilny jest równowagą Nasha gry populacyjnej (por. Wniosek 4.1).

Z kolei każda równowaga Nasha jest stanem stacjonarnym dynamiki wyznaczonej równaniem

(4.8) (Sandholm 2010b), ponieważ w równowadze Nasha prawie wszyscy (w sensie miary Le-

besgue’a) uczestnicy gry nie mają motywacji do zmiany używanych przez siebie strategii. Zatem

każdy stan ewolucyjnie stabilny jest stanem stacjonarnym dynamiki określonej przez (4.8). O sta-

nie ewolucyjnie stabilnym wiadomo, że jest odporny na zaburzenia, tzn. na niewielkie zmiany

zachodzące w populacji. Czy jednak można o nim powiedzieć, że jest stanem stabilnym w sensie

dynamiki generowanej równaniem (4.8)? Czy dynamika ta, choćby dla podstawowych protoko-

łów postępowania, zbiega do tego stanu?

Pytanie to sprowadza się do ustalenia czy ewolucyjnie stabilny polimorficzny stan po-

pulacji ze Spostrzeżenia 4.2 jest globalnym stanem ewolucyjnie stabilnym dynamiki określonej

równaniem (4.8).

Dla dwuelementowego zbioru strategii S = {s1, s2}, dynamikę stanu populacji x =

(x1, 1 − x1) ∈ ∆(S) daną równaniem (4.8) można ze względu na zależność x2 = 1 − x1
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opisywać przy pomocy równania:

ẋ1 = (1− x1)ρ21(π(x), x)− x1(t)ρ12(π(x), x), (4.30)

gdzie ρ jest ustalonym protokołem postępowania (por. Rozdział 4.1.1).

Niech a < c i d < b, wtedy a − c + d − b < 0. Niech x∗ = (x∗1, x∗2), gdzie x∗1 jest

określone równaniem (4.24). Na mocy Spostrzeżenia 4.4 polimorficzny stan populacji x∗ jest

ewolucyjnie stabilny. Równania trzech najważniejszych dynamik ewolucyjnej teorii gier: dyna-

miki replikatorowej, dynamiki Browna-von Neumanna-Nasha oraz dynamiki Smitha, przyjmują

przy tych ustaleniach następującą postać:

• równanie dynamiki replikatorowej:

ẋ1 = x1(π1(x)− πav(x)) = (a− c+ d− b)x1 (1− x1)(x1 − x∗1). (4.31)

Dla x1 ∈ (0, x∗1) zachodzi nierówność ẋ1 > 0, natomiast gdy x1 ∈ (x∗1, 1), to ẋ1 < 0.

Oznacza to, że punkt stały dynamiki replikatorowej x∗1 ∈ (0, 1) określony wzorem (4.24)

jest globalnie przyciągający, tzn. lim
t→+∞

x1(t) = x∗1, gdy ẋ1 jest dane przez (4.31).

• równanie dynamiki Browna-von Neumanna-Nasha:

ẋ1 = (1− x1)[π1(x)− πav(x)]+ − x1[π2(x)− πav(x)]+, (4.32)

ma następującą postać w zależności od wartości zmiennej x1:

ẋ1 =

 (a− c+ d− b) (1− x1)
2(x1 − x∗1), gdy x1 < x

∗
1,

(a− c+ d− b) x21 (x1 − x∗1), gdy x1 > x
∗
1.

Można sprawdzić, że ẋ1 > 0, gdy x1 ∈ (0, x∗1) oraz ẋ1 < 0, gdy x1 ∈ (x∗1, 1). Zatem

lim
t→+∞

x1(t) = x∗1, a więc punkt stały x∗1 ∈ (0, 1) postaci (4.24) jest globalnie przyciągający,

gdy ẋ1 jest dane wzorem (4.32).

• równanie dynamiki Smitha

ẋ1 = (1− x1)[π1(x)− π2(x)]+ − x1[π2(x)− π1(x)]+, (4.33)

82



również należy rozpatrywać dla dwóch przypadków:

ẋ1 =

 (a− c+ d− b)(1− x1)(x1 − x
∗
1), gdy x1 < x

∗
1,

(a− c+ d− b) x1 (x1 − x∗1), gdy x1 > x
∗
1.

Zatem jeśli x1 ∈ (0, x∗1), to zachodzi ẋ1 > 0, a gdy x1 ∈ (x∗1, 1), to ẋ1 < 0. Stąd

lim
t→+∞

x1(t) = x∗1, a co za tym idzie x∗1 ∈ (0, 1) postaci (4.24) jest globalnie przyciągają-

cym punktem stałym dynamiki określonej wzorem (4.33).

Na podstawie powyższych obliczeń stwierdzono, że stan stacjonarny x∗ = (x∗1, 1− x∗1) ∈ ∆(S)

(por. Definicja 4.9), w którym odsetek graczy x∗1 ∈ (0, 1) używających pierwszej strategii okre-

ślony wzorem (4.24), jest globalnie przyciągający (tzn. lim
t→+∞

x1(t) = x∗1) dla każdej z dynamik

zadanych równaniami (4.31), (4.32) oraz (4.33). Zatem jeśli w grze populacyjnej o dwóch stra-

tegiach istnieje polimorficzny stan populacji x∗ = (x∗1, 1− x∗1) ∈ ∆(S), który jest ewolucyjnie

stabilny (zob. Definicja 4.8), to stan ten jest równocześnie asymptotycznie stabilny ze względu

na dynamikę wprowadzoną protokołami postępowania: (4.9), (4.11) oraz (4.13). Okazuje się za-

tem, że w grach populacyjnych o dwóch strategiach jedyność polimorficznej równowagi Nasha

gwarantuje odporność tej równowagi na niewielkie zaburzenia (por. Wniosek 4.4), a ponadto

decyzje podejmowane przez graczy prowadzą populację w pobliże tego stanu równowagi.

4.2. Różnorodność w systemie ekonomicznym z nieprzeliczal-

ną ilością podmiotów

Analogicznie jak w części 2.2.1, w konstruowanym poniżej systemie ekonomicznym

miejscem działania podmiotów, którymi są producenci oraz konsumenci, jest przestrzeń towa-

rówRl określona formułą (2.11). W tej części rozprawy przyjmuje się jednak, że zbiór producen-

tów (firm) działających w przestrzeni towarów jest zbiorem nieprzeliczalnym B utożsamionym

z odcinkiem domkniętym [0, 1] ⊂ R.

Definicja 4.10 Systemem produkcji z nieprzeliczalną liczbą producentów ze zbioru B = [0, 1]

nazywa się parę P = (B, y), gdzie odwzorowanie

y : B ∋ b 7→ Y b ⊂ Rl, (4.34)
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przypisuje każdemu producentowi b ∈ B niepusty i domknięty zbiór produkcji Y b.

Pozostałe ustalenia i oznaczenia z części 2.2.1 dotyczące systemu produkcji pozostają bez zmian,

tzn. przyjmuje się, że przy danym systemie cen każdy z producentów wybiera możliwy do zre-

alizowania plan produkcji yb ∈ Y b, osiągając zysk wynoszący p · yb, a zbiór planów produk-

cji możliwych do przeprowadzenia w systemie P , oznaczony przez Y , określony jest wzorem

(2.14). Podobnie jak zbiór producentów, również zbiór konsumentów H, działających w prze-

strzeni towarówRl, jest w rozważanym modelu zbiorem nieprzeliczalnym utożsamionym z od-

cinkiem [0, 1].

Definicja 4.11 Systemem konsumpcji z nieprzeliczalną liczbą konsumentów ze zbioru H =

[0, 1] nazywa się czwórkę C = (H, ξ, ε, ω), gdzie odwzorowania: ξ, ε oraz ω, które zadają od-

powiednio: zbiór konsumpcji, relację preferencji oraz wektor zasobu dla każdego konsumenta,

są zdefiniowane analogicznie jak w części 2.2.1.

Przyjmuje się, że konsumenci są właścicielami firm, przy czym każdy konsument posiada udzia-

ły w co najwyżej skończonej liczbie firm, a także dla każdego producenta (firmy) liczba konsu-

mentów, którzy mają udziały w danej firmie jest skończona. Dzięki temu można określić odwzo-

rowanie opisujące udziały poszczególnych konsumentów w zyskach producentów (por. wzór

(2.18)). Przy danym systemie cen, każdy konsument może przeznaczyć własne środki, podle-

gające ograniczeniom budżetowym, na konsumpcję lub inwestycje w firmach, w których ma

udziały.

Definicja 4.12 Ekonomią z nieprzeliczalną ilością podmiotów nazywa się trójkę E = (P , C, θ̄),

gdzieP = (B, y) jest systemem produkcji z nieprzeliczalną ilością producentów, C = (H, ξ, ε, ω)

jest systemem konsumpcji z nieprzeliczalną ilością konsumentów, a udziały konsumentów w zy-

skach producentów określa przyporządkowanie θ̄ : H× B → [0, 1], przy czym

∑
a∈H
θ̄(a, b) =

kb∑
i=1

θ̄(abi , b) = 1, kb ∈ N,

gdzie {ab1, ..., abkb} ⊂ H jest skończonym zbiorem konsumentów posiadających udziały w firmie

b ∈ B.

Przy danym wektorze cen p ∈ Rl, system ekonomiczny E działa analogicznie jak system E

opisany w części 2.2.1.
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W prezentowanym modelu konkurencji schumpeterowskiej na zachowania firm wpły-

wają preferencje konsumentów, wyrażone w funkcji różnorodności poprzez wagi, jakie konsu-

menci nadają poszczególnym atrybutom w przestrzeni towarów.

Funkcja różnorodności w systemie ekonomicznym z nieprzeliczalną ilością podmiotów

Funkcję różnorodności w przestrzeni towarów można określić na podstawie funkcji ważących

atrybuty konsumentów ze zbioru nieprzeliczalnego, analogicznie jak to miało miejsce w podroz-

dziale 2.3 dla skończonego zbioru konsumentów (zob. Definicja 2.16). Dokładniej, niech zbiór

konsumentów H będzie utożsamiony z odcinkiem [0, 1] wyposażonym w miarę Lebesgue’a µ.

Przyjmuje się, że w przestrzeni towarów Rl jest określony skończony zbiór A dany wzorem

(2.22), z którego każdy konsument a ∈ H wybiera istotne dla siebie atrybuty i przypisuje im

własne wagi. Niech funkcja

λa : 2R
l ∋ A 7→ λaA ∈ [0,+∞) (4.35)

będzie funkcją ważącą atrybuty konsumenta a ∈ H zadaną zgodnie z Definicją 2.16, tzn.

niech rodzina istotnych atrybutów konsumenta Λa będzie podzbiorem rodzinyA, a łączna waga

istotnych atrybutów konsumenta a wynosi 1.

Funkcję, która w przestrzeni towarów waży atrybuty konsumentów ze zbioru nieprze-

liczalnegoH, można zdefiniować analogicznie jak w podrozdziale 2.3 (zob. Definicja 2.17), o ile

dla każdego A ⊂ Rl funkcja

ζA : H → [0, 1], (4.36)

która każdemu konsumentowi a ∈ H przypisuje wagę ζA(a) := λaA jaką ten konsument nadał

ustalonemu atrybutowiA jest mierzalna. Warunek ten oznacza, że dla każdego atrybutuA ⊂ Rl

zbiór

{a ∈ H : λaA > c} (4.37)

konsumentów, którzy przypisali temu atrybutowi wagę większą niż ustalona wartość c ∈ [0, 1]

jest mierzalny (zob. np. Łojasiewicz 1976).

Niech dla każdego A ⊂ Rl funkcja określona formułą (4.36) będzie mierzalna.

Definicja 4.13 Funkcję λ : 2Rl ∋ A 7→ λA ∈ [0, 1], która każdemu atrybutowi A ⊂ Rl przypi-
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suje jego wagę równą

λA :=
∫
H
ζAdµ (4.38)

nazywa się funkcją ważącą atrybuty konsumentów ze zbioru nieprzeliczalnegoH.

Waga λA ∈ [0, 1] jest równa wartości średniej z wag przypisanych atrybutowi A ⊂ Rl przez

konsumentów ze zbioru H. Co za tym idzie, waga atrybutu, który nie należy do skończonej

rodziny A, wynosi zero. Zbiór

Λ :=
{
A ⊂ Rl : µ ({a ∈ H : λaA > 0}) > 0

}
⊂ A. (4.39)

stanowi rodzinę istotnych atrybutów dla konsumentów ze zbioruH. W skład rodziny określonej

wzorem (4.39) wchodzą wszystkie te atrybuty ze zbioruA, które są istotne dla prawie wszystkich

konsumentów ze zbioruH.

Na bazie funkcji ważącej atrybuty konsumentów ze zbioru H (zob. Definicja 4.13)

można w przestrzeni towarówRl określić funkcję różnorodności analogicznie jak to miało miej-

sce dla skończonego zbioru konsumentów (por. Definicja 2.18).

Definicja 4.14 Funkcję v : 2Rl → [0,+∞), której wartość dla dowolnego zbioru D ⊂ Rl jest

równa

v(D) =
∑

A∈Λ:A∩D ̸=∅
λA, (4.40)

gdzie λ : 2Rl → [0,+∞) jest funkcją ważącą atrybuty konsumentów ze zbioru H określoną

Definicją 4.13, nazywa się funkcją różnorodności w przestrzeni towarów określoną przez kon-

sumentów ze zbioru nieprzeliczalnegoH.

Tak zdefiniowana funkcja różnorodności w przestrzeni towarówRl pełni analogiczną rolę w sys-

temie ekonomicznym E , jak funkcja różnorodności określona Definicją 2.18 dla skończonej licz-

by podmiotów w systemie ekonomicznymE. Na podstawie funkcji zadanej Definicją 4.14 okre-

śla się dla D ⊂ Rl oraz x, y ∈ Rl różnorodność krańcową zbioru D (por. wzór (2.27)):

d(x,D) := v(D ∪ {x})− v(D) =
∑

A∈Λ: x∈A,A∩D=∅
λA (4.41)
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oraz różnicę między x a y z punktu widzenia konsumentów ze zbioruH (por. (2.28)):

d(x, y) := d(x, {y}) = v({x, y})− v({y}) =
∑

A⊂Λ0:x∈A, y/∈A
λA. (4.42)

Jeśli E jest ekonomią z nieprzeliczalną ilością podmiotów (zob. Definicja 4.12), na-

tomiast v : 2Rl → [0,+∞) jest funkcją różnorodności w przestrzeni towarów określoną przez

konsumentów ze zbioru H działających w E , to funkcja ważąca atrybuty konsumenta a ∈ H

określona wzorem (4.35) zadaje postać relacji preferencji tego konsumenta w systemie ekono-

micznym E zgodnie z formułą (2.29).

4.3. Gra schumpeterowska jako gra populacyjna

Poniżej przedstawiono model konkurencji schumpeterowskiej, w którym zmiany za-

chodzące w populacji producentów, działających w ustalonym systemie ekonomicznym, anali-

zuje się w czasie ciągłym. W proponowanym modelu producenci konkurują ze sobą o środki

posiadane przez konsumentów, podejmując decyzje o wprowadzaniu innowacji, bądź o rezy-

gnacji z ich wprowadzania. To współzawodnictwo, modelowane w postaci gry strategicznej, po-

woduje że producenci otrzymują impuls do zmiany swoich zachowań, w zależności od działań

podjętych przez pozostałe firmy. Strategiczne interakcje, które zachodzą wśród producentów,

wymagają zdefiniowania systemu ekonomicznego, w którym po stronie podażowej działa nie-

przeliczalna ilość firm. Strona popytowa modelowanego systemu, po której również występuje

nieprzeliczalna ilość konsumentów, jest sprowadzona do najprostszej możliwej postaci. Miano-

wicie, zakłada się, że konsumenci przy danym systemie cen dysponują odpowiednimi środkami

na zakup wybranych przez siebie koszyków towarów, o których decydują zgodnie ze swoimi

preferencjami.

4.3.1. Strategie schumpeterowskie

W teorii rozwoju gospodarczego J. A. Schumpetera (1934; 1943) najważniejsze zna-

czenie przypisuje się dwóm rodzajom przedsiębiorców. Pierwszy z nich stanowią imitatorzy,

którzy stosują znane rozwiązania technologiczne i stanowią podstawę systemu produkcyjne-

go gospodarki. Drugi rodzaj przedsiębiorców, zwanych innowatorami, decyduje się na zmianę

87



zaistniałej sytuacji, modyfikując proces technologiczny poprzez podjęcie pewnych prac rozwo-

jowych. Tego rodzaju modyfikacje, choć kosztowne, mogą przynieść producentowi, który się

na nie decyduje, dodatkowy zysk dzięki zaistnieniu chwilowego monopolu na rynku. W propo-

nowanym w tym rozdziale modelu analizuje się zmiany zachodzące w populacji producentów,

wśród których są tacy, którzy nie decydują się na wprowadzenie innowacji i inni, którzy innowa-

cję wprowadzają. Ten najprostszy i najbardziej naturalny podział producentów na innowatorów

i imitatorów gwarantuje, w pewnych okolicznościach, istnienie nietrywialnej struktury w popu-

lacji producentów rywalizujących o nowe możliwości biznesowe.

Niech E ′ = (P , C, θ̄) będzie ekonomią z nieprzeliczalną ilością podmiotów określoną

Definicją 4.12. Niech v : 2Rl → [0,+∞) będzie funkcją różnorodności w przestrzeni towarów

zadaną zgodnie z Definicją 4.14 przez konsumentów ze zbioruH, działających w systemie eko-

nomicznym E ′. Ze względu na to, że analiza zmian ewolucyjnych dotyczy zachowań producen-

tów, w modelu przyjmuje się uproszczoną postać systemu konsumpcji. Mianowicie zakłada się,

że relacja preferencji każdego konsumenta a ∈ H jest zdefiniowana przy pomocy wzoru (2.29)

i przy danym systemie cen p ∈ Rl każdy konsument posiada zasoby wystarczające do realizacji

wybranego przez siebie planu konsumpcji. W tej części rozprawy zakłada się, że w systemie

ekonomicznym przy ustalonym systemie cen, producenci dokonują wyborów strategii związa-

nych z realizacją planów produkcji o określonych cechach, a zmiany zachodzące w populacji

producentów, wynikające z podejmowania przez nich strategicznych decyzji, są obserwowane

w czasie ciągłym.

Zbiór planów produkcji możliwych do zrealizowania w ekonomii E ′ oznacza się przez

Y ′. Zakłada się przy tym, że Y ′ = Y ∪{y′}, gdzie y′ /∈ Y , co interpretuje się zgodnie z termino-

logią przyjętą w podrozdziale 2.2. Mianowicie przyjmuje się, że każdy z elementów y ∈ Y jest

planem produkcji, który był możliwy do zrealizowania w poprzednim okresie (w sensie Definicji

2.9), natomiast y′ jest planem innowacyjnym (por. Definicja 2.10). Zakłada się również, że jeśli

innowacyjny plan produkcji y′ wiąże się z wprowadzeniem na rynek nowego towaru i = 1, ..., l,

to cena pi ∈ R tego towaru, ustalona przez każdego z producentów realizujących plan y′ jest

taka sama.

Niech każdy z producentów w ekonomii E ′ ma możliwość zrealizowania dowolnego

planu ze zbioru Y ′, tzn. zbiór produkcji każdego producenta b ∈ B jest postaci Y ′b = Y ′. Zatem

każdy z producentów w ekonomii E ′ może stać się innowatorem, realizując plan y′ lub wybrać
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znane rozwiązanie technologiczne i zrealizować pewien plan y ∈ Y . Jeśli przy danym systemie

cen p ∈ Rl producent b ∈ B wprowadza w systemie ekonomicznym E ′ dowolny plan produkcji

y ∈ Y , to jego zysk wynosi p · y. Gdy, przy tym samym systemie cen, producent b zamiast

realizować znany plan produkcji y, decyduje się na zrealizowanie innowacyjnego planu y′, to

różnica w zysku, jaką może z takiej zmiany otrzymać, jest równa p · y′ − p · y. Stąd, przy

ustalonym systemie cen p oraz przy ustalonych planach produkcji y, y′ ∈ Y ′ definiuje się:

• V := p · y > 0, jako zysk producenta używającego ustalonego planu imitacyjnego y ∈ Y ;

• γ := p · (y′ − y) ­ 0 określające zmianę zysku producenta, który stosuje innowacyjny

plan produkcji y′ zamiast znanego planu y ∈ Y .

Przy powyższych oznaczeniach zysk producenta, który podejmuje się działalności innowacyjnej

wynosi

V ′ := p · y′ = V + γ.

Zysk ten może być dowolną liczbą rzeczywistą. W dalszej części rozprawy używa się również

następujących określeń: zysk imitatora V > 0 nazywa się również wartością rynku dla y, zysk

innowatora V ′ > 0 nazywa się wartością rynku dla y′, a wartość γ > 0 nazywa się przyrostem

wartości rynku dla innowacji.

Niech będzie ustalony system cen p oraz plany produkcji y, y′ takie, że zachodziV > 0

oraz γ ­ 0. Zakłada się, że przyrost zysku γ producenta-innowatora zależy od przyrostu różno-

rodności, uzyskanego dzięki użyciu innowacyjnego planu y′, przyjmując uproszczenie, polega-

jące na założeniu, że istnieje ustalony plan y ∈ Y , który posiada wszystkie istotne atrybuty re-

alizowane w zbiorze Y . Wówczas zachodzi równość: v({y}) = v(Y ), a co za tym idzie również

d(y′, Y ) = d(y′, y). Niech y′ będzie planem istotnie innowacyjnym (zob. Definicja 3.1). Oznacza

to, że zachodzi nierówność d(y′, y) > 0, a plan y′ posiada atrybut nowy (w stosunku do atrybu-

tów posiadanych przez plan y, a więc zgodnie z przyjętym założeniem, również w stosunku do

atrybutów realizowanych w zbiorze Y ) i dodatkowo istotny, z punktu widzenia konsumentów

działających w tym systemie ekonomicznym. Może się jednak zdarzyć, że realizacja planu y′

spowoduje, że pewne istotne atrybuty posiadane przez znany plan y przestaną być dostępne dla

konsumentów. Sytuacja taka ma miejsce, gdy zachodzi nierówność d(y, y′) > 0, czyli gdy plan

y posiada pewien istotny z punktu widzenia konsumentów atrybut, którego nie ma istotnie inno-

wacyjny plan y′. Niech d(y′, y) > d(y, y′) ­ 0. Niech funkcja rosnąca gp : [0,+∞)→ [0,+∞)
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spełniająca warunek gp(0) = 0 określa wartość rynkową każdej z różnic d(y′, y) oraz d(y, y′).

Wówczas przyrost zysku innowatora γ można wyrazić jako różnicę:

γ = gp(d(y′, y))− gp(d(y, y′)) > 0.

Przy oznaczeniach α := gp(d(y′, y)) oraz β := gp(d(y, y′)) zysk innowatora z wprowadzenia

istotnie innowacyjnego planu produkcji wyraża się wzorem:

V ′ = V + α− β (4.43)

gdzie α > β ­ 0.

Zatem, przy powyższych ustaleniach, jeśli w systemie produkcji działa pojedynczy

producent, który używa planu y, to zyskuje V > 0, jeśli natomiast wprowadza on istotną inno-

wację, to jego zysk wynosi V ′ > V . Zysk producenta w obecności innych firm, które decydują

się na użycie jednego z planów: y lub y′ modeluje się w dalszej części pracy.

Funkcja gp, która pozwala na wycenę zmiany jakościowej zachodzącej w systemie

ekonomicznym pod wpływem użycia planu istotnie innowacyjnego y′ w miejsce imitacyjnego

planu y przy danym systemie cen p, może mieć w najprostszym przypadku postać funkcji linio-

wej: gp(x) = cx dla pewnego c > 0. Inna możliwość zakłada określenie tej funkcji rosnącej

jednym ze wzorów typu: gp(x) =
√
x, gp(x) = log(x+ 1) czy też gp(x) = x2.

W celu konstrukcji gry populacyjnej, która opisuje zachowania producentów w sys-

temie ekonomicznym E ′, gdzie v : 2Rl → [0,+∞) jest funkcją różnorodności w przestrzeni

towarów określoną przez konsumentów zgodnie z Definicją 4.14, a zbiór produkcji każdego

producenta b ∈ B ma postać Y = {y, y′} ⊂ Rl, gdzie d(y′, y) > 0, zakłada się, że przy da-

nym systemie cen p ∈ Rl każdy z producentów w populacji B ma do wyboru następujące dwie

strategie polegające na zrealizowaniu jednego z planów produkcji y lub y′.

• Strategia imitacyjna (zachowawcza), oznaczana przez Z, polega na wyborze znanego

rozwiązania produkcyjnego i zrealizowaniu planu produkcji y, z którego zysk może wy-

nieść V > 0;

• Strategia innowacyjna, którą oznacza się przez I , jest strategią producenta-innowatora.

Użycie tej strategii wymaga od producenta podjęcia kosztownych działań, takich jak: pro-
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wadzenie działalności naukowo-badawczej, modyfikację technologii, czy wprowadzenie

w przedsiębiorstwie zmian organizacyjnych, na które producent przeznacza ustalony na-

kład kapitału o wartości F > 0 (ten sam dla wszystkich producentów wprowadzających

innowacje). Działania te skutkują wprowadzeniem istotnie innowacyjnego planu produk-

cji y′, co może przynieść zysk V ′ > 0 określony wzorem (4.43), który zależy od przyrostu

różnorodności związanego z użyciem planu y′ w miejsce y.

Zarówno użycie strategii imitacyjnejZ, jak i strategii innowacyjnej I , odpowiada kon-

kretnemu zachowaniu producenta w opisywanej przez J.A. Schumpetera (1934) teorii rozwoju

gospodarczego. Stąd też obie powyższe strategie nazywa się strategiami schumpeterowskimi

(por. Andersen 2007).

Definicja 4.15 Strategią schumpeterowską nazywa się zarówno strategię imitacyjną Z, jak

i strategię innowacyjną I . Zbiór S = {I, Z} nazywa się zbiorem strategii schumpeterowskich.

4.3.2. Wypłaty ze strategii schumpeterowskich

Niech zbiór strategii dostępnych dla każdego producenta w populacji B będzie zbio-

rem strategii schumpeterowskich S = {I, Z}. Przy ustalonym systemie cen, wypłata w grze

populacyjnej zależy od strategii wybieranych przez wszystkich producentów, czyli od stanu po-

pulacji producentów B, który jest wektorem x = (x1, x2) ∈ ∆(S), gdzie x1 oznacza odsetek

populacji firm stosujących strategię I , natomiast x2 = 1− x1 jest odsetkiem producentów uży-

wających strategii Z. W szczególności, przy ustalonym systemie cen, wypłata ustalonego pro-

ducenta w symetrycznej grze dwuosobowej z wylosowanym z populacji konkurentem, zależy

od strategii zastosowanych przez obie firmy.

Przy powyższych ustaleniach, należy rozważyć następujące trzy (ze względu na sy-

metrię rozgrywki dwuosobowej) przypadki, przedstawione w Tabeli 4.2.

Scenariusz 1. Obaj gracze wybierają strategię Z i używają imitacyjnego planu produkcji

y, dzieląc między siebie zysk wynoszący V > 0.

Scenariusz 2. Jeden z producentów wybiera strategię Z i używa imitacyjnego planu pro-

dukcji y, natomiast druga z firm stosuje strategię I i ponosząc koszt F > 0, wdraża plan

y′, który jest istotnie innowacyjny w stosunku do y . Wypłata producenta-innowatora wy-

nosi wówczas V ′ = V + α − β − F , przy czym wartość −β określa, jaka część zysku
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Producent 2

I Z

Producent 1
I V+α−β

2 − F, V+α−β2 − F V + α− β − F, β

Z β, V + α− β − F V
2 ,
V
2

Tabela 4.2: Macierz wypłat dla zbioru strategii S = {I, Z}

innowatora pozostaje w ręku imitatora używającego planu y. Stąd wypłata imitatora jest

równa β ­ 0, przy czym jeśli innowacyjny plan produkcji y′ posiada wszystkie istotne

atrybuty planu y, to β = 0.

Scenariusz 3. Obaj przedsiębiorcy zastępują plan y innowacyjnym planem y′. Każdy

z producentów ponosi z osobna koszt innowacji F > 0, a dzieli się z drugim graczem

zyskiem z wprowadzenia innowacji wynoszącym V + α − β. Obecność składnika −β

wynika z faktu, że plan y, który może posiadać atrybuty istotne z punktu widzenia kon-

sumentów, nie jest w tym wypadku używany przez żadnego z producentów.

Scenariusze opisane powyżej określają grę populacyjną G w nieprzeliczalnej populacji produ-

centów B i zbiorze strategii schumpeterowskich S = {I, Z}, w której funkcja wypłaty f : S ×

S → R jest określona macierzą przedstawioną w Tabeli 4.2. Poszczególne wartości tej funkcji

można interpretować następująco:

a) gdy obaj producenci stosują strategię I , używając tego samego innowacyjnego planu pro-

dukcji y′, to dzielą się zyskiem z wprowadzenia innowacji wynoszącym V + α− β (por.

wzór (4.43)) po połowie, ponosząc z osobna cały nakład na innowacje równy F > 0.

Wówczas wypłata każdego z producentów f(I, I) = V+α−β
2 − F ; składnik −β określa

jaka jest wartość rynkowa różnicy d(y, y′), która nie zostaje wykorzystana przez innowa-

torów ze względu na to, że plan y′ nie ma wszystkich atrybutów planu y;

b) jeśli dokładnie jeden producent stosuje strategię I , to otrzymuje wypłatę wynoszącą f(I, Z)

= V +α−β−F , natomiast wypłata imitatora w tej sytuacji jest równa f(Z, I) = β i jest

różna od zera, jeśli plan y ma atrybuty, których nie posiada y′;
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c) f(Z,Z) = V
2 oznacza, że gdy obaj producenci stosują strategię Z i nie wprowadzają

innowacji, to dzielą się zyskiem V z wybranego planu y po połowie.

Funkcja wypłaty w grze G zależy więc od wartości następujących parametrów: zysku z planu y

równego V > 0, kosztu wprowadzenia innowacji F > 0, wartości rynkowej różnicy między y′

a y określonej przez α > 0 oraz wartości rynkowej różnicy między y a y′ danej przez β ­ 0,

przy czym zachodzą nierówności: V + α− β − F > 0 oraz β < α (zob. część 4.3.1).

4.3.3. Gra schumpeterowska

Schumpeterowskie podejście do rozwoju gospodarczego zakłada, że wśród produ-

centów działających w danym systemie ekonomicznym, są obecni innowatorzy, wprowadzający

nowe rozwiązania technologiczne. Równocześnie, pozostali producenci nie podejmują się dzia-

łalności innowacyjnej (por. Schumpeter 1934). Grę populacyjną, której wynikiem jest powsta-

nie stabilnej struktury populacji, w której współistnieją imitatorzy z innowatorami, nazywa się

w rozprawie grą schumpeterowską (por. Andersen 2007).

Niech G będzie grą populacyjną o zbiorze strategii schumpeterowskich S = {I, Z}

i funkcji wypłaty f : S × S → R danej macierzą przedstawioną w Tabeli 4.2.

Definicja 4.16 Grę populacyjną G nazywa się grą schumpeterowską, jeśli występuje w niej taki

stan ewolucyjnie stabilny, w którym w populacji reprezentowane są obie strategie schumpete-

rowskie ze zbioru S = {I, Z}.

Na podstawie podpunktu (ii) Spostrzeżenia 4.4 można sformułować następujący wniosek.

Wniosek 4.5 Gra populacyjna G jest grą schumpeterowską wtedy i tylko wtedy, gdy funkcja

wypłaty f : S × S → R spełnia warunki:

f(I, Z) > f(Z,Z) oraz f(Z, I) > f(I, I). (4.44)

Wniosek 4.5 pozwala stwierdzić, że gra populacyjna G stanowi grę schumpeterowską pod wa-

runkiem, że dla każdego gracza biorącego udział w rozgrywce dwuosobowej korzystny jest wy-

bór strategii alternatywnej wobec strategii przeciwnika. Gry populacyjne tego rodzaju nazywa

się ogólnie grami antykoordynacyjnymi (por. Herold, Kuzmics 2020).
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Aby funkcja wypłaty określona macierzą z Tabeli 4.2, gwarantowała istnienie stabil-

nej populacji, składającej się zarówno z imitatorów jak i innowatorów, muszą zostać spełnione

określone zależności pomiędzy wartościami parametrów F , V , α oraz β.

Wniosek 4.6 Gra populacyjna G jest grą schumpeterowską wtedy i tylko wtedy, gdy spełniony

jest układ zależności:

2(F + β − α) < V < 2F + 3β − α. (4.45)

Uwaga 4.2 Warunek (4.45) sprowadza się do założenia

2F − V ∈ (α− 3β, 2(α− β)) . (4.46)

Jeśli parametry gry, czyli: koszt wprowadzenia innowacji F , zysk z imitacyjnego planu produk-

cji wynoszący V oraz parametry α i β związane ze zmianą różnorodności, spełniają zależności

(4.45), to pewien niezerowy odsetek producentów z populacji B, zdecyduje się na wprowadze-

nie innowacji, natomiast pozostała część populacji będzie używać znanego planu produkcji y.

Oznacza to, że populacja producentów będzie polimorficzna.

Uwaga 4.3 Dla β = 0macierz określona Tabelą 4.2 przyjmuje postać macierzy przedstawionej

w Tabeli 4.3, natomiast warunek (4.46) sprowadza się do zależności: 2F − V ∈ (α, 2α).

Producent 2

I Z

Producent 1
I V+α

2 − F,
V+α
2 − F V + α− F, 0

Z 0, V + α− F V
2 ,
V
2

Tabela 4.3: Macierz wypłat dla zbioru strategii S, gdy β = 0

Jeśli w grze schumpeterowskiej zachodzi równość β = 0, to wprowadzony przez innowatora

plan produkcji y′ posiada wszystkie istotne dla konsumentów atrybuty planu y (tzn. d(y, y′) = 0)

i ponadto taki atrybut, który choć był pożądany przez konsumentów, to nie był dla nich dostęp-

ny. Gra schumpeterowska, w której zachodzi warunek β = 0, jest przykładem tzw. conflict
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game. W grach tego typu, zastosowanie „agresywnej” strategii, którą w tym wypadku jest stra-

tegia innowacyjna, skutkuje niską wypłatą producenta, gdy przeciwnik również zdecyduje się na

wprowadzenie innowacji. W przeciwnym wypadku, innowator odnosi jednak sukces i uzysku-

je wysoką wypłatę. Sztandarowym przykładem conflict game jest klasyczna gra jastrząb-gołąb

(Hawk-Dove game), rozważana przez Johna Maynarda Smitha i George’a Roberta Price’a w ich

pracy pt. „The logic of animal conflict” (Smith, Price 1973).

4.3.4. Ewolucyjnie stabilny stan gry schumpeterowskiej

Warunek (4.44), który zapewnia, że gra populacyjna G jest grą schumpeterowską,

gwarantuje istnienie ewolucyjnie stabilnego stanu populacji producentów, w którym obie stra-

tegie schumpeterowskie są równocześnie realizowane. Co więcej, zgodnie z Wnioskiem 4.3,

taki stan populacji, w którym w systemie ekonomicznym stabilnie współistnieją innowatorzy

z imitatorami, jest dokładnie jeden i ma postać określoną wzorem (4.29).

Twierdzenie 4.3 W grze schumpeterowskiej (zob. Definicja 4.16), istnieje dokładnie jeden ewo-

lucyjnie stabilny stan populacji. Ponadto, jest to stan, w którym populacja producentów jest

polimorficzna. Stan ten ma postać x∗ = (x∗1, x∗2) ∈ ∆(S), gdzie x∗1 ∈ (0, 1) jest odsetkiem

innowatorów, x∗2 = 1− x∗1 wyznacza odsetek imitatorów, przy czym:

x∗1 =
f(I, Z)− f(Z,Z)

f(Z, I)− f(I, I) + f(I, Z)− f(Z,Z)
, (4.47)

x∗2 =
f(Z, I)− f(I, I)

f(Z, I)− f(I, I) + f(I, Z)− f(Z,Z)
. (4.48)

Odsetek innowatorów x∗1 dany wzorem (4.47) jest równy unormowanemu przyrostowi wypłaty

producenta ze zmiany strategii z Z na I , przy założeniu, że przeciwnik stosuje strategię Z. Po-

dobnie, odsetek imitatorów x∗2 zgodnie ze wzorem (4.48) zależy od przyrostu wypłaty ze zmiany

strategii z I na Z w przypadku, gdy konkurent decyduje się na użycie strategii I . Oznacza to,

że w grze schumpeterowskiej, w stanie populacji, który jest ewolucyjnie stabilny, dla każdego

producenta korzystne jest używanie strategii innej niż strategia jego konkurenta. Taki stan popu-

lacji, w którym jest ona złożona zarówno z innowatorów jak i imitatorów, odgrywa szczególną

rolę w schumpeterowskiej teorii rozwoju gospodarczego (por. Schumpeter 1934).
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Definicja 4.17 Jedyny ewolucyjnie stabilny stan populacji w grze schumpeterowskiej nazywa

się stanem schumpeterowskim.

Zgodnie z Twierdzeniem 4.3 stan schumpeterowski w grze schumpeterowskiej istnieje i jest jedy-

ny. Populacja producentów jest w nim polimorficzna, tzn. reprezentowane są w nim obie strategie

schumpeterowskie (zob. Definicja 4.15). Zatem populacja monomorficzna, złożona wyłącznie

z innowatorów, albo wyłącznie z imitatorów, nie tworzy stanu schumpetrowskiego. Stan schum-

peterowski odzwierciedla taką postać systemu ekonomicznego, w której niektórzy producenci

decydują się na wprowadzanie innowacji, podczas gdy inni wykorzystują znane plany produk-

cyjne. W takim polimorficznym stanie, struktura populacji firm jest nietrywialna, tzn. dodatni

odsetek producentów decyduje się na wprowadzenie innowacji, a równocześnie w populacji

występują producenci stosujący zachowawczą strategię imitacyjną. Definicja 4.17 odpowiada

definicji systemu innowacyjnego wprowadzonej przez Andersena (2007).

4.3.5. Własności stanu schumpeterowskiego

Niech gra populacyjna G będzie grą schumpeterowską, tzn. niech parametry gry speł-

niają warunek (4.45). Na podstawie Wniosku 4.3 odsetki: innowatorów i imitatorów w stanie

schumpeterowskim x∗ = (x∗1, x∗2) gry G wynoszą odpowiednio:

x∗1 =
V − 2F + 2(α− β)

α + β
(4.49)

oraz

x∗2 =
2F − V − (α− β) + 2β

α + β
, (4.50)

przy czym 2F − V ∈ (α− 3β, 2(α− β)) (zob. Uwaga 4.2). W szczególnym przypadku, gdy

β = 0, odsetek innowatorów x∗1 i odsetek imitatorów x∗2 są w stanie schumpeterowskim x∗ =

(x∗1, x
∗
2) dane wzorami:

x∗1 =
V − 2F + 2α

α
, (4.51)

x∗2 =
2F − V − α
α

(4.52)

przy założeniu 2F − V ∈ (α, 2α).

Stan schumpeterowski x∗ = (x∗1, x∗2) określony równaniami (4.49) i (4.50):
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• jest równowagą Nasha gry populacyjnej (zob. Spostrzeżenie 4.1), czyli dla każdego pro-

ducenta, przy ustalonych strategiach pozostałych firm, zmiana aktualnej strategii nie może

zwiększyć jego wypłaty;

• jest stanem ewolucyjnie stabilnym populacji (Definicja 4.17), tzn. populacja poddana nie-

wielkiemu zaburzeniu powraca do tego stanu (zob. Definicja 4.8);

• jest stanem stacjonarnym mean dynamics określonej równaniem (4.8); oznacza to, że

w stanie schumpeterowskim odsetek innowatorów i imitatorów w populacji nie podlega

zmianom, chyba że zmianie ulegną parametry gry (por. część 4.1.2);

• dla każdego z protokołów postępowania opisanych w części 4.1.1, jest stanem asympto-

tycznie stabilnym dynamiki (4.8), opisującej zmianę odsetka graczy używających danej

strategii schumpeterowskiej (por. część 4.1.2).

Na podstawie powyższych własności stanu schumpeterowskiego można stwierdzić, że w grze

schumpeterowskiej każdy stan populacji będzie zmierzać do stanu schumpeterowskiego, co wię-

cej, niezależnie od stanu początkowego znajdzie się asymptotycznie blisko stanu schumpete-

rowskiego. Stąd, potencjalnie skomplikowana analiza zachowań producentów w grze schum-

peterowskiej, może zostać sprowadzona do zbadania własności jej stanu schumpeterowskiego,

będącego „rozwiązaniem” gry.

Postać stanu schumpeterowskiego zależy od wartości parametrów określających wy-

płaty; odsetek producentów reprezentujących poszczególne strategie schumpeterowskie, zależy

od: kosztu wprowadzenia innowacji F > 0, zysku imitatora V > 0, a także przyrostu różnorod-

ności związanego z zastosowaniem innowacyjnego planu produkcji określonego przez parame-

try: α > 0 oraz β, przy czym 0 ¬ β < α. Dla ustalonych wartości tych parametrów, struktura

populacji producentów w stanie schumpeterowskim jest stała. Można również zauważyć, że przy

ustalonych pozostałych parametrach:

• zwiększenie kosztu wprowadzenia innowacji F zmniejsza odsetek innowatorów w stanie

schumpeterowskim;

• im wyższy zysk imitatora V , tym wyższy odsetek innowatorów w stanie schumpeterow-

skim;
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• postać stanu schumpeterowskiego zależy od wartości różnicy 2F − V , wraz ze wzrostem

różnicy 2F − V rośnie odsetek producentów stosujących strategię imitacyjną.

Poniższy przykład obrazuje wpływ zmieniającej się wartości różnicy 2F − V na postać stanu

schumpeterowskiego, dla ustalonych wartości α i β.

Przykład 4.1 Niech populacjęB stanowią producenci parówek. Niech atrybutA1 stanowi zbiór

produktów zawierających w składzie mięso, natomiast atrybut A2 będzie zbiorem produktów

pochodzenia wyłącznie roślinnego, przy czym oba atrybuty mają dodatnie wagi, pozostające

w stosunku λA1
λA2
= 1
4 . Niech y będzie planem produkcji parówek mięsnych (tzn. y ∈ A1), na-

tomiast y′ niech będzie istotnie innowacyjnym planem produkcji parówek wyłącznie roślinnych

(tzn. y′ ∈ A2), przy czym pozostałe atrybuty realizowane przez plany produkcji y oraz y′ są takie

same. Wtedy:

• α = gp(d(y′, y)) = gp(v({y′, y})− v({y})) = gp(λA2);

• β = gp(d(y, y′)) = gp(v({y′, y})− v({y′})) = gp(λA1).

Niech, dla ustalonego wektora cen p, zachodzi gp(x) = x, gdzie x ­ 0. Wtedy α = λA2 ,

β = λA1 oraz α = 4β. Jeśli 2F − V ∈ (β, 6β), to spełniony jest warunek (4.46) i istnieje stan

schumpeterowski postaci

x∗ = (x∗1, x
∗
2) =

(
6
5
− 2F − V
5β

,
1
5
+
2F − V
5β

)
.

Dla przykładowej wartości β = 1 oraz ustalonego c := 2F − V ∈ (1, 6) macierz wypłat

Producent 2

I Z

Producent 1
I 3−c

2 ,
3−c
2

6+V−c
2 , 1

Z 1, 6+V−c2
V
2 ,
V
2

Tabela 4.4: Macierz gry z Przykładu 4.1 (c = 2F − V , α = 4, β = 1).
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przedstawiona jest w Tabeli 4.4, a stan schumpeterowski ma postać:

(x∗1, x
∗
2) =

(6− c
5
,
c− 1
5

)
.

Dla ustalonych wartości pozostałych parametrów postać stanu schumpeterowskiego zależy od

różnicy c = 2F − V ∈ (1, 6): im różnica 2F − V jest większa, tym mniej producentów w sta-

nie schumpeterowskim decyduje się na wprowadzanie innowacji, polegającej na zmianie składu

parówek z mięsnego na roślinny.

4.3.6. Wpływ wzrostu różnorodności na postać stanu schumpeterowskiego

Niech, podobnie jak w podrozdziale 4.3.1, w systemie ekonomicznym E ′ = (P , C, θ̄)

określonym Definicją 4.12, działają producenci z populacji B, a preferencje konsumentów wy-

raża funkcja różnorodności w przestrzeni towarów v : 2Rl → [0,+∞) (zob. Definicja 4.14).

Niech, zgodnie z uproszczeniem przyjętym w części 4.3.1, zbiór produkcji każdego producenta

ma postać: Y = {y′, y}, gdzie y jest planem imitacyjnym, a y′ – planem istotnie innowacyjnym

(tzn. zachodzi warunek d(y′, y) > 0). Przy ustalonym systemie cen p, zysk pojedynczego pro-

ducenta wynosi wówczas albo V > 0, gdy producent realizuje plan y, albo V ′, gdy realizuje

on plan y′. Zachodzi przy tym równość: V ′ = V + α − β (por. wzór (4.43)), gdzie parametry

α > 0 i β ­ 0 takie, że α > β, są określone jako α := gp(d(y′, y)), β := gp(d(y, y′)) dla pewnej

funkcji rosnącej gp : [0,+∞)→ [0,+∞). Wartość α > 0 odzwierciedla dodatni wpływ różnicy

d(y′, y) na zysk innowatora. Nieujemna wartość parametru β, która może negatywnie odbić się

na zysku innowatora, wskazuje na to, że plan innowacyjny y′ może w niektórych przypadkach

nie posiadać pewnego istotnego atrybutu, który ma plan y.

Przyjmując dodatkowo, że wprowadzenie innowacji, czyli zrealizowanie planu y′,

wiąże się z dodatkowym kosztem F > 0 (zob. część 4.3.2) oraz że zakres dopuszczalnych war-

tości parametrów określa warunek (4.45), rywalizacja między producentami w systemie eko-

nomicznym E ′, modelowana w postaci gry populacyjnej, doprowadza do powstania stabilnej

struktury w systemie produkcji. Ta stabilna struktura, czyli stan schumpeterowski (zob. Defini-

cja 4.17) charakteryzuje się tym, że stały niezerowy odsetek firm realizuje w systemie produkcji

działania innowacyjne, podczas gdy pozostała część populacji (również o niezerowym odsetku)

stosuje znane rozwiązania technologiczne.
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Zmiana różnorodności, związana z wprowadzeniem innowacji, wyrażona jest w rów-

naniach określających postać stanu schumpeterowskiego (zob. równania (4.49) i (4.50)) poprzez

wartości parametrów α i β. W celu zbadania wpływu wartości tych parametrów na postać stanu

schumpeterowskiego przyjmuje się, że różnica ξ := 2F−V jest stała. Wówczas, przy założeniu,

że zachodzi warunek (4.46), który przyjmuje postać:

ξ ∈ (α− 3β, 2(α− β)), (4.53)

w stanie schumpeterowskim (x∗1, x∗2) odsetek innowatorów jest równy

x∗1 =
2(α− β)− ξ
α + β

, (4.54)

a odsetek imitatorów jest dany przez

x∗2 =
3β − α + ξ
α + β

. (4.55)

Funkcja Γξ : DΓξ ∋ (α, β) 7→ Γξ(α, β) ∈ (0, 1), która opisuje wpływ wartości α

i β na odsetek innowatorów w stanie schumpeterowskim x∗ = (x∗1, x∗2) dla ustalonej wartości

parametru ξ jest dana wzorem

Γξ(α, β) :=
2(α− β)− ξ
α + β

, (4.56)

a jej dziedzinę stanowi zbiór (por. (4.53)):

DΓξ =
{
(α, β) ∈ R2 :

α

3
− ξ
3
< β < α− ξ

2
; α > 0

}
. (4.57)

Twierdzenie 4.4 Funkcja Γξ : DΓξ → (0, 1) dana wzorem (4.56) ma następujące własności:

(i) funkcja Γξ jest klasy C1;

(ii) dla ustalonej wartości β funkcja Γξ(·, β) : α 7→ Γξ(α, β) jest rosnąca;

(iii) dla ustalonej wartości α funkcja Γξ(α, ·) : β 7→ Γξ(α, β) jest malejąca;

(iv) lim
β→α− ξ2

Γξ(α, β) = 0 oraz lim
β→α3−

ξ
3

Γξ(α, β) = 1.
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Dowód. Podpunkt (i)wynika ze wzoru funkcji (4.56). Pochodne cząstkowe funkcjiΓξ dla (α, β) ∈

DΓξ wynoszą odpowiednio:
∂Γξ
∂α
(α, β) =

4β + ξ
(α + β)2

(4.58)

oraz
∂Γξ
∂β
(α, β) =

−4α + ξ
(α + β)2

. (4.59)

Dla każdego (α, β) ∈ DΓξ pochodne cząstkowe dane wzorami (4.58) oraz (4.59) są różne od

zera. Zatem funkcja Γξ nie ma ekstremów lokalnych w zbiorzeDΓξ . Równocześnie, dla każdego

(α, β) ∈ DΓξ zachodzi ∂Γξ
∂α
(α, β) > 0, zatem dla ustalonego β funkcja Γξ(·, β) : α 7→ Γξ(α, β)

jest rosnąca, gdy (α, β) ∈ DΓξ (stąd prawdziwy jest podpunkt (ii)). Podobnie, dla każdego

(α, β) ∈ DΓξ zachodzi ∂Γξ
∂β
(α, β)<0, więc dla ustalonego α funkcja Γξ(α, ·) : β 7→ Γξ(α, β)

jest malejąca, gdy (α, β) ∈ DΓξ , co dowodzi prawdziwości podpunktu (iii). Prosty rachunek

wykazuje również prawdziwość (iv).
■

Im wartości α są mniejsze i bliższe F − V2 , czyli wartości granicznej, po przekroczeniu której

polimorficzna populacja producentów przestaje być ewolucyjnie stabilna, tym mniejszy odsetek

innowatorów występuje w stanie schumpeterowskim. Z kolei, gdy wartość α rośnie do maksy-

malnej wartości (wynoszącej 2(F− V2 )), to w stanie schumpeterowskim pojawia się coraz więcej

innowatorów. Zatem im większa wartość d(y, y′) ­ 0 wyznaczająca różnicę między imitacyj-

nym planem produkcji y a planem innowacyjnym y′, przy ustalonej wartości d(y′, y), tym więcej

producentów wybiera strategię polegającą na imitacji. Z drugiej strony, im większa jest różni-

ca d(y′, y) między planem innowacyjnym y′ a planem imitacyjnym y, przy ustalonej wartości

d(y, y′), tym więcej pojawia się innowatorów w populacji producentów. Można zatem sformuło-

wać następujący wniosek będący równocześnie odpowiedzią na trzecią z hipotez postawionych

we wstępie do niniejszej rozprawy.

Wniosek 4.7 Im większy przyrost różnorodności zapewnia wprowadzenie innowacyjnego planu

produkcji, przy ustalonych wartościach pozostałych parametrów, tym wyższy odsetek innowato-

rów w stanie schumpeterowskim.

Przyrost różnorodności w powyższym wniosku utożsamiony jest z wartością wyrażenia d(y′, y).
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4.3.7. Rodzaje gier schumpeterowskich

Każda gra schumpeterowska charakteryzuje się występowaniem globalnie ewolucyj-

nie stabilnego stanu populacji (por. Wniosek (4.3)), czyli stanu schumpeterowskiego, który usta-

la się w zależności od wartości parametrów związanych z działalnością producentów (α, β)

oraz otoczeniem gospodarczym (V , F ). Poniżej zbadano związek pomiędzy postacią systemu

schumpeterowskiego a średnią wypłatą w grze schumpeterowskiej. Średnia wypłata w popula-

cji producentów jest wskaźnikiem jakości używanej przez graczy strategii w przypadku niektó-

rych protokołów postępowania (por. część 4.1.1), a także może stanowić pewien wyznacznik

dobrobytu społecznego i punkt odniesienia w poszukiwaniu Pareto-optymalnego wyniku gry

schumpeterowskiej.

Niech wartości parametrów α > 0, F > 0, V > 0 będą ustalone oraz spełniony

będzie warunek (4.45), tzn.

β ∈
(1
3
(V + α− 2F ), V

2
+ α− F

)
, (4.60)

przy czym β ­ 0. Wówczas istnieje stan schumpeterowski x∗ = (x∗1, 1−x∗1), w którym odsetek

innowatorów x∗1 jest określony wzorem (4.49). Wiadomo, że średnią wypłatę w populacji pro-

ducentów wyznacza się ze wzoru (4.18). Równanie to w stanie schumpeterowskim x∗ przyjmuje

postać:

πav(x∗1, 1− x∗1) = x∗1
(
β − V
2

)
+
V

2
= x∗1β + (1− x∗1)

V

2
. (4.61)

Zatem średnia wypłata w stanie schumpeterowskim x∗ = (x∗1, 1 − x∗1) jest liniową funkcją od-

setka innowatorów x∗1. Można zauważyć, że wpływ na monotoniczność powyższej funkcji ma

zależność jaka zachodzi pomiędzy parametrami V oraz β gry schumpeterowskiej, w szczegól-

ności

1) dla każdego β ∈ [0, V2 )

– średnia wypłata w stanie schumpeterowskim jest mniejsza niż średnia wypłata w grze,

w której wszyscy producenci rezygnują z wprowadzenia innowacji, tzn.

πav(x∗1, 1− x∗1) < πav(0, 1) = V2 ,

– zachodzą nierówności f(I, I) < f(Z, I) = β < V
2 = f(Z,Z) < f(I, Z), stąd

zarówno innowator jak i imitator preferują grę przeciw imitatorowi;
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2) dla każdego β ∈ (V2 , α),

– średnia wypłata w stanie schumpeterowskim przyjmuje wartości większe niż wypła-

ta w monomorficznym stanie populacji (0, 1), tzn. πav(x∗1, 1− x∗1) > πav(0, 1) = V2 ,

– skoro f(Z, I) = β > V2 = f(Z,Z), to również f(I, Z) > f(I, I) (z warunku (4.5)),

a więc każdy producent uzyskuje wyższą wypłatę, gdy jego przeciwnik wybiera stra-

tegię alternatywną wobec jego strategii;

3) gdy β = V2 , to

– średnia wypłata w stanie schumpeterowskim wynosi πav(x∗1, 1− x∗1) = πav(0, 1),

– f(I, I) < f(Z, I) = V2 = f(Z,Z) < f(I, Z), co oznacza, że producentowi używa-

jącemu strategii Z jest obojętne, jakiej strategii używa jego przeciwnik, ale produ-

cent używający strategii I otrzymuje wyższą wypłatę, gdy jego przeciwnik stosuje

strategię Z zamiast I; czyli o ile imitator jest obojętny na wybór przeciwnika, o tyle

innowator preferuje konkurowanie z imitatorem.

Można zauważyć, że jeśli β < V2 , to obecność dużego odsetka innowatorów nie jest korzystna dla

populacji. Im mniejsze β tym wypłata f(I, Z) osiągana przez producenta stosującego strategię

innowacyjną jest większa, ale wzrost ten nie przekłada się na dobrobyt społeczny, mierzony

średnią wypłatą populacji. Co więcej, w skrajnym przypadku, gdy β = 0 wypłata innowatora

przeciw imitatorowi w grze schumpeterowskiej jest największa możliwa i równa f(I, Z) =

V + α − F , to równocześnie średnia wypłata w populacji osiąga swoją najmniejszą możliwą

wartość: πav(x∗1, 1− x∗1) = (1− x∗1)V2 .

Inaczej ma się rzecz, gdy zachodzi nierówność β > V2 . W takiej sytuacji, średnia wy-

płata przewyższa wartość f(Z,Z), przy czym im większy odsetek innowatorów, tym wyższy

(mierzony średnią wypłatą) dobrobyt społeczny. Nierówność β > V2 wskazuje, że wypłata imi-

tatora jest wyższa wówczas, gdy jego przeciwnik decyduje się na wprowadzenie innowacji, niż

wtedy, gdy z niego rezygnuje (ponieważ f(Z, I) > f(Z,Z)). Można tę zależność interpreto-

wać następująco (por. Saviotti 2001; Saviotti, Pyka 2004; 2009; Saviotti et al. 2020): innowator

odkrywając pewną niszę rynkową eksploatuje ją, umożliwiając równocześnie przejęcie rynku

związanego ze znanym planem produkcyjnym przez imitatora. Wówczas obaj producenci od-

noszą korzyść z wprowadzenia innowacji przez jednego z nich. Imitator nie ponosząc koszów
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związanych z wprowadzeniem innowacji i zachowując bierną postawę, korzysta z innowacyjnych

działań drugiego producenta. Można przy tym zauważyć, że innowator nie konkuruje z imitato-

rem, a tylko z innym innowatorem. Podobnie imitator, traci gdy jego przeciwnik stosuje tą samą

strategię, co on. Stąd kluczowa w tym wypadku jest koordynacja, albo raczej antykoordynacja

działań producentów, służąca dobrobytowi społecznemu.

Opisany powyżej podział gier schumpeterowskich ze względu na wartość parametru

β, odpowiada ogólnemu podziałowi gier populacyjnych o dwóch strategiach.

Definicja 4.18 (Herold, Kuzmics 2020) Grę populacyjną G o zbiorze strategii S = {s1, s2}

i macierzy wypłat postaci (4.15), dla której zachodzą nierówności: a < c oraz d < b, nazywa

się:

• grą opartą na konflikcie (conflict game), gdy c ­ d;

• grą antykoordynacyjną (anti-coordination game), jeśli c > d.

Gdy c ­ d, to niezależnie od wybranej strategii, gracz woli by jego przeciwnik grał strategię s2

polegającą na unikaniu konfliktu. Natomiast gdy c > d gracz, który wybrał strategię s2 wolałby,

aby przeciwnik grał agresywną strategię s1.

Spostrzeżenie 4.5 Dla ustalonych wartości parametrów V > 0, F > 0, α > 0 oraz 0 ¬ β < α,

które spełniają warunek (4.45):

• jeśli β ¬ V2 , to gra schumpeterowska jest oparta na konflikcie;

• dla β > V2 gra schumpeterowska jest grą antykoordynacyjną.

W przypadku schumpeterowskiej gry antykoordynacyjnej wybór strategii alternatywnej wobec

strategii przeciwnika jest zawsze opłacalny. Zatem, w tego rodzaju grze schumpeterowskiej, gdy

jedna ze strategii jest „nadmiernie używana” w populacji, czyli używa jej zbyt duży odsetek

graczy, to stosowanie jej przestaje być opłacalne. Z kolei w grze schumpeterowskiej, która jest

oparta na konflikcie, nadmierne wysycenie następuje szybko jedynie w przypadku agresywnej

strategii innowacyjnej.

Do wskazania różnic pomiędzy tymi dwoma typami gier może posłużyć poniższy

przykład, ilustrujący wpływ parametru β na postać systemu schumpeterowskiego oraz średnią

wypłatę.
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Przykład 4.2 Niech G będzie grą populacyjną ze zbiorem strategii schumpeterowskich S =

{I, Z} i funkcją wypłaty określoną macierzą z Tabeli 4.2. Niech V = 3, F = 10, α = 11.

Wówczas, z warunku (4.60) oraz z przyjętego założenia b ­ 0wynika, że jeśli β ∈ [0, 52), to G jest

grą schumpeterowską. Przy czym dla β ∈ [0, 32) gra schumpeterowska jest oparta na konflikcie,

a gdy β ∈ (32 ,
5
2), to gra jest antykoodynacyjna. Niech dane będą dwie wartości parametru β,

dla których rozważa się powyższą grę schumpeterowską: β1 = 0 oraz β2 = 2.

1. Dla β1 = 0 gra schumpeterowska jest oparta na konflikcie, a macierz gry reprezentuje Ta-

bela 4.5 (lewa strona). Stan schumpeterowski ma postać x∗ =
(
5
11 ,

6
11

)
, a średnia wypłata

w tym stanie wynosi πav
(
5
11 ,

6
11

)
= 9
11 .

2. Macierz gry w Tabeli 4.5 po prawej stronie przedstawia wypłaty gry antykoordynacyjnej

dla β2 = 2. W grze tej ustala się stan schumpeterowski postaci: x∗ =
(
1
13 ,
12
13

)
, a średnia

wypłata wynosi πav
(
1
13 ,
12
13

)
= 2013 .

Producent 2

I Z

Producent 1
I −3,−3 4, 0

Z 0, 4 3
2 ,
3
2

Producent 2

I Z

Producent 1
I −4,−4 2, 2

Z 2, 2 3
2 ,
3
2

Tabela 4.5: Macierze wypłat gry schumpeterowskiej dla V = 3, F = 10 i α = 11; gry opartej
na konflikcie, dla β1 = 0 (z lewej strony) oraz gry antykoordynacyjnej, gdy β2 = 2 (z prawej
strony).

Można zauważyć, między innymi, że:

• większa wartość parametru β w przypadku 2 negatywnie odbija się na odsetku innowato-

rów (por. część 4.3.6), stąd odsetek innowatorów w systemie schumpeterowskim dla β2 = 2

jest mniejszy, niż gdy β1 = 0;

• średnia wypłata w powstałym w grze systemie schumpeterowskim jest wyższa w przypadku

gry antykoordynacyjnej, czyli dla β2 = 2, niż dla gry opartej na konflikcie;
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• gdy β1 = 0 imitator traci, gdy przeciwnik wprowadza innowację (tzn. f(Z, I) < f(Z,Z)),

dla β2 = 2 przeciwnie, zysk innowatora jest większy, gdy drugi producent decyduje się na

działalność innowacyjną (tzn. f(Z, I) > f(Z,Z)).

Gra schumpeterowska, zarówno poprzez swoje strategie, jak i przyjmowane wypłaty, opisuje za-

chowania producentów, które są charakterystyczne dla schumpeterowskiego rozwoju gospodar-

czego (por. Schumpeter 1934). Metodologicznie, gry schumpeterowskie stanowią pewną podro-

dzinę gier populacyjnych o dwóch strategiach, w których istnieje dokładnie jeden, polimorficzny

i ewolucyjnie stabilny stan populacji. Przykład 4.2 pokazuje, że rodzina gier schumpeterowskich

jest wewnętrznie zróżnicowana i że gry te mogą służyć do badania różnych sytuacji społecznych

w których kształtuje się ustalona struktura populacji.

4.4. Podsumowanie

W tym rozdziale poszukiwano odpowiedzi na drugie z pytań badawczych postawio-

nych we wstępie do niniejszej rozprawy: Jak zmiana różnorodności gospodarki wpływa na jej

ewolucję? W celu uzyskania odpowiedzi na to pytanie, poddano weryfikacji trzecią z zapropo-

nowanych hipotez badawczych, która stwierdza, że im większy przyrost różnorodności w sys-

temie ekonomicznym powoduje wprowadzenie innowacji, tym większa skłonność producentów

do jej wprowadzenia. Analiza przeprowadzona w tym rozdziale wykazała, że im większy przy-

rost różnorodności związany jest z wprowadzeniem innowacji, tym większa ilość producentów

podejmuje się działalności innowacyjnej.

Użycie metod ewolucyjnej teorii gier, pozwoliło na wykazanie, że struktura popu-

lacji producentów, składającej się zarówno z innowatorów jak i imitatorów, pozostaje stabilna

w grach schumpeterowskich. W związku z tym, badanie wpływu przyrostu różnorodności na de-

cyzje dotyczące podjęcia działalności innowacyjnej przez producentów, można przeprowadzić

na podstawie analizy ewolucyjnie stabilnego stanu populacji producentów, tzw. stanu schumpe-

terowskiego. Wykazano, że wzrost różnorodności związany z wprowadzeniem istotnie innowa-

cyjnego planu produkcji obok znanego rozwiązania technologicznego, powoduje zwiększenie

się odsetka innowatorów w stanie schumpeterowskim (zob. Wniosek 4.7). Zatem różnorodność

ma wpływ na strukturę populacji producentów, a jej wzrost pociąga za sobą wzrost odsetka pro-
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ducentów, którzy w systemie ekonomicznym wybierają rozwiązania innowacyjne. Co za tym

idzie, trzecia z hipotez badawczych postawionych we wstępie, okazała się być prawdziwa.
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Zakończenie

Celem rozprawy było zbadanie zależności występujących między zmianą różnorod-

ności systemu gospodarczego a jego ewolucją. Do zdefiniowania różnorodności systemu gospo-

darczego posłużyło w rozprawie pojęcie różnorodności zbioru sformalizowane przez Nehringa

i Puppego (2002). Zostało ono wprowadzone do dwóch różnych modeli gospodarki, w których

rozważano skończoną liczbę towarów. Pierwszy z modeli czerpał inspirację z teorii równowagi

ogólnej, natomiast drugi – z ewolucyjnej teorii gier.

W pierwszej części rozprawy rozpatrywano wpływ zmiany ewolucyjnej w systemie

gospodarczym na różnorodność tego systemu, analizując w czasie dyskretnym ewolucję mo-

delu ekonomicznego, w którym działa skończona liczba podmiotów. W modelu tym, w opar-

ciu o atrybuty towarów istotne z punktu widzenia konsumentów, zdefiniowano funkcję różno-

rodności w przestrzeni towarów. Funkcji tej użyto następnie do analizy zmian ewolucyjnych

zachodzących w gospodarce, modelowanych przy użyciu narzędzi teorii projektowania mecha-

nizmów ekonomicznych. W drugiej części rozprawy analizowano konsekwencje zmiany róż-

norodności w systemie gospodarczym dla ewolucji tego systemu. Badaniu poddano model go-

spodarki z nieskończoną ilością podmiotów, a zmiany zachodzące w gospodarce analizowano

w czasie ciągłym, stosując podejście znane z ewolucyjnej teorii gier. Konkurencję schumpete-

rowską przedstawiono w postaci gry populacyjnej, w której wypłatach został odzwierciedlony

wzrost różnorodności związany z wprowadzaniem innowacji. Wyznaczając ewolucyjnie stabilne

stany populacji, zbadano jak wzrost różnorodności związany z wprowadzaniem innowacji zmie-

nia strukturę systemu ekonomicznego, a w szczególności, jak wpływa na odsetek producentów,

którzy decydują się na wprowadzenie innowacji.

W pracy wykazano, że wprowadzenie innowacji jest warunkiem koniecznym zwięk-

szenia różnorodności systemu ekonomicznego ze skończoną liczbą podmiotów. Stwierdzono

również, że innowacje wprowadzane przez producentów mogą zwiększyć różnorodność systemu
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ekonomicznego, o ile nowe rozwiązania technologiczne posiadają takie atrybuty, które są istot-

ne dla konsumentów. Wykazano także, że zanikanie przestarzałych technologii nie musi prowa-

dzić do zmniejszenia różnorodności systemu ekonomicznego. W rozprawie ustalono, że w grze

schumpeterowskiej występuje stały odsetek innowatorów, który zależy od przyrostu różnorod-

ności związanego z wprowadzeniem innowacji. Im większy przyrost różnorodności powoduje

wprowadzenie innowacji w danym systemie ekonomicznym, tym więcej występuje innowatorów

w ewolucyjnie stabilnym stanie populacji producentów, tzw. stanie schumpeterowskim.

Badania, których podsumowanie stanowi niniejsza rozprawa, nie wyczerpują tema-

tu wzajemnego wpływu, jaki na siebie wywierają różnorodność i ewolucja gospodarki. Między

innymi, w rozprawie nie analizowano takich mechanizmów ekonomicznych, w wyniku których

zmieniają się charakterystyki systemu konsumpcji, w szczególności preferencje konsumentów.

Szerokie pole do badania pozostawia również rola różnorodności jako czynnika, który ma wpływ

na kształtowanie się populacji producentów. W szczególności otwarty pozostaje problem wpły-

wu zmian różnorodności na kształt populacji producentów, wprowadzających różne, ale wzajem-

nie od siebie zależne innowacje. Do analizy tego problemu możliwe wydaje się użycie podejścia

przedstawionego w pracy (Bielawski, Jakubek 2021).
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